1
|
Richtmann S, Marwitz S, Muley T, Koistinen H, Christopoulos P, Thomas M, Kazdal D, Allgäuer M, Winter H, Goldmann T, Meister M, Klingmüller U, Schneider MA. The pregnancy-associated protein glycodelin as a potential sex-specific target for resistance to immunotherapy in non-small cell lung cancer. Transl Res 2024; 272:177-189. [PMID: 38490536 DOI: 10.1016/j.trsl.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
Lung cancer has been shown to be targetable by novel immunotherapies which reactivate the immune system and enable tumor cell killing. However, treatment failure and resistance to these therapies is common. Consideration of sex as a factor influencing therapy resistance is still rare. We hypothesize that the success of the treatment is impaired by the presence of the immunosuppressive pregnancy-associated glycoprotein glycodelin that is expressed in patients with non-small-cell lung cancer (NSCLC). We demonstrate that the glycan pattern of NSCLC-derived glycodelin detected by a lectin-based enrichment assay highly resembles amniotic fluid-derived glycodelin A, which is known to have immunosuppressive properties. NSCLC-derived glycodelin interacts with immune cells in vitro and regulates the expression of genes associated with inflammatory and tumor microenvironment pathways. In tumor microarray samples of patients, high glycodelin staining in tumor areas results in an impaired overall survival of female patients. Moreover, glycodelin colocalizes to tumor infiltrating CD8+ T cells and pro-tumorigenic M2 macrophages. High serum concentrations of glycodelin prior to immunotherapy are associated with a poor progression-free survival (p < 0.001) of female patients receiving PD-(L)1 inhibitors. In summary, our findings suggest that glycodelin not only is a promising immunological biomarker for early identification of female patients that do not benefit from the costly immunotherapy, but also represents a promising immunotherapeutic target in NSCLC to improve therapeutic options in lung cancer.
Collapse
Affiliation(s)
- Sarah Richtmann
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Marwitz
- Histology, Research Center Borstel - Leibniz Lung Center, Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Petros Christopoulos
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Kazdal
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hauke Winter
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Department of Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Torsten Goldmann
- Histology, Research Center Borstel - Leibniz Lung Center, Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Ursula Klingmüller
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc A Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
2
|
Yao Y, Ye Y, Chen J, Zhang M, Cai X, Zheng C. Maternal-fetal immunity and recurrent spontaneous abortion. Am J Reprod Immunol 2024; 91:e13859. [PMID: 38722063 DOI: 10.1111/aji.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Recurrent Spontaneous Abortion (RSA) is a common pregnancy complication, that has multifactorial causes, and currently, 40%-50% of cases remain unexplained, referred to as Unexplained RSA (URSA). Due to the elusive etiology and mechanisms, clinical management is exceedingly challenging. In recent years, with the progress in reproductive immunology, a growing body of evidence suggests a relationship between URSA and maternal-fetal immunology, offering hope for the development of tailored treatment strategies. This article provides an immunological perspective on the pathogenesis, diagnosis, and treatment of RSA. On one hand, it comprehensively reviews the immunological mechanisms underlying RSA, including abnormalities in maternal-fetal interface immune tolerance, maternal-fetal interface immune cell function, gut microbiota-mediated immune dysregulation, and vaginal microbiota-mediated immune anomalies. On the other hand, it presents the diagnosis and existing treatment modalities for RSA. This article offers a clear knowledge framework for understanding RSA from an immunological standpoint. In conclusion, while the "layers of the veil" regarding immunological factors in RSA are gradually being unveiled, our current research may only scratch the surface. In terms of immunological etiology, effective diagnostic tools for RSA are currently lacking, and the efficacy and safety of immunotherapies, primarily based on lymphocyte immunotherapy and intravenous immunoglobulin, remain contentious.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jia Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
3
|
Xie C, Yang Y, Yu H, He Q, Yuan M, Dong B, Zhang L, Yang M. RNA velocity prediction via neural ordinary differential equation. iScience 2024; 27:109635. [PMID: 38623336 PMCID: PMC11016905 DOI: 10.1016/j.isci.2024.109635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
RNA velocity is a crucial tool for unraveling the trajectory of cellular responses. Several approaches, including ordinary differential equations and machine learning models, have been proposed to interpret velocity. However, the practicality of these methods is constrained by underlying assumptions. In this study, we introduce SymVelo, a dual-path framework that effectively integrates high- and low-dimensional information. Rigorous benchmarking and extensive studies demonstrate that SymVelo is capable of inferring differentiation trajectories in developing organs, analyzing gene responses to stimulation, and uncovering transcription dynamics. Moreover, the adaptable architecture of SymVelo enables customization to accommodate intricate data and diverse modalities in forthcoming research, thereby providing a promising avenue for advancing our understanding of cellular behavior.
Collapse
Affiliation(s)
- Chenxi Xie
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| | | | - Hao Yu
- Peking University, Beijing 100871, China
| | - Qiushun He
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| | | | - Bin Dong
- Peking University, Beijing 100871, China
| | - Li Zhang
- Peking University, Beijing 100871, China
| | - Meng Yang
- MGI, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
4
|
Zhong J, Li J, Burton GJ, Koistinen H, Cheung KW, Ng EHY, Yao Y, Yeung WSB, Lee CL, Chiu PCN. The functional roles of protein glycosylation in human maternal-fetal crosstalk. Hum Reprod Update 2024; 30:81-108. [PMID: 37699855 DOI: 10.1093/humupd/dmad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.
Collapse
Affiliation(s)
- Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
Sun X, Feng Y, Ma Q, Wang Y, Ma F. Protein glycosylation: bridging maternal-fetal crosstalk during embryo implantation†. Biol Reprod 2023; 109:785-798. [PMID: 37658761 DOI: 10.1093/biolre/ioad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Infertility is a challenging health problem that affects 8-15% of couples worldwide. Establishing pregnancy requires successful embryo implantation, but about 85% of unsuccessful pregnancies are due to embryo implantation failure or loss soon after. Factors crucial for successful implantation include invasive blastocysts, receptive endometrium, invasion of trophoblast cells, and regulation of immune tolerance at the maternal-fetal interface. Maternal-fetal crosstalk, which relies heavily on protein-protein interactions, is a critical factor in implantation that involves multiple cellular communication and molecular pathways. Glycosylation, a protein modification process, is closely related to cell growth, adhesion, transport, signal transduction, and recognition. Protein glycosylation plays a crucial role in maternal-fetal crosstalk and can be divided into N-glycosylation and O-glycosylation, which are often terminated by sialylation or fucosylation. This review article examines the role of protein glycosylation in maternal-fetal crosstalk based on two transcriptome datasets from the GEO database (GSE139087 and GSE113790) and existing research, particularly in the context of the mechanism of protein glycosylation and embryo implantation. Dysregulation of protein glycosylation can lead to adverse pregnancy outcomes, such as missed abortion and recurrent spontaneous abortion, underscoring the importance of a thorough understanding of protein glycosylation in the diagnosis and treatment of female reproductive disorders. This knowledge could have significant clinical implications, leading to the development of more effective diagnostic and therapeutic approaches for these conditions.
Collapse
Affiliation(s)
- Xinrui Sun
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qianhong Ma
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Chen Y, Chen H, Zheng Q. Siglecs family used by pathogens for immune escape may engaged in immune tolerance in pregnancy. J Reprod Immunol 2023; 159:104127. [PMID: 37572430 DOI: 10.1016/j.jri.2023.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The Siglecs family is a group of type I sialic acid-binding immunoglobulin-like receptors that regulate cellular signaling by recognizing sialic acid epitopes. Siglecs are predominantly expressed on the surface of leukocytes, where they play a crucial role in regulating immune activity. Pathogens can exploit inhibitory Siglecs by utilizing their sialic acid components to promote invasion or suppress immune functions, facilitating immune evasion. The establishing of an immune-balanced maternal-fetal interface microenvironment is essential for a successful pregnancy. Dysfunctional immune cells may lead to adverse pregnancy outcomes. Siglecs are important for inducing a phenotypic switch in leukocytes at the maternal-fetal interface toward a less toxic and more tolerant phenotype. Recent discoveries regarding Siglecs in the reproductive system have drawn further attention to their potential roles in reproduction. In this review, we primarily discuss the latest advances in understanding the impact of Siglecs as immune regulators on infections and pregnancy.
Collapse
Affiliation(s)
- Ying Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Huan Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China.
| |
Collapse
|
7
|
Guo J, Feng Q, Chaemsaithong P, Appiah K, Sahota DS, Leung BW, Chung JP, Li TC, Poon LC. Biomarkers at 6 weeks' gestation in the prediction of early miscarriage in pregnancy following assisted reproductive technology. Acta Obstet Gynecol Scand 2023. [PMID: 37377341 PMCID: PMC10378019 DOI: 10.1111/aogs.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Miscarriage is a major concern in early pregnancy among women having conceived with assisted reproductive treatments. This study aimed to examine potential miscarriage-related biophysical and biochemical markers at 6 weeks' gestation among women with confirmed clinical pregnancy following in vitro fertilization (IVF)/embryo transfer (ET) and evaluate the performance of a model combining maternal factors, biophysical and biochemical markers at 6 weeks' gestation in the prediction of first trimester miscarriage among singleton pregnancies following IVF/ET. MATERIAL AND METHODS A prospective cohort study was conducted in a teaching hospital between December 2017 and January 2020 including women who conceived through IVF/ET. Maternal mean arterial pressure, ultrasound markers including mean gestational sac diameter, fetal heart activity, crown rump length and mean uterine artery pulsatility index (mUTPI) and biochemical biomarkers including maternal serum soluble fms-like tyrosine kinase-1 (sFlt-1), placental growth factor (PlGF), kisspeptin and glycodelin-A were measured at 6 weeks' gestation. Logistic regression analysis was carried out to determine significant predictors of miscarriage prior to 13 weeks' gestation and performance of screening was estimated by receiver-operating characteristics curve analysis. RESULTS Among 169 included pregnancies, 145 (85.8%) pregnancies progressed to beyond 13 weeks' gestation and had live births whereas 24 (14.2%) pregnancies resulted in a miscarriage during the first trimester. In the miscarriage group, compared to the live birth group, maternal age, body mass index, and mean arterial pressure were significantly increased; mean gestational sac diameter, crown rump length, mUTPI, serum sFlt-1, glycodelin-A, and the rate of positive fetal heart activity were significantly decreased, while no significant differences were detected in PlGF and kisspeptin. Significant prediction for miscarriage before 13 weeks' gestation was provided by maternal age, fetal heart activity, mUTPI, and serum glycodelin-A. The combination of maternal age, ultrasound (fetal heart activity and mUTPI), and biochemical (glycodelin-A) markers achieved the highest area under the curve (AUC: 0.918, 95% CI 0.866-0.955), with estimated detection rates of 54.2% and 70.8% for miscarriage before 13 weeks' gestation, at fixed false positive rates of 5% and 10%, respectively. CONCLUSIONS A combination of maternal age, fetal heart activity, mUTPI, and serum glycodelin-A at 6 weeks' gestation could effectively identify IVF/ET pregnancies at risk of first trimester miscarriage.
Collapse
Affiliation(s)
- Jun Guo
- Department of Obstetrics and Gynaecology, Beijing Tongren Hospital, The Capital Medical University, Beijing, China
| | - Qiaoli Feng
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kubi Appiah
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Daljit S Sahota
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Bo Wah Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Jacqueline P Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Liona C Poon
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
8
|
Lackner K, Ebner S, Watschinger K, Maglione M. Multiple Shades of Gray-Macrophages in Acute Allograft Rejection. Int J Mol Sci 2023; 24:8257. [PMID: 37175964 PMCID: PMC10179242 DOI: 10.3390/ijms24098257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Long-term results following solid organ transplantation do not mirror the excellent short-term results achieved in recent decades. It is therefore clear that current immunosuppressive maintenance protocols primarily addressing the adaptive immune system no longer meet the required clinical need. Identification of novel targets addressing this shortcoming is urgently needed. There is a growing interest in better understanding the role of the innate immune system in this context. In this review, we focus on macrophages, which are known to prominently infiltrate allografts and, during allograft rejection, to be involved in the surge of the adaptive immune response by expression of pro-inflammatory cytokines and direct cytotoxicity. However, this active participation is janus-faced and unspecific targeting of macrophages may not consider the different subtypes involved. Under this premise, we give an overview on macrophages, including their origins, plasticity, and important markers. We then briefly describe their role in acute allograft rejection, which ranges from sustaining injury to promoting tolerance, as well as the impact of maintenance immunosuppressants on macrophages. Finally, we discuss the observed immunosuppressive role of the vitamin-like compound tetrahydrobiopterin and the recent findings that suggest the innate immune system, particularly macrophages, as its target.
Collapse
Affiliation(s)
- Katharina Lackner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Manuel Maglione
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
- Department of Visceral, Transplant, and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Dong Y, Li J, Cao D, Zhong J, Liu X, Duan YG, Lee KF, Yeung WB, Lee CL, Chiu PN. Integrated microRNA and secretome analysis of human endometrial organoids reveal the miR-3194-5p/Aquaporin/S100A9 module in regulating trophoblast functions. Mol Cell Proteomics 2023; 22:100526. [PMID: 36889440 PMCID: PMC10119685 DOI: 10.1016/j.mcpro.2023.100526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Successful placentation requires delicate communication between the endometrium and trophoblasts. The invasion and integration of trophoblasts into the endometrium during early pregnancy is crucial to placentation. Dysregulation of these functions is associated with various pregnancy complications, such as miscarriage and preeclampsia. The endometrial microenvironment has an important influence on trophoblast cell functions. The precise effect of the endometrial gland secretome on trophoblast functions remains uncertain. We hypothesized that the hormonal environment regulates the miRNA profile and secretome of the human endometrial gland, which subsequently modulates trophoblast functions during early pregnancy. Human endometrial tissues were obtained from endometrial biopsies with written consent. Endometrial organoids were established in matrix gel under defined culture conditions. They were treated with hormones mimicking the environment of the proliferative phase (Estrogen, E2), secretory phase (E2+Progesterone, P4), and early pregnancy (E2+P4+Human Chorionic Gonadotropin, hCG). miRNA-seq was performed on the treated organoids. Organoid secretions were also collected for mass spectrometric analysis. The viability and invasion/migration of the trophoblasts after treatment with the organoid secretome were determined by cytotoxicity assay and transwell assay, respectively. Endometrial organoids with the ability to respond to sex steroid hormones were successfully developed from human endometrial glands. By establishing the first secretome profiles and miRNA atlas of these endometrial organoids to the hormonal changes followed by trophoblast functional assays, we demonstrated that sex steroid hormones modulate aquaporin (AQP)1/9 and S100A9 secretions through miR-3194 activation in endometrial epithelial cells, which in turn enhanced trophoblast migration and invasion during early pregnancy. By using a human endometrial organoid model, we demonstrated for the first time that the hormonal regulation of the endometrial gland secretome is crucial to regulating the functions of human trophoblasts during early pregnancy. The study provides the basis for understanding the regulation of early placental development in humans.
Collapse
Affiliation(s)
- Yang Dong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R.; Shenzhen Huarui Model Organisms Biotechnology Co., LTD, Shenzhen China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R.; The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dandan Cao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Xiaofeng Liu
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yong-Gang Duan
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R.; The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - WilliamS B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R.; The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - PhilipC N Chiu
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R..
| |
Collapse
|
10
|
Data K, Marcinkowska K, Buś K, Valihrach L, Pawlak E, Śmieszek A. β-Lactoglobulin affects the oxidative status and viability of equine endometrial progenitor cells via lncRNA-mRNA-miRNA regulatory associations. J Cell Mol Med 2023; 27:927-938. [PMID: 36860157 PMCID: PMC10064025 DOI: 10.1111/jcmm.17694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
The β-lactoglobulin (β-LG) was previously characterized as a mild antioxidant modulating cell viability. However, its biological action regarding endometrial stromal cell cytophysiology and function has never been considered. In this study, we investigated the influence of β-LG on the cellular status of equine endometrial progenitor cells under oxidative stress. The study showed that β-LG decreased the intracellular accumulation of reactive oxygen species, simultaneously ameliorating cell viability and exerting an anti-apoptotic effect. However, at the transcriptional level, the reduced mRNA expression of pro-apoptotic factors (i.e. BAX and BAD) was accompanied by decreased expression of mRNA for anti-apoptotic BCL-2 and genes coding antioxidant enzymes (CAT, SOD-1, GPx). Still, we have also noted the positive effect of β-LG on the expression profile of transcripts involved in endometrial viability and receptivity, including ITGB1, ENPP3, TUNAR and miR-19b-3p. Finally, the expression of master factors of endometrial decidualization, namely prolactin and IGFBP1, was increased in response to β-LG, while non-coding RNAs (ncRNAs), that is lncRNA MALAT1 and miR-200b-3p, were upregulated. Our findings indicate a novel potential role of β-LG as a molecule regulating endometrial tissue functionality, promoting viability and normalizing the oxidative status of endometrial progenitor cells. The possible mechanism of β-LG action includes the activation of ncRNAs essential for tissue regeneration, such as lncRNA MALAT-1/TUNAR and miR-19b-3p/miR-200b-3p.
Collapse
Affiliation(s)
- Krzysztof Data
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Klaudia Marcinkowska
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Klaudia Buś
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, Vestec, Czech Republic
| | - Edyta Pawlak
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Agnieszka Śmieszek
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
11
|
Li X, Kodithuwakku SP, Chan RWS, Yeung WSB, Yao Y, Ng EHY, Chiu PCN, Lee CL. Three-dimensional culture models of human endometrium for studying trophoblast-endometrium interaction during implantation. Reprod Biol Endocrinol 2022; 20:120. [PMID: 35964080 PMCID: PMC9375428 DOI: 10.1186/s12958-022-00973-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
During implantation, a symphony of interaction between the trophoblast originated from the trophectoderm of the implanting blastocyst and the endometrium leads to a successful pregnancy. Defective interaction between the trophoblast and endometrium often results in implantation failure, pregnancy loss, and a number of pregnancy complications. Owing to ethical concerns of using in vivo approaches to study human embryo implantation, various in vitro culture models of endometrium were established in the past decade ranging from two-dimensional cell-based to three-dimensional extracellular matrix (ECM)/tissue-based culture systems. Advanced organoid systems have also been established for recapitulation of different cellular components of the maternal-fetal interface, including the endometrial glandular organoids, trophoblast organoids and blastoids. However, there is no single ideal model to study the whole implantation process leaving more research to be done pursuing the establishment of a comprehensive in vitro model that can recapitulate the biology of trophoblast-endometrium interaction during early pregnancy. This would allow us to have better understanding of the physiological and pathological process of trophoblast-endometrium interaction during implantation.
Collapse
Affiliation(s)
- Xintong Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Suranga P Kodithuwakku
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Rachel W S Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
- Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Key, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
12
|
The Pregnancy Zone Protein (PZP) is significantly downregulated in the placenta of preeclampsia and HELLP syndrome patients. J Reprod Immunol 2022; 153:103663. [PMID: 35843132 DOI: 10.1016/j.jri.2022.103663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/16/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
Preeclampsia is characterized by maternal hypertension and multi-organ injury. Elongation factor Tu GTP binding domain containing 2 (EFTUD 2) and the Pregnancy Zone Protein (PZP) seem to be important immunomodulatory factors in early gestation. Little is known about the role of EFTUD2 and PZP in disorders of late pregnancy like preeclampsia, HELLP syndrome and intrauterine growth restriction (IUGR). PZP, EFTUD2 and hCG expression was investigated by immunohistochemistry in the placenta of healthy pregnancies (n = 13), preeclampsia (n = 11), HELLP syndrome (n = 12) and IUGR (n = 8). Correlation analysis of protein expression was performed via Spearman correlation coefficient. The characterization of EFTUD2 and PZP expressing cells was evaluated by double-immunofluorescence. After cultivation of the chorion carcinoma cell line BeWo with hCG the expression of PZP and EFTUD2 was investigated by immunocytochemistry. PZP expression was significantly downregulated in the syncytiotrophoblast (ST) and extravillous trophoblast (EVT) of preeclampsia (ST: p 0.001, EVT:p = 0.019) and HELLP syndrome (ST: p = 0.004, EVT: p = 0.035). The expression of EFTUD2 was significantly lower in preeclampsia (ST: p = 0.003, EVT: p 0.001), HELLP syndrome (ST: p = 0.021, EVT: = 0.001, EVT: p = 0.001). EVTs were identified as EFTUD2 and PZP expressing cells by double-immunofluorescence. Stimulation of BeWo chorion carcinoma cells with hCG 1000 IU/mL for 48 h resulted in a significant upregulation of PZP expression (p = 0.027). Our results indicate that PZP and EFTUD2 might be involved in the development of placental dysfunction in preeclampsia and HELLP syndrome.
Collapse
|
13
|
Psychobiotic Potential of Gamma-Aminobutyric Acid-Producing Marine Enterococcus faecium SH9 from Marine Shrimp. Probiotics Antimicrob Proteins 2022; 14:934-946. [PMID: 35750975 PMCID: PMC9474364 DOI: 10.1007/s12602-022-09963-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
Psychobiotics are a novel class of probiotics with potential to confer mental wellness via production of neuroactive compounds such as gamma-aminobutyric acid (GABA). The demand for new biological sources of GABA has increased steadily. Therefore, the current study reports the isolation of 17 presumptive lactic acid bacteria (LAB) from marine samples and their screening for GABA synthesis from monosodium glutamate (MSG) using thin-layer chromatography (TLC). The isolate SH9 was selected as a high GABA producing strain. The GABA content of SH9 cell free supernatant (CFS) was quantitatively determined by high performance liquid chromatography (HPLC) to be 0.97 g/L. SH9 was identified biochemically and molecularly as Enterococcus faecium (identity 99%). Moreover, SH9 demonstrated promising probiotic potentials; it gave no signs of hemolysis and could survive at low pH values and high bile salt concentrations. It also exhibited antimicrobial activity against highly pathogenic strains and the ability to grow at 6.5% NaCl. In addition, SH9 CFS showed anti-inflammatory and antioxidant properties. The glutamate decarboxylase (GAD) gene was detected in SH9 by using specific primers. Product of 540 bp was obtained, sequenced, and analyzed (accession number: MW713382). The inferred amino acid sequence was 99.3% identical to Lactobacillus plantarum M-6 gadB gene. The findings of this study suggest that the marine isolate E. faecium SH9 could be used as a novel psychobiotics in the development of GABA rich healthy products.
Collapse
|
14
|
Establishment of Adenomyosis Organoids as a Preclinical Model to Study Infertility. J Pers Med 2022; 12:jpm12020219. [PMID: 35207707 PMCID: PMC8876865 DOI: 10.3390/jpm12020219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Adenomyosis is related to infertility and miscarriages, but so far there are no robust in vitro models that reproduce its pathological features to study the molecular mechanisms involved in this disease. Endometrial organoids are in vitro 3D models that recapitulate the native microenvironment and reproduce tissue characteristics that would allow the study of adenomyosis pathogenesis and related infertility disorders. In our study, human endometrial biopsies from adenomyosis (n = 6) and healthy women (n = 6) were recruited. Organoids were established and hormonally differentiated to recapitulate midsecretory and gestational endometrial phases. Physiological and pathological characteristics were evaluated by immunohistochemistry, immunofluorescence, qRT-PCR, and ELISA. Secretory and gestational organoids recapitulated in vivo glandular epithelial phenotype (pan-cytokeratin, Muc-1, PAS, Laminin, and Ki67) and secretory and gestational features (α-tubulin, SOX9, SPP1, PAEP, LIF, and 17βHSD2 expression and SPP1 secretion). Adenomyosis organoids showed higher expression of TGF-β2 and SMAD3 and increased gene expression of SPP1, PAEP, LIF, and 17βHSD2 compared with control organoids. Our results demonstrate that organoids derived from endometria of adenomyosis patients and differentiated to secretory and gestational phases recapitulate native endometrial-tissue-specific features and disease-specific traits. Adenomyosis-derived organoids are a promising in vitro preclinical model to study impaired implantation and pregnancy disorders in adenomyosis and enable personalized drug screening.
Collapse
|
15
|
Ding J, Zhang Y, Cai X, Diao L, Yang C, Yang J. Crosstalk Between Trophoblast and Macrophage at the Maternal-Fetal Interface: Current Status and Future Perspectives. Front Immunol 2021; 12:758281. [PMID: 34745133 PMCID: PMC8566971 DOI: 10.3389/fimmu.2021.758281] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
The immune tolerance microenvironment is crucial for the establishment and maintenance of pregnancy at the maternal-fetal interface. The maternal-fetal interface is a complex system containing various cells, including lymphocytes, decidual stromal cells, and trophoblasts. Macrophages are the second-largest leukocytes at the maternal-fetal interface, which has been demonstrated to play essential roles in remodeling spiral arteries, maintaining maternal-fetal immune tolerance, and regulating trophoblast's biological behaviors. Many researchers, including us, have conducted a series of studies on the crosstalk between macrophages and trophoblasts at the maternal-fetal interface: on the one hand, macrophages can affect the invasion and migration of trophoblasts; on the other hand, trophoblasts can regulate macrophage polarization and influence the state of the maternal-fetal immune microenvironment. In this review, we systemically introduce the functions of macrophages and trophoblasts and the cell-cell interaction between them for the establishment and maintenance of pregnancy. Advances in this area will further accelerate the basic research and clinical translation of reproductive medicine.
Collapse
Affiliation(s)
- Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaopeng Cai
- Department of Gastrointestinal Surgery, The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Periimplantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
16
|
Löb S, Ochmann B, Ma Z, Vilsmaier T, Kuhn C, Schmoeckel E, Herbert SL, Kolben T, Wöckel A, Mahner S, Jeschke U. The role of Interleukin-18 in recurrent early pregnancy loss. J Reprod Immunol 2021; 148:103432. [PMID: 34627076 DOI: 10.1016/j.jri.2021.103432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/11/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND A successful pregnancy is a unique and complex immunological state. Cytokines seem to be crucial for the implementation of a tolerogenic environment at the feto-maternal interphase towards the semi-allogenic fetus. Importantly, the switch from a Th1- to a Th2 cytokine profile might play a key role. Interestingly, Interleukin-18 (IL-18) can induce either Th1 or Th2 immune response depending on the local cytokine environment. Therefore, this study investigates the expression of IL-18 in early pregnancy loss. PATIENTS AND METHODS The TaqMan® Human Cytokine Network Array was carried out with placental tissue of patients with healthy pregnancies (n = 15) and recurrent miscarriage (n = 15) in order to investigate differences in IL-18 mRNA expression. Immunohistochemical staining was applied to examine the IL-18 protein expression in the syncytiotrophoblast and decidua of healthy pregnancies (n = 15), spontaneous (n = 12) and recurrent miscarriage (n = 9). The characterization of IL-18 expressing cells in the decidua was evaluated by double-immunofluorescence. Correlation analysis between IL-18 protein expression and clinical data of the study population was performed via spearman correlation coefficient. RESULTS Gene expression analysis revealed a 4,9-times higher expression of IL-18 in recurrent miscarriage patients. IL-18 protein expression was significantly upregulated only in the decidua in the recurrent miscarriage group (p = 0.031). We did not observe significant changes of IL-18 protein expression in spontaneous miscarriage specimens when compared to healthy controls (p = 0.172). Double-immunofluorescence identified decidual stroma cells as IL-18 expressing cells. Correlation analysis showed a significant negative correlation of IL-18 protein expression and gestational age in healthy controls (r = -,745, p = 0.034). Also, a positive correlation of IL-18 and maternal age was observed in patients suffering from recurrent pregnancy loss (r =, 894, p = 0.041). CONCLUSION Our results indicate that IL-18 expression might be necessary in early gestation but requires a tight regulation for a successful ongoing pregnancy. In the present study we observed that a significant upregulation of IL-18 in the decidua was restricted to patients with recurrent miscarriage and therefore might be interesting as a diagnostic marker. Further studies need to evaluate the exact pathophysiological mechanisms.
Collapse
Affiliation(s)
- Sanja Löb
- Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, Josef-Schneider-Str. 4, 97080, Würzburg, Germany
| | - Beate Ochmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Zhi Ma
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany; Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Marchioninistr. 27, 81377, Munich, Germany
| | - Saskia-Laureen Herbert
- Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, Josef-Schneider-Str. 4, 97080, Würzburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Achim Wöckel
- Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, Josef-Schneider-Str. 4, 97080, Würzburg, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany; Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany.
| |
Collapse
|
17
|
Biomolecular Markers of Recurrent Implantation Failure-A Review. Int J Mol Sci 2021; 22:ijms221810082. [PMID: 34576245 PMCID: PMC8472752 DOI: 10.3390/ijms221810082] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Currently, infertility affects 8–12% of reproductive age couples worldwide, a problem that also affects women suffering from recurrent implantation failure (RIF). RIF is a complex condition resulting from many physiological and molecular mechanisms involving dynamic endometrium–blastocyst interaction. The most important are the endometrial receptivity process, decidualization, trophoblast invasion, and blastocyst nesting. Although the exact multifactorial pathogenesis of RIF remains unclear, many studies have suggested the association between hormone level imbalance, disturbances of angiogenic and immunomodulatory factors, certain genetic polymorphisms, and occurrence of RIF. These studies were performed in quite small groups. Additionally, the results are inconsistent between ethnicities. The present review briefly summarizes the importance of factors involved in RIF development that could also serve as diagnostic determinants. Moreover, our review could constitute part of a new platform for discovery of novel diagnostic and therapeutic solutions for RIF.
Collapse
|
18
|
Rawlings TM, Makwana K, Taylor DM, Molè MA, Fishwick KJ, Tryfonos M, Odendaal J, Hawkes A, Zernicka-Goetz M, Hartshorne GM, Brosens JJ, Lucas ES. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. eLife 2021; 10:e69603. [PMID: 34487490 PMCID: PMC8523170 DOI: 10.7554/elife.69603] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure.
Collapse
Affiliation(s)
- Thomas M Rawlings
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Komal Makwana
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Deborah M Taylor
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS TrustCoventryUnited Kingdom
| | - Matteo A Molè
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Katherine J Fishwick
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Maria Tryfonos
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Joshua Odendaal
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS TrustCoventryUnited Kingdom
| | - Amelia Hawkes
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS TrustCoventryUnited Kingdom
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Synthetic Mouse and Human Embryology Group, California Institute of Technology (Caltech), Division of Biology and Biological EngineeringPasadenaUnited Kingdom
| | - Geraldine M Hartshorne
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS TrustCoventryUnited Kingdom
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS TrustCoventryUnited Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| |
Collapse
|
19
|
Sawyer L. β-Lactoglobulin and Glycodelin: Two Sides of the Same Coin? Front Physiol 2021; 12:678080. [PMID: 34093238 PMCID: PMC8173191 DOI: 10.3389/fphys.2021.678080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
The two lipocalins, β-lactoglobulin (βLg) and glycodelin (Gd), are possibly the most closely related members of the large and widely distributed lipocalin family, yet their functions appear to be substantially different. Indeed, the function of β-lactoglobulin, a major component of ruminant milk, is still unclear although neonatal nutrition is clearly important. On the other hand, glycodelin has several specific functions in reproduction conferred through distinct, tissue specific glycosylation of the polypeptide backbone. It is also associated with some cancer outcomes. The glycodelin gene, PAEP, reflecting one of its names, progestagen-associated endometrial protein, is expressed in many though not all primates, but the name has now also been adopted for the β-lactoglobulin gene (HGNC, www.genenames.org). After a general overview of the two proteins in the context of the lipocalin family, this review considers the properties of each in the light of their physiological functional significance, supplementing earlier reviews to include studies from the past decade. While the biological function of glycodelin is reasonably well defined, that of β-lactoglobulin remains elusive.
Collapse
Affiliation(s)
- Lindsay Sawyer
- School of Biological Sciences, IQB3, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Agarwal K, Lewis AL. Vaginal sialoglycan foraging by Gardnerella vaginalis: mucus barriers as a meal for unwelcome guests? Glycobiology 2021; 31:667-680. [PMID: 33825850 DOI: 10.1093/glycob/cwab024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial vaginosis (BV) is a condition of the vaginal microbiome in which there are few lactobacilli and abundant anaerobic bacteria. Members of the genus Gardnerella are often one of the most abundant bacteria in BV. BV is associated with a wide variety of poor health outcomes for women. It has been recognized since the 1980s that women with BV have detectable and sometimes markedly elevated levels of sialidase activity in vaginal fluids and that bacteria associated with this condition produce this activity in culture. Mounting evidence collected using diverse methodologies points to the conclusion that BV is associated with a reduction in intact sialoglycans in cervicovaginal secretions. Here we review evidence for the contributions of vaginal bacteria, especially Gardnerella, in the processes of mucosal sialoglycan degradation, uptake, metabolism and depletion. Our understanding of the impacts of vaginal sialoglycan degradation is still limited. However, the potential implications of sialic acid depletion are discussed in light of our current understanding of the roles played by sialoglycans in vaginal physiology.
Collapse
Affiliation(s)
- Kavita Agarwal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| |
Collapse
|
21
|
Löb S, Vattai A, Kuhn C, Schmoeckel E, Mahner S, Wöckel A, Kolben T, Keil C, Jeschke U, Vilsmaier T. Pregnancy Zone Protein (PZP) is significantly upregulated in the decidua of recurrent and spontaneous miscarriage and negatively correlated to Glycodelin A (GdA). J Reprod Immunol 2020; 143:103267. [PMID: 33388716 DOI: 10.1016/j.jri.2020.103267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pregnancy Zone Protein (PZP) is an immunosuppressive protein that is expressed by the placenta and has also been identified in immune cells. When PZP and Glycodelin A (GdA) are combined, they act synergistically to inhibit Th-1 immune response. Little is known about its combined expression and role in normal and disturbed first trimester pregnancy. PATIENTS AND METHODS We investigated the expression of PZP and GdA in placental tissue obtained from spontaneous miscarriage (SM) (n = 19) and recurrent miscarriage (RM) (n = 17) at gestational weeks 6-13 by immunohistochemistry and on mRNA-level by either TaqMan PCR or in situ hybridization. Placental tissue from legal terminations of healthy pregnancies (n = 15) served as control group. Immunofluorescence double staining was used to analyse the combined expression of PZP and GdA in decidual tissue. RESULTS The protein level of PZP was significantly increased in decidual stroma of SM samples compared to the decidua of control specimens and also significantly upregulated in the decidual stroma cells in the RM group. Concerning GdA, the decidual stroma revealed a significantly decreased protein level in the group with spontaneous abortions than in the group with healthy pregnancies. There was also a significant downregulation of GdA in the decidual stroma of RM samples compared to the control group. We observed a significant negative correlation of PZP and GdA in decidual stromal tissue of recurrent abortion. We could confirm the staining results for PZP as well as for GdA on mRNA level. Both proteins are co-localized in decidual stroma as analysed by immunofluorescence double staining. CONCLUSION A balanced expression of GdA and its carrier protein PZP in the decidua seems crucial for a successful ongoing pregnancy. According to our data, these immunosuppressive proteins are co-localized in the decidual tissue and show a negative correlation only in patients suffering from recurrent abortion.
Collapse
Affiliation(s)
- Sanja Löb
- Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, Josef-Schneider-Str. 4, 97080, Würzburg, Germany; Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany; Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Marchioninistr. 27, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany
| | - Achim Wöckel
- Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, Josef-Schneider-Str. 4, 97080, Würzburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany
| | - Christiane Keil
- Department of Orthodontics, Universitätsklinikum Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany; Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany.
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Maistrasse 11, 80337, Munich, Germany
| |
Collapse
|
22
|
Cao J, O'Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, Zager MA, Aldinger KA, Blecher-Gonen R, Zhang F, Spielmann M, Palis J, Doherty D, Steemers FJ, Glass IA, Trapnell C, Shendure J. A human cell atlas of fetal gene expression. Science 2020; 370:370/6518/eaba7721. [PMID: 33184181 DOI: 10.1126/science.aba7721] [Citation(s) in RCA: 360] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
The gene expression program underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of gene expression and chromatin accessibility in fetal tissues. For gene expression, we applied three-level combinatorial indexing to >110 samples representing 15 organs, ultimately profiling ~4 million single cells. We leveraged the literature and other atlases to identify and annotate hundreds of cell types and subtypes, both within and across tissues. Our analyses focused on organ-specific specializations of broadly distributed cell types (such as blood, endothelial, and epithelial), sites of fetal erythropoiesis (which notably included the adrenal gland), and integration with mouse developmental atlases (such as conserved specification of blood cells). These data represent a rich resource for the exploration of in vivo human gene expression in diverse tissues and cell types.
Collapse
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Diana R O'Day
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah A Pliner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Paul D Kingsley
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Mei Deng
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael A Zager
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kimberly A Aldinger
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ronnie Blecher-Gonen
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Malte Spielmann
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. .,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. .,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
23
|
Abstract
The aim of this study is to investigate the methotrexate (MTX) in rat embryonal implantation and its association with Glycodelin A (GdA) and Mucin-1 (MUC-1) expression. For this purpose, 32 pregnant rats were divided into four equal groups: non-pregnant rats in group I (n = 8, control) and pregnant rats in group III (n = 8) were injected intraperitoneal with single dose of normal saline, non-pregnant rats in group II (n = 8) and pregnant rats in group IV (n = 8) were given 0.2 mg i.m. injection of MTX before three months of pregnancy. The dams were killed on 5th day of gestation and uterine horn samples were removed. Following dissection and routine histological preparation, immunohistochemical analysis was carried out. During immunohistochemical examination of the tissue samples prepared from the control and experimental groups, a statistically significant difference was observed between the groups in the luminal-glandular-decidualized epithelium of the uterus with GdA and MUC-1. Finally, in light of our findings, MTX adversely affected the expression of two molecules in Wistar Albino rats embryonal implantation model.
Collapse
Affiliation(s)
- Gokhan Erdil
- Department of Gynecology and Obstetrics, Arakli Bayram Halil State Hospital, Arakli, Turkey
| | - M Emre Ercin
- Department of Pathology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Suleyman Guven
- Department of Gynecology and Obstetrics, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| |
Collapse
|
24
|
Vijayan M, Lee CL, Wong VHH, Wang X, Bai K, Wu J, Koistinen H, Seppälä M, Lee KF, Yeung WSB, Ng EHY, Chiu PCN. Decidual glycodelin-A polarizes human monocytes into a decidual macrophage-like phenotype through Siglec-7. J Cell Sci 2020; 133:jcs244400. [PMID: 32513821 DOI: 10.1242/jcs.244400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Decidual macrophages constitute 20-30% of the total leukocytes in the uterus of pregnant women, regulating the maternal immune tolerance and placenta development. Abnormal number or activities of decidual macrophages (dMs) are associated with fetal loss and pregnancy complications, such as preeclampsia. Monocytes differentiate into dMs in a decidua-specific microenvironment. Despite their important roles in pregnancy, the exact factors that regulate the differentiation into dMs remain unclear. Glycodelin-A (PAEP, hereafter referred to as GdA) is a glycoprotein that is abundantly present in the decidua, and plays an important role in fetomaternal defense and placental development. It modulates the differentiation and activity of several immune cell types residing in the decidua. In this study, we demonstrated that GdA induces the differentiation of human monocytes into dM-like phenotypes in terms of transcriptome, cell surface marker expression, secretome, and regulation of trophoblast and endothelial cell functions. We found that Sialic acid-binding Ig-like lectin 7 (Siglec-7) mediates the binding and biological actions of GdA in a sialic acid-dependent manner. We, therefore, suggest that GdA, induces the polarization of monocytes into dMs to regulate fetomaternal tolerance and placental development.
Collapse
Affiliation(s)
- Madhavi Vijayan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Vera H H Wong
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Xia Wang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
| | - Kungfeng Bai
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jian Wu
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hannu Koistinen
- Department of Clinical Chemistry and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland
| | - Markku Seppälä
- Department of Clinical Chemistry and Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
25
|
Lee CL, Vijayan M, Wang X, Lam KKW, Koistinen H, Seppala M, Li RHW, Ng EHY, Yeung WSB, Chiu PCN. Glycodelin-A stimulates the conversion of human peripheral blood CD16-CD56bright NK cell to a decidual NK cell-like phenotype. Hum Reprod 2020; 34:689-701. [PMID: 30597092 DOI: 10.1093/humrep/dey378] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/25/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Does glycodelin-A (GdA) induce conversion of human peripheral blood CD16-CD56bright natural killer (NK) cells to decidual NK (dNK) cells to facilitate placentation? SUMMARY ANSWER GdA binds to blood CD16-CD56bright NK cells via its sialylated glycans and converts them to a dNK-like cells, which in turn regulate endothelial cell angiogenesis and trophoblast invasion via vascular endothelial growth factor (VEGF) and insulin-like growth factor-binding protein 1 (IGFBP-1) secretion, respectively. WHAT IS KNOWN ALREADY dNK cells are the most abundant leucocyte population in the decidua. These cells express CD16-CD56bright phenotype. Peripheral blood CD16-CD56bright NK cells and hematopoietic precursors have been suggested to be capable of differentiating towards dNK cells upon exposure to the decidual microenvironment. These cells regulate trophoblast invasion during spiral arteries remodelling and mediate homoeostasis and functions of the endothelial cells. GdA is an abundant glycoprotein in the human decidua with peak expression between the 6th and 12th week of gestation, suggesting a role in early pregnancy. Indeed, GdA interacts with and modulates functions and differentiation of trophoblast and immune cells in the human feto-maternal interface. Aberrant GdA expression during pregnancy is associated with unexplained infertility, pregnancy loss and pre-eclampsia. STUDY DESIGN, SIZE, DURATION CD16+CD56dim, CD16-CD56bright and dNK cells were isolated from human peripheral blood and decidua tissue, respectively, by immuno-magnetic beads or fluorescence-activated cell sorting. Human extravillous trophoblasts were isolated from first trimester placental tissue after termination of pregnancy. Biological activities of the cells were studied after treatment with GdA at a physiological dose of 5 μg/mL. GdA was purified from human amniotic fluid by immuno-affinity chromatography. PARTICIPANTS/MATERIALS, SETTING, METHODS Expression of VEGF, CD9, CD49a, CD151 and CD158a in the cells were determined by flow cytometry. Angiogenic proteins in the spent media of NK cells were determined by cytokine array and ELISA. Blocking antibodies were used to study the functions of the identified angiogenic proteins. Endothelial cell angiogenesis was determined by tube formation and trans-well migration assays. Cell invasion and migration were determined by trans-well invasion/migration assay. Binding of normal and de-sialylated GdA, and expression of L-selectin and siglec-7 on the NK cells were analysed by flow cytometry. The association between GdA and L-selectin on NK cells was confirmed by immunoprecipitation. Extracellular signal-regulated protein kinases (ERK) activation was determined by Western blotting and functional assays. MAIN RESULTS AND THE ROLE OF CHANCE GdA treatment enhanced the expression of dNK cell markers CD9 and CD49a and the production of the functional dNK secretory product VEGF in the peripheral blood CD16-CD56bright NK cells. The spent media of GdA-treated CD16-CD56bright NK cells promoted tube formation of human umbilical vein endothelial cells and invasiveness of trophoblasts. These stimulatory effects were mediated by the stimulatory activities of GdA on an ERK-activation dependent production of VEGF and IGFBP-1 by the NK cells. GdA had a stronger binding affinity to the CD16-CD56bright NK cells as compared to the CD16+CD56dim NK cells. This GdA-NK cell interaction was reduced by de-sialylation. GdA interacted with L-selectin, expressed only in the CD16-CD56bright NK cells, but not in the CD16+CD56dim NK cells. Anti-L-selectin functional blocking antibody suppressed the binding and biological activities of GdA on the NK cells. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Some of the above findings are based on a small sample size of peripheral blood CD16-CD56bright NK cells. These results need to be confirmed with human primary dNK cells. WIDER IMPLICATIONS OF THE FINDINGS This is the first study on the biological role of GdA on conversion of CD16-CD56bright NK cells to dNK-like cells. Further investigation on the glycosylation and functions of GdA will enhance our understanding on human placentation and placenta-associated complications with altered NK cell biology. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Hong Kong Research Grant Council Grant 17122415, Sanming Project of Medicine in Shenzhen, the Finnish Cancer Foundation, Sigrid Jusélius Foundation and the Finnish Society of Clinical Chemistry. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Madhavi Vijayan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Xia Wang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hannu Koistinen
- Department of Clinical Chemistry and Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, HUS Helsinki, Finland
| | - Markku Seppala
- Department of Clinical Chemistry and Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, HUS Helsinki, Finland
| | - Raymond H W Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, 7/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
26
|
Wang J, Tian GG, Li X, Sun Y, Cheng L, Li Y, Shen Y, Chen X, Tang W, Tao S, Wu J. Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammalian Oogenesis and Preimplantation Embryo Development. Front Cell Dev Biol 2020; 8:555. [PMID: 32754589 PMCID: PMC7365846 DOI: 10.3389/fcell.2020.00555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is one of the most fundamental post-translational modifications. However, the glycosylation patterns of glycoproteins have not been analyzed in mammalian preimplantation embryos, because of technical difficulties and scarcity of the required materials. Using high-throughput lectin microarrays of low-input cells and electrochemical techniques, an integration analysis of the DNA methylation and glycosylation landscapes of mammal oogenesis and preimplantation embryo development was performed. Highly noticeable changes occurred in the level of protein glycosylation during these events. Further analysis identified several stage-specific lectins including LEL, MNA-M, and MAL I. It was later confirmed that LEL was involved in mammalian oogenesis and preimplantation embryogenesis, and might be a marker of FGSC differentiation. Modified nanocomposite polyaniline/AuNPs were characterized by electron microscopy and modification on bare gold electrodes using layer-by-layer assembly technology. These nanoparticles were further subjected to accuracy measurements by analyzing the protein level of ten-eleven translocation protein (TET), which is an important enzyme in DNA demethylation that is regulated by O-glycosylation. Subsequent results showed that the variations in the glycosylation patterns of glycoproteins were opposite to those of the TET levels. Moreover, analysis of correlation between the changes in glyco-gene expression and female germline stem cell glycosylation profiles indicated that glycosylation was related to DNA methylation. Subsequent integration analysis showed that the trend in the variations of glycosylation patterns of glycoproteins was similar to that of DNA methylation and opposite to that of the TET protein levels during female germ cell and preimplantation embryo development. Our findings provide insight into the complex molecular mechanisms that regulate human embryo development, and a foundation for further elucidation of early embryonic development and informed reproductive medicine.
