1
|
Bonney EA. A Framework for Understanding Maternal Immunity. Immunol Allergy Clin North Am 2023; 43:e1-e20. [PMID: 37179052 PMCID: PMC10484232 DOI: 10.1016/j.iac.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This is an alternative and controversial framing of the data relevant to maternal immunity. It argues for a departure from classical theory to view, interrogate and interpret existing data.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Robert Larner College of Medicine, Given Building, Room C246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
2
|
Patel MV, Rodriguez-Garcia M, Shen Z, Wira CR. Medroxyprogesterone acetate inhibits wound closure of human endometrial epithelial cells and stromal fibroblasts in vitro. Sci Rep 2021; 11:23246. [PMID: 34853394 PMCID: PMC8636475 DOI: 10.1038/s41598-021-02681-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/15/2021] [Indexed: 01/13/2023] Open
Abstract
Mucosal integrity in the endometrium is essential for immune protection. Since breaches or injury to the epithelial barrier exposes underlying tissue and is hypothesized to increase infection risk, we determined whether endogenous progesterone or three exogenous progestins (medroxyprogesterone acetate (MPA), norethindrone (NET), and levonorgestrel (LNG)) used by women as contraceptives interfere with wound closure of endometrial epithelial cells and fibroblasts in vitro. Progesterone and LNG had no inhibitory effect on wound closure by either epithelial cells or fibroblasts. MPA significantly impaired wound closure in both cell types and delayed the reestablishment of transepithelial resistance by epithelial cells. In contrast to MPA, NET selectively decreased wound closure by stromal fibroblasts but not epithelial cells. Following epithelial injury, MPA but not LNG or NET, blocked the injury-induced upregulation of HBD2, a broad-spectrum antimicrobial implicated in wound healing, but had no effect on the secretion of RANTES, CCL20 and SDF-1α. This study demonstrates that, unlike progesterone and LNG, MPA and NET may interfere with wound closure following injury in the endometrium, potentially conferring a higher risk of pathogen transmission. Our findings highlight the importance of evaluating progestins for their impact on wound repair at mucosal surfaces.
Collapse
Affiliation(s)
- Mickey V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| | | | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| |
Collapse
|
3
|
Patel MV, Hopkins DC, Barr FD, Wira CR. Sex Hormones and Aging Modulate Interferon Lambda 1 Production and Signaling by Human Uterine Epithelial Cells and Fibroblasts. Front Immunol 2021; 12:718380. [PMID: 34630393 PMCID: PMC8497887 DOI: 10.3389/fimmu.2021.718380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Estradiol (E2) and progesterone (P) have potent effects on immune function in the human uterine endometrium which is essential for creating an environment conducive for successful reproduction. Type III/lambda (λ) interferons (IFN) are implicated in immune defense of the placenta against viral pathogens, which occurs against the backdrop of high E2 and P levels. However, the effect of E2 and P in modulating the expression and function of IFNλ1 in the non-pregnant human uterine endometrium is unknown. We generated purified in vitro cultures of human uterine epithelial cells and stromal fibroblast cells recovered from hysterectomy specimens. Poly (I:C), a viral dsRNA mimic, potently increased secretion of IFNλ1 by both epithelial cells and fibroblasts. The secretion of IFNλ1 by epithelial cells significantly increased with increasing age following poly (I:C) stimulation. Stimulation of either cell type with E2 (5x10-8M) or P (1x10-7M) had no effect on expression or secretion of IFNλ1 either alone or in the presence of poly (I:C). E2 suppressed the IFNλ1-induced upregulation of the antiviral IFN-stimulated genes (ISGs) MxA, OAS2 and ISG15 in epithelial cells, but not fibroblasts. Estrogen receptor alpha (ERα) blockade using Raloxifene indicated that E2 mediated its inhibitory effects on ISG expression via ERα. In contrast to E2, P potentiated the upregulation of ISG15 in response to IFNλ1 but had no effect on MxA and OAS2 in epithelial cells. Our results demonstrate that the effects of E2 and P on IFNλ1-induced ISGs are cell-type specific. E2-mediated suppression, and selective P-mediated stimulation, of IFNλ1-induced ISG expression in uterine epithelial cells suggest that the effects of IFNλ1 varies with menstrual cycle stage, pregnancy, and menopausal status. The suppressive effect of E2 could be a potential mechanism by which ascending pathogens from the lower reproductive tract can infect the pregnant and non-pregnant endometrium.
Collapse
Affiliation(s)
- Mickey V. Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | | | | | | |
Collapse
|
4
|
Queckbörner S, von Grothusen C, Boggavarapu NR, Francis RM, Davies LC, Gemzell-Danielsson K. Stromal Heterogeneity in the Human Proliferative Endometrium-A Single-Cell RNA Sequencing Study. J Pers Med 2021; 11:jpm11060448. [PMID: 34067358 PMCID: PMC8224746 DOI: 10.3390/jpm11060448] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
The endometrium undergoes regular regeneration and stromal proliferation as part of the normal menstrual cycle. To better understand cellular interactions driving the mechanisms in endometrial regeneration we employed single-cell RNA sequencing. Endometrial biopsies were obtