1
|
Norrby K. On Connective Tissue Mast Cells as Protectors of Life, Reproduction, and Progeny. Int J Mol Sci 2024; 25:4499. [PMID: 38674083 PMCID: PMC11050338 DOI: 10.3390/ijms25084499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The connective tissue mast cell (MC), a sentinel tissue-residing secretory immune cell, has been preserved in all vertebrate classes since approximately 500 million years. No physiological role of the MC has yet been established. Considering the power of natural selection of cells during evolution, it is likely that the MCs exert essential yet unidentified life-promoting actions. All vertebrates feature a circulatory system, and the MCs interact readily with the vasculature. It is notable that embryonic MC progenitors are generated from endothelial cells. The MC hosts many surface receptors, enabling its activation via a vast variety of potentially harmful exogenous and endogenous molecules and via reproductive hormones in the female sex organs. Activated MCs release a unique composition of preformed and newly synthesized bioactive molecules, like heparin, histamine, serotonin, proteolytic enzymes, cytokines, chemokines, and growth factors. MCs play important roles in immune responses, tissue remodeling, cell proliferation, angiogenesis, inflammation, wound healing, tissue homeostasis, health, and reproduction. As recently suggested, MCs enable perpetuation of the vertebrates because of key effects-spanning generations-in ovulation and pregnancy, as in life-preserving activities in inflammation and wound healing from birth till reproductive age, thus creating a permanent life-sustaining loop. Here, we present recent advances that further indicate that the MC is a specific life-supporting and progeny-safeguarding cell.
Collapse
Affiliation(s)
- Klas Norrby
- Department of Pathology, Institute of Medical Biology, Sahlgren Academy, University of Gothenburg, 7 Ostindiefararen, SE-417 65 Gothenburg, Sweden
| |
Collapse
|
2
|
Mohamed RH, Yousef NA, Awad M, Mohamed RS, Ali F, Hussein HA, Wehrend A. The relationship between ovarian hormones and mast cell distribution in the ovaries of dromedary camel (Camelus dromedaries) during the follicular wave. Vet World 2023; 16:309-316. [PMID: 37041993 PMCID: PMC10082722 DOI: 10.14202/vetworld.2023.309-316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/23/2022] [Indexed: 02/19/2023] Open
Abstract
Background and Aim: Mast cells (MCs) play an essential role in regulating tissue homeostasis through various non-allergic immune reactions. This study aimed to describe the salient features of MCs during different phases of the estrous cycle and evaluate the relationship between ovarian hormones and the presence of MCs in camel ovaries.
Materials and Methods: Genital tracts (n = 28) of healthy, non-pregnant camels were collected from a local slaughterhouse. The follicular wave stage was determined according to structures on the ovaries using an ultrasound device. Stages were classified as "growing" (n = 12, FØ = 0.3–0.8 cm), "mature" (n = 9, FØ = 0.9–2.2 cm), or "regression" phase (n = 7, FØ >2.5). Blood samples were collected at slaughter to determine serum estradiol-17β and progesterone levels using an immunoassay. Safranin-O, periodic acid/Schiff, alcian blue, or methylene blue stains were used to detect MCs.
Results: Follicular numbers at the growing, mature, and regression phases were determined to be 36, 14, and 7 follicles, respectively. Mast cells were widely but sparsely distributed within the ovarian tissue (9.3 MCs in the growing phase, 10.7 in the mature phase, and 7.0 in the regression phase). Typical histological features of MCs were observed in ovarian stromal tissue. Some MCs were found in the interstitial tissue, either near the follicular wall or the interstitial gland. Mast cells were present at a higher density during the mature phase than in the growing and regression phases in the ovarian matrix. A significantly reduced presence of MCs was found in the regression phase than in both the growing and mature phases (p < 0.05). A very strong positive correlation was observed between serum estradiol-17β concentrations and MC density in the ovaries (r = 0.9; p < 0.001). In addition, a strong negative correlation (r = –0.65; p = 0.03) was observed between the presence of MCs and serum progesterone concentrations.
Conclusion: These findings suggest that the follicular wave phase and the associated hormonal concentration induce changes in the number of MCs in the camel ovary.
Collapse
Affiliation(s)
- Ragab H. Mohamed
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Tingar, Egypt
| | - Nasra A. Yousef
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Mahmoud Awad
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Rasha S. Mohamed
- Department of Animal Health, Animal and Poultry Production Division, Desert Research Center, Egypt
| | - Fatma Ali
- Department of Physiology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Hassan A. Hussein
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, 71526 Assiut, Egypt
| | - Axel Wehrend
- Clinic for Obstetrics, Gynaecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus Liebig University, Giessen, Germany
| |
Collapse
|
3
|
Kocatürk E, Podder I, Zenclussen AC, Kasperska Zajac A, Elieh-Ali-Komi D, Church MK, Maurer M. Urticaria in Pregnancy and Lactation. FRONTIERS IN ALLERGY 2022; 3:892673. [PMID: 35873599 PMCID: PMC9300824 DOI: 10.3389/falgy.2022.892673] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic urticaria (CU) is a mast cell-driven chronic inflammatory disease with a female predominance. Since CU affects mostly females in reproductive age, pregnancy is an important aspect to consider in the context of this disease. Sex hormones affect mast cell (MC) biology, and the hormonal changes that come with pregnancy can modulate the course of chronic inflammatory conditions, and they often do. Also, pregnancy-associated changes in the immune system, including local adaptation of innate and adaptive immune responses and skewing of adaptive immunity toward a Th2/Treg profile have been linked to changes in the course of inflammatory diseases. As of now, little is known about the effects of pregnancy on CU and the outcomes of pregnancy in CU patients. Also, there are no real-life studies to show the safety of urticaria medications during pregnancy. The recent PREG-CU study provided the first insights on this and showed that CU improves during pregnancy in half of the patients, whereas it worsens in one-third; and two of five CU patients experience flare-ups of their CU during pregnancy. The international EAACI/GA2LEN/EuroGuiDerm/APAAACI guideline for urticaria recommends adopting the same management strategy in pregnant and lactating CU patients; starting treatment with standard doses of second-generation (non-sedative) H1 antihistamines, to increase the dose up to 4-folds in case of no response, and to add omalizumab in antihistamine-refractory patients; but also emphasizes the lack of evidence-based information on the safety and efficacy of urticaria treatments during pregnancy. The PREG-CU study assessed treatments and their outcomes during pregnancy. Here, we review the reported effects of sex hormones and pregnancy-specific immunological changes on urticaria, we discuss the impact of pregnancy on urticaria, and we provide information and guidance on the management of urticaria during pregnancy and lactation.
Collapse
Affiliation(s)
- Emek Kocatürk
- Department of Dermatology, Koç University School of Medicine, Istanbul, Turkey
- *Correspondence: Emek Kocatürk
| | - Indrashis Podder
- Department of Dermatology, Venereology and Leprosy, College of Medicine and Sagore Dutta Hospital, Kolkata, India
| | - Ana C. Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ) and Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Alicja Kasperska Zajac
- European Center for Diagnosis and Treatment of Urticaria/Angioedema (GA2LEN UCARE /ACARE Network), Zabrze, Poland
- Department of Clinical Allergology, Urticaria Center of Medical University of Silesia, Katowice, Poland
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Martin K. Church
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| |
Collapse
|
4
|
Hamouzova P, Cizek P, Jekl V, Gozdziewska-Harlajczuk K, Kleckowska-Nawrot J. Mast cells and Kurloff cells - Their detection throughout the oestrous cycle in normal guinea pig ovaries and in guinea pigs with cystic rete ovarii. Res Vet Sci 2021; 136:512-518. [PMID: 33878613 DOI: 10.1016/j.rvsc.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022]
Abstract
Mast cells (MCs) and Kurloff cells (KCs) were detected in guinea pig ovaries in the follicular and luteal phases of the oestrous cycle. The samples of ovaries were fixed in Mota's basic lead acetate. Toluidine blue was used for detection of MCs and periodic acid-Schiff for detection of KCs. The percentage of KCs in a differential leukocyte count was determined in blood smears stained according to the Pappenheim method. Non-pregnant females with normal ovaries and with cystic rete ovarii were included in the study and the numbers of MCs and KCs were compared in these two groups and in follicular and luteal phases of the oestrous cycle. MCs' distribution in ovaries was different in the guinea pig in comparison to previously studied species: MCs were found exclusively in the superficial layers of cortical stroma and no significant difference was found between the number of MCs in the follicular and luteal phases, neither in normal ovaries, nor in ovaries with cystic rete ovarii. Significantly lower numbers of MCs were found in ovaries with cystic rete ovarii (P < 0.01) in contrast to normal ovaries. A significantly higher percentage of KCs in the peripheral blood was found in the follicular phase (P < 0.05), whereas no significant difference was found in relation to the presence of cystic rete ovarii. Interestingly, no KCs were found in the samples of ovaries (either in the follicular or luteal phase, and with or without cysts). Thus, the expected role of KCs in ovarian physiology or in the aetiology of the cystic rete ovarii can be excluded.
Collapse
Affiliation(s)
- Pavla Hamouzova
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic.
| | - Petr Cizek
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic.
| | - Vladimir Jekl
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic; Jekl & Hauptman Veterinary Clinic, Mojmírovo náměstí 3105/6a, 612 00 Brno, Czech Republic.
| | - Karolina Gozdziewska-Harlajczuk
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wrocław, Poland.
| | - Joanna Kleckowska-Nawrot
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wrocław, Poland.