Collapse
Affiliation(s)
- Jian Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Geng G. Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyong Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Sun
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Li Cheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yanfei Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenwei Tang
- School of Chemistry Science and Technology, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
27
|
Ercin ME, Erdil G. Effect of single-dose depot leuprolide acetate on embryonal implantation: an experimental rat model. Gynecol Endocrinol 2020; 36:611-614. [PMID: 31711323 DOI: 10.1080/09513590.2019.1689555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The objective of this article is to investigate the effect of single-dose depot leuprolide acetate in rat embryonal implantation and its association with glycodelin A, mucin-1 and leukemia inhibitory factor expression. Thirty-two pregnant Wistar Albino rats were divided into four equal groups: untreated control rats in group I (n = 8) and untreated pregnant rats in group II (n = 8) were injected intraperitoneally with single dose of normal saline, treated rats in group III (n = 8) and treated pregnant rats in group IV (n = 8) were given single 1 mg/kg subcutaneous injection of leuprolide acetate at day 8 of pregnancy. The dams were sacrificed on the 15th day of gestation, uterine horn samples were removed. Immunohistochemical examination of the tissue samples prepared from the control and experimental groups, a statistically significant difference was observed between the groups in the luminal-glandular-decidualized epithelium of the uterus with glycodelin A, mucin-1 and leukemia inhibitory factor. A statistically significant difference was observed between the groups for the concentration of glycodelin A but no statistically significant difference was found for the other two molecules. In light of our findings, leuprolide acetate adversely affected expression and concentration of all three molecules in embryonal implantation model.
Collapse
Affiliation(s)
- Mustafa Emre Ercin
- Department of Pathology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gokhan Erdil
- Department of Obstetrics and Gynecology, Arakli Bayram Halil State Hospital, Trabzon, Turkey
| |
Collapse
|
28
|
Organoids of Human Endometrium: A Powerful In Vitro Model for the Endometrium-Embryo Cross-Talk at the Implantation Site. Cells 2020; 9:cells9051121. [PMID: 32366044 PMCID: PMC7291023 DOI: 10.3390/cells9051121] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Embryo implantation has been defined as the “black box” of human reproduction. Most of the knowledge on mechanisms underlining this process derives from animal models, but they cannot always be translated to humans. Therefore, the development of an in vitro/ex vivo model recapitulating as closely and precisely as possible the fundamental functional features of the human endometrial tissue is very much desirable. Here, we have validated endometrial organoids as a suitable 3D-model to studying epithelial endometrial interface for embryo implantation. Transmission and scanning electron microscopy analyses showed that organoids preserve the glandular organization and cell ultrastructural characteristics. They also retain the responsiveness to hormonal treatment specific to the corresponding phase of the menstrual cycle, mimicking the in vivo glandular-like aspect and functions. Noteworthy, organoids mirroring the early secretive phase show the development of pinopodes, large cytoplasmic apical protrusions of the epithelial cells, traditionally considered as reliable key features of the implantation window. Moreover, organoids express glycodelin A (GdA), a cycle-dependent marker of the endometrial receptivity, with its quantitative and qualitative features accounting well for the profile detected in the endometrium in vivo. Accordingly, organoids deriving from the eutopic endometrium of women with endometriosis show a GdA glycosylation pattern significantly different from healthy organoids, confirming our prior data on endometrial tissues. The present results strongly support the idea that organoids may closely recapitulate the molecular and functional characteristics of their cells/tissue of origin.
Collapse
|
29
|
Gridelet V, Perrier d'Hauterive S, Polese B, Foidart JM, Nisolle M, Geenen V. Human Chorionic Gonadotrophin: New Pleiotropic Functions for an "Old" Hormone During Pregnancy. Front Immunol 2020; 11:343. [PMID: 32231662 PMCID: PMC7083149 DOI: 10.3389/fimmu.2020.00343] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Human chorionic gonadotrophin (hCG) is the first specific molecule synthesized by the embryo. hCG RNA is transcribed as early as the eight-cell stage, and the blastocyst produces the protein before its implantation. hCG in the uterine microenvironment binds with its cognate receptor, luteinizing hormone/choriogonadotropin receptor (LHCGR), on the endometrial surface. This binding stimulates leukemia inhibitory factor (LIF) production and inhibits interleukin-6 (IL-6) production by epithelial cells of the endometrium. These effects ensure essential help in the preparation of the endometrium for initial embryo implantation. hCG also effects angiogenic and immunomodulatory actions as reported in many articles by our laboratories and other ones. By stimulating angiogenesis and vasculogenesis, hCG provides the placenta with an adequate maternal blood supply and optimal embryo nutrition during the invasion of the uterine endometrium. The immunomodulatory properties of hCG are numerous and important for programming maternal immune tolerance toward the embryo. The reported effects of hCG on uterine NK, Treg, and B cells, three major cell populations for the maintenance of pregnancy, demonstrate the role of this embryonic signal as a crucial immune regulator in the course of pregnancy. Human embryo rejection for hCG-related immunological reasons has been studied in different ways, and a sufficient dose of hCG seems to be necessary to maintain maternal tolerance. Different teams have studied the addition of hCG in patients suffering from recurrent miscarriages or implantation failures. hCG could also have a beneficial or a negative impact on autoimmune diseases during pregnancy. In this review, we will discuss the immunological impacts of hCG during pregnancy and if this hormone might be used therapeutically.
Collapse
Affiliation(s)
- Virginie Gridelet
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
- Center for Assisted Medical Procreation, University of Liège, CHR Citadelle, Liège, Belgium
| | - Sophie Perrier d'Hauterive
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
- Center for Assisted Medical Procreation, University of Liège, CHR Citadelle, Liège, Belgium
| | - Barbara Polese
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
| | - Jean-Michel Foidart
- Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Michelle Nisolle
- Center for Assisted Medical Procreation, University of Liège, CHR Citadelle, Liège, Belgium
- Department of Obstetrics and Gynecology, CHR Citadelle, University of Liège, Liège, Belgium
| | - Vincent Geenen
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
| |
Collapse
|
30
|
Glycodelin is internalized by peripheral monocytes. J Reprod Immunol 2020; 138:103102. [PMID: 32120159 DOI: 10.1016/j.jri.2020.103102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023]
Abstract
Glycodelin is produced by the endometrial cells during the luteal phase and first trimester of pregnancy and plays a role in the regulation of the endometrial immunology. However, the molecular connection between glycodelin and the maternal immune system is not clear. To better understand the possible physiological interaction between the endometrium and the maternal immune system, we investigated (1) whether glycodelin binds to mainly peripheral monocytes, and in case (2) whether the binding to the membrane only depends on the protein backbone or a carbohydrate structure is needed, and in case (3) whether glycodelin is internalized after binding to the membrane. We demonstrated that glycodelin - with or without the carbohydrate structure - was preferentially bound and internalized to peripheral monocytes. Surprisingly, we found signals in the nucleus of the monocytes indicating a potential regulating effect of glycodelin may be exerted through the nucleus. However, further studies should be performed to confirm this finding.
Collapse
|
31
|
Altered glycosylation of glycodelin in endometrial carcinoma. J Transl Med 2020; 100:1014-1025. [PMID: 32205858 PMCID: PMC7312397 DOI: 10.1038/s41374-020-0411-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/14/2023] Open
Abstract
Glycodelin is a major glycoprotein expressed in reproductive tissues, like secretory and decidualized endometrium. It has several reproduction related functions that are dependent on specific glycosylation, but it has also been found to drive differentiation of endometrial carcinoma cells toward a less malignant phenotype. Here we aimed to elucidate whether the glycosylation and function of glycodelin is altered in endometrial carcinoma as compared with a normal endometrium. We carried out glycan structure analysis of glycodelin expressed in HEC-1B human endometrial carcinoma cells (HEC-1B Gd) by mass spectrometry glycomics strategies. Glycans of HEC-1B Gd were found to comprise a typical mixture of high-mannose, hybrid, and complex-type N-glycans, often containing undecorated LacNAc (Galβ1-4GlcNAc) antennae. However, several differences, as compared with previously reported glycan structures of normal human decidualized endometrium-derived glycodelin isoform, glycodelin-A (GdA), were also found. These included a lower level of sialylation and more abundant poly-LacNAc antennae, some of which are fucosylated. This allowed us to select lectins that showed different binding to these classes of glycodelin. Despite the differences in glycosylation between HEC-1B Gd and GdA, both showed similar inhibitory activity on trophoblast cell invasion and peripheral blood mononuclear cell proliferation. For the detection of cancer associated glycodelin, we established a novel in situ proximity-ligation based histochemical staining method using a specific glycodelin antibody and UEAI lectin. We found that the UEAI reactive glycodelin was abundant in endometrial carcinoma, but virtually absent in normal endometrial tissue even when glycodelin was strongly expressed. In conclusion, we established a histochemical staining method for the detection of endometrial carcinoma-associated glycodelin and showed that this specific glycodelin is exclusively expressed in cancer, not in normal endometrium. Similar methods can be used for studies of other glycoproteins.
Collapse
|
32
|
McCormack C, Leemaqz S, Furness D, Dekker G, Roberts CT. Do raised two-hour pre-pregnancy insulin levels confer the same risks of developing GDM, as raised fasting levels, in recurrent miscarriage patients? J OBSTET GYNAECOL 2019; 40:803-807. [PMID: 31790316 DOI: 10.1080/01443615.2019.1672139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study questioned whether raised pre-pregnancy two-hour (2 h) insulin levels, measured in recurrent embryonic miscarriage (RM) patients via a 75 g Oral Glucose Tolerance Test (OGTT), are associated with an increased risk of gestational diabetes mellitus (GDM) in a subsequent pregnancy. Patients had a 75 g OGTT and insulin levels evaluated (n = 170). 54.1% had normal glucose and insulin levels, 45.9% had levels indicating hyperinsulinism (HI). In the 98 patients who achieved a pregnancy, the prevalence of GDM was 3.7% in those without HI, and 35.7% in the patients who only had raised 2 h insulin levels. While HI has been described as a risk factor for miscarriages only in relation to raised fasting (basal) insulin levels, this study demonstrated that raised 2 h insulin levels predict an increased risk of GDM in a subsequent pregnancy. Thus raised 2 h insulin levels likely confer a similar risk to raised fasting insulin levels in RM patients.Impact statementWhat is already known on this subject? Fasting hyperinsulinism is known to be associated with an increased risk of gestational diabetes mellitus (GDM) in pregnancy. Hyperinsulinism, as reflected by the fasting (basal) insulin levels >20mU/L, has been recognized as a risk factor for recurrent miscarriages, particularly in patients with polycystic ovarian syndrome (PCOS), in the World literature. Raised two-hour insulin levels have not been considered as a risk factor in the literature before.What do the results of the study add? We have demonstrated a 10-fold increase in the development of GDM in patients with fasting insulin resistance, and/or raised 2h insulin levels, and an almost 10-fold increase in patients with only raised 2h levels. 58.8% of the patients who subsequently developed GDM only had raised 2h levels and would have been missed with routine testing.What are the implications of these findings for clinical practice and/or further research? Our study has demonstrated that GDM was three times more prevalent in the patients with only raised 2h levels, than in those only with raised fasting levels, reflecting insulin resistance/hyperinsulinism. Insulin studies including 2h insulin levels are therefore an important factor to consider when working up these patients. Insulin studies pre-pregnancy may be useful in identifying women at risk of suffering miscarriages or of developing GDM in a subsequent pregnancy.
Collapse
Affiliation(s)
- Catherine McCormack
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Department of Obstetrics, Women's and Children's, North Adelaide, South Australia, Australia
| | - Shalem Leemaqz
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Denise Furness
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Gustaaf Dekker
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Claire T Roberts
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Novel molecules mediate specialized functions of human regulatory macrophages. Curr Opin Organ Transplant 2019; 23:533-537. [PMID: 30059361 DOI: 10.1097/mot.0000000000000560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Now that adoptive transfer of regulatory macrophages (Mregs) is clinically practicable, we ask whether this approach could be used to achieve self-sustaining peripheral regulation and what mechanisms may be involved. RECENT FINDINGS Dehydrogenase/reductase 9 (DHRS9)-expressing Mregs are a specialized subset of monocyte-derived macrophages that are currently being investigated as a tolerogenic cell-based therapy. Human Mregs are defined by their capacity to convert naïve CD4 T cells to IL-10-secreting FoxP3 regulatory T cells (Tregs) through an activation-dependent process involving signals mediated by TGF-β, retinoic acid, indoleamine 2,3-dioxygenase activity, notch and progestagen associated endometrial protein (PAEP). Mreg-induced iTregs (miTregs) are a phenotypically distinct type of in-vitro-derived human iTreg that expresses butyrophilin-like protein 8 (BTNL8) and T cell immunoreceptor with Ig and ITIM domains (TIGIT). miTregs are nonspecifically suppressive of mitogen-stimulated bystander T cell proliferation and inhibit TNFα-induced maturation of monocyte-derived dendritic cells. Preclinical and clinical studies find that intravenous infusion of allogeneic Mregs leads to enrichment of circulating TIGIT Tregs. SUMMARY These results suggest a feed-forward mechanism by which Mreg treatment could promote solid organ transplant acceptance through rapid induction of direct pathway Tregs.
Collapse
|
34
|
|
35
|
Zhang T, Chen X, Wang CC, Li TC, Kwak-Kim J. Intrauterine infusion of human chorionic gonadotropin before embryo transfer in IVF/ET cycle: The critical review. Am J Reprod Immunol 2019; 81:e13077. [PMID: 30589989 DOI: 10.1111/aji.13077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Intrauterine infusion of human chorionic gonadotropin (IUI-hCG) has been proposed to improve the outcome of in vitro fertilization-embryo transfer (IVF-ET), since it plays a critical role in synchronizing endometrial and fetal development. As the early mediator from embryo, hCG promotes the decidualization, angiogenesis, maternal immune tolerance, and trophoblast invasion, favoring successful implantation of embryo. Although multiple clinical trials have been conducted to verify the efficacy of IUI-hCG on IVF-ET outcome in recent years, the findings remained controversial. The difference in study design and population might be the cause to the different consequences after administration of hCG. More importantly, the endometrial receptivity, which might affect the efficacy of IUI-hCG, has not been assessed in women receiving this intervention. Selecting the right population suitable for IUI-hCG based on known etiology would be crucial in enhancing its efficacy and minimize any possible complications. Investigation of optimal indications for IUI-hCG should be highlighted in the future.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR.,Shenzhen Youshare Biotechnology Co. Ltd, Shenzhen, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Chi-Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Joanne Kwak-Kim
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois.,Reproductive Medicine, Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, Illinois
| |
Collapse
|
36
|
Lee B, Koeppel AF, Wang ET, Gonzalez TL, Sun T, Kroener L, Lin Y, Joshi NV, Ghadiali T, Turner SD, Rich SS, Farber CR, Rotter JI, Ida Chen YD, Goodarzi MO, Guller S, Harwood B, Serna TB, Williams J, Pisarska MD. Differential gene expression during placentation in pregnancies conceived with different fertility treatments compared with spontaneous pregnancies. Fertil Steril 2019; 111:535-546. [PMID: 30611556 DOI: 10.1016/j.fertnstert.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To identify differences in the transcriptomic profiles during placentation from pregnancies conceived spontaneously vs. those with infertility using non-in vitro fertilization (IVF) fertility treatment (NIFT) or IVF. DESIGN Cohort study. SETTING Academic medical center. PATIENT(S) Women undergoing chorionic villus sampling at gestational age 11-13 weeks (n = 141), with pregnancies that were conceived spontaneously (n = 74), with NIFT (n = 33), or with IVF (n = 34), resulting in the delivery of viable offspring. INTERVENTION(S) Collection of chorionic villus samples from women who conceived spontaneously, with NIFT, or with IVF for gene expression analysis using RNA sequencing. MAIN OUTCOME MEASURE(S) Baseline maternal, paternal, and fetal demographics, maternal medical conditions, pregnancy complications, and outcomes. Differential gene expression of first-trimester placenta. RESULT(S) There were few differences in the transcriptome of first-trimester placenta from NIFT, IVF, and spontaneous pregnancies. There was one protein-coding differentially expressed gene (DEG) between the spontaneous and infertility groups, CACNA1I, one protein-coding DEG between the spontaneous and IVF groups, CACNA1I, and five protein-coding DEGs between the NIFT and IVF groups, SLC18A2, CCL21, FXYD2, PAEP, and DNER. CONCLUSION(S) This is the first and largest study looking at transcriptomic profiles of first-trimester placenta demonstrating similar transcriptomic profiles in pregnancies conceived using NIFT or IVF and spontaneous conceptions. Gene expression differences found to be highest in the NIFT group suggest that the underlying infertility, in addition to treatment-related factors, may contribute to the observed gene expression profiles.