| |
Collapse
|
5
|
Mohmmad‐Rezaei M, Arefnezhad R, Ahmadi R, Abdollahpour‐Alitappeh M, Mirzaei Y, Arjmand M, Ferns GA, Bashash D, Bagheri N. An overview of the innate and adaptive immune system in atherosclerosis. IUBMB Life 2020. [DOI: 10.1002/iub.2425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mina Mohmmad‐Rezaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | - Reza Arefnezhad
- Halal Research Center of IRI, FDA Tehran Iran
- Department of Anatomy, School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | | | - Yousef Mirzaei
- Department of Biogeosciences, Scientific Research Center Soran University Soran Iraq
| | - Mohammad‐Hassan Arjmand
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
- Cancer Research Center Shahrekord University of Medical Sciences Shahrekord Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education Sussex United Kingdom
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
6
|
Kouhpeikar H, Delbari Z, Sathyapalan T, Simental-Mendía LE, Jamialahmadi T, Sahebkar A. The Effect of Statins through Mast Cells in the Pathophysiology of Atherosclerosis: a Review. Curr Atheroscler Rep 2020; 22:19. [PMID: 32458165 DOI: 10.1007/s11883-020-00837-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss the evidence supporting the effects of statins on mast cells (MCs) in atherosclerosis and their molecular mechanism of action. RECENT FINDINGS Statins or HMG-CoA reductase inhibitors are known for their lipid-lowering properties and are widely used in the prevention and treatment of cardiovascular diseases. There is growing evidence that statins have an inhibitory effect on MCs, which contributes to the pleiotropic effect of statins in various diseases. MCs are one of the crucial effectors of the immune system which play an essential role in the pathogenesis of multiple disorders. Recent studies have shown that MCs are involved in the development of atherosclerotic plaques. MCs secrete various inflammatory cytokines (IL-6, IL4, TNF-α, and IFNγ) and inflammatory mediators (histamine, tryptase, proteoglycans) after activation by various stimulants. This, in turn, will exacerbate atherosclerosis. Statins suppress the activation of MCs via IgE inhibition which leads to inhibition of inflammatory mediators and cytokines which are involved in the development and progression of atherosclerosis. In keeping with this evidence presented here, MCs can be considered as one of the therapeutic targets for statins in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hamideh Kouhpeikar
- Department of hematology and blood bank, Tabas school of nursing, Birjand University of Medical Science, Birjand, Iran
| | - Zahra Delbari
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, HU3 2JZ, UK
| | | | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Hamouzova P, Cizek P, Bartoskova A, Vitasek R, Tichy F. Changes in the mast cell distribution in the canine ovary and uterus throughout the oestrous cycle. Reprod Domest Anim 2020; 55:479-485. [PMID: 31961006 DOI: 10.1111/rda.13641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
This is the first study describing the relation between the phase of the oestrous cycle and the number of mast cells (MCs) in the canine ovaries and uterine horns. The total number of MCs was counted in cortex ovarii, medulla ovarii, endometrium and myometrium. The number of MCs was compared in all of these areas among the bitches in the early follicular phase, luteal phase and anoestrus. MCs were the most numerous in the early follicular phase and in the luteal phase; however, they were significantly less numerous during anoestrus. Based on the results, it was concluded that the number of MCs in ovaries and uterine horns fluctuates during the oestrous cycle. The results of this study may contribute to clarifying the role of MCs in the reproductive organs of bitches.
Collapse
Affiliation(s)
- Pavla Hamouzova
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Petr Cizek
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Alena Bartoskova
- Institute of Lifelong Learning, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Roman Vitasek
- Department of Reproduction, Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
8
|
Abstract
Mast cells are tissue-resident, innate immune cells that play a key role in the inflammatory response and tissue homeostasis. Mast cells accumulate in the tumor stroma of different human cancer types, and increased mast cell density has been associated to either good or poor prognosis, depending on the tumor type and stage. Mast cells play a multifaceted role in the tumor microenvironment by modulating various events of tumor biology, such as cell proliferation and survival, angiogenesis, invasiveness, and metastasis. Moreover, tumor-associated mast cells have the potential to shape the tumor microenvironment by establishing crosstalk with other tumor-infiltrating cells. This chapter reviews the current understanding of the role of mast cells in the tumor microenvironment. These cells have received much less attention than other tumor-associated immune cells but are now recognized as critical components of the tumor microenvironment and could hold promise as a potential target to improve cancer immunotherapy.
Collapse
|
9
|
Mediators of Inflammation - A Potential Source of Biomarkers in Oral Squamous Cell Carcinoma. J Immunol Res 2018; 2018:1061780. [PMID: 30539028 PMCID: PMC6260538 DOI: 10.1155/2018/1061780] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/25/2018] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common tumour of the oral cavity, associated with significant morbidity and mortality. It is a multifactorial condition, both genetic and environmental factors being involved in its development and progression. Its pathogenesis is not fully elucidated, but a pivotal role has been attributed to inflammation, strong evidence supporting the association between chronic inflammation and carcinogenesis. Moreover, an increasing number of studies have investigated the role of different mediators of inflammation in the early detection of OSCC. In this review, we have summarized the main markers of inflammation that could be useful in diagnosis and shed some light in OSCC pathogenesis.
Collapse
|