Collapse
Affiliation(s)
- Bora Lee
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Alex F Koeppel
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Erica T Wang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California
| | - Tania L Gonzalez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tianyanxin Sun
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lindsay Kroener
- Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California
| | - Yayu Lin
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nikhil V Joshi
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California
| | - Tejal Ghadiali
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen D Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | | | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Seth Guller
- Department of Obstetrics/Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Bryna Harwood
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tania B Serna
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - John Williams
- Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California; Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Margareta D Pisarska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California.
| |
Collapse
|
37
|
TIGIT + iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun 2018; 9:2858. [PMID: 30030423 PMCID: PMC6054648 DOI: 10.1038/s41467-018-05167-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/08/2018] [Indexed: 01/06/2023] Open
Abstract
Human regulatory macrophages (Mreg) have shown early clinical promise as a cell-based adjunct immunosuppressive therapy in solid organ transplantation. It is hypothesised that recipient CD4+ T cell responses are actively regulated through direct allorecognition of donor-derived Mregs. Here we show that human Mregs convert allogeneic CD4+ T cells to IL-10-producing, TIGIT+ FoxP3+-induced regulatory T cells that non-specifically suppress bystander T cells and inhibit dendritic cell maturation. Differentiation of Mreg-induced Tregs relies on multiple non-redundant mechanisms that are not exclusive to interaction of Mregs and T cells, including signals mediated by indoleamine 2,3-dioxygenase, TGF-β, retinoic acid, Notch and progestagen-associated endometrial protein. Preoperative administration of donor-derived Mregs to living-donor kidney transplant recipients results in an acute increase in circulating TIGIT+ Tregs. These results suggest a feed-forward mechanism by which Mreg treatment promotes allograft acceptance through rapid induction of direct-pathway Tregs. Regulatory macrophages (Mreg) can directly suppress T effector cell responses. Here the authors show that human Mreg also elicit TIGIT+ regulatory T cells by integrating multiple differentiation signals, and that donor Mreg-induced recipient Tregs may promote kidney transplant acceptance in patients.
Collapse
|
38
|
Oviductal glycoprotein 1 (OVGP1) is expressed by endometrial epithelium that regulates receptivity and trophoblast adhesion. J Assist Reprod Genet 2018; 35:1419-1429. [PMID: 29968069 DOI: 10.1007/s10815-018-1231-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/31/2018] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To study the regulation and functions of oviductal glycoprotein 1 (OVGP1) in endometrial epithelial cells. METHODS Expression of OVGP1 in mouse endometrium during pregnancy and in the endometrial epithelial cell line (Ishikawa) was studied by immunofluorescence, Western blotting, and RT-PCR. Regulation of OVGP1 in response to ovarian steroids and human chorionic gonadotropin (hCG) was studied by real-time RT-PCR. OVGP1 expression was knockdown in Ishikawa cells by shRNA, and expression of receptivity associated genes was studied by real-time RT-PCR. Adhesion of trophoblast cell line (JAr) was studied by in vitro adhesion assays. RESULTS OVGP1 was localized exclusively in the luminal epithelial cells of mouse endometrium at the time of embryo implantation. Along with estrogen and progesterone, hCG induced the expression of OVGP1 in Ishikawa cells. Knockdown of OVGP1 in Ishikawa cells reduced mRNA expression of ITGAV, ITGB3, ITGA5, HOXA10, LIF, and IL15; it increased the expression of HOXA11, MMP9, TIMP1, and TIMP3. Supernatants derived from OVGP1 knockdown Ishikawa cells reduced the adhesiveness of JAr cells in vitro. Expression of OVGP1 mRNA was found to be significantly lowered in the endometrium of women with recurrent implantation failure. CONCLUSION OVGP1 is specifically induced in the luminal epithelium at the time of embryo implantation where it regulates receptivity-related genes and aids in trophoblast adhesion.
Collapse
|
39
|
Eastabrook G, Aksoy T, Bedell S, Penava D, de Vrijer B. Preeclampsia biomarkers: An assessment of maternal cardiometabolic health. Pregnancy Hypertens 2018; 13:204-213. [PMID: 30177053 DOI: 10.1016/j.preghy.2018.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/09/2018] [Accepted: 06/09/2018] [Indexed: 12/15/2022]
Abstract
Preeclampsia is a serious pregnancy condition defined as new-onset hypertension and proteinuria, commonly characterized as either early, 'placental', or late onset, 'maternal', using a cut-off of 34 weeks gestation. However, it may be more useful to differentiate between the vascular remodelling and placental invasion vs. inflammation and metabolic pathophysiology that underlie these forms of preeclampsia. Due to rising rates of obesity, the late-onset, maternal form is increasingly occurring earlier in pregnancy. Predictive tests for preeclampsia typically include biophysical markers such as maternal body mass index and mean arterial pressure, indicating the importance of cardiovascular and metabolic health in its pathophysiology. In contrast, the placental, inflammatory, endothelial and/or metabolic biomarkers used in these tests are generally thought to indicate an abnormal response to placentation and predict the disease. However, many of these non-placental biomarkers are known to predict impaired metabolic health in non-pregnant subjects with obesity (metabolically unhealthy obesity) and coronary artery disease or stroke in people at risk for cardiovascular events. Similarities between the performance of these markers in the prediction of cardiovascular and metabolic health outside of pregnancy suggests that they may be more indicative of maternal health than predictive for preeclampsia. This paper reviews the biophysical and biochemical markers in preeclampsia prediction and compares their performance to tests assessing metabolic health and risk of cardiovascular disease, particularly in the obese population.
Collapse
Affiliation(s)
- Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Tuba Aksoy
- Department of Obstetrics and Gynecology, Mackenzie Richmond Hill Hospital, Richmond Hill, Ontario, Canada.
| | - Samantha Bedell
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.
| | - Debbie Penava
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
40
|
Dundar B, Dincgez Cakmak B, Aydin Boyama B, Karadag B, Ozgen G. Maternal serum glycodelin levels in preeclampsia and its relationship with the severity of the disease. J Matern Fetal Neonatal Med 2017; 31:2884-2892. [DOI: 10.1080/14767058.2017.1359530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Betul Dundar
- Department of Obstetrics and Gynecology, Bursa Yuksek Ihtisas Research and Training Hospital, Saglik Bilimleri University, Bursa, Turkey
| | - Burcu Dincgez Cakmak
- Department of Obstetrics and Gynecology, Bursa Yuksek Ihtisas Research and Training Hospital, Saglik Bilimleri University, Bursa, Turkey
| | - Burcu Aydin Boyama
- Department of Obstetrics and Gynecology, Esenler Hospital, Medipol University, Istanbul, Turkey
| | - Burak Karadag
- Department of Obstetrics and Gynecology, Antalya Research and Training Hospital, Saglik Bilimleri University, Antalya, Turkey
| | - Gulten Ozgen
- Department of Obstetrics and Gynecology, Bursa Yuksek Ihtisas Research and Training Hospital, Saglik Bilimleri University, Bursa, Turkey
| |
Collapse
|
41
|
Focarelli R, Luddi A, De Leo V, Capaldo A, Stendardi A, Pavone V, Benincasa L, Belmonte G, Petraglia F, Piomboni P. Dysregulation of GdA Expression in Endometrium of Women With Endometriosis: Implication for Endometrial Receptivity. Reprod Sci 2017; 25:579-586. [DOI: 10.1177/1933719117718276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Centre for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy
| | - Vincenzo De Leo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Centre for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy
| | - Angela Capaldo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Centre for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy
| | - Anita Stendardi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Linda Benincasa
- Department of Life Science, University of Siena, Siena, Italy
| | - Giuseppe Belmonte
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Centre for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Centre for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy
| |
Collapse
|
42
|
Salsoso R, Farías M, Gutiérrez J, Pardo F, Chiarello DI, Toledo F, Leiva A, Mate A, Vázquez CM, Sobrevia L. Adenosine and preeclampsia. Mol Aspects Med 2017; 55:126-139. [DOI: 10.1016/j.mam.2016.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 01/13/2023]
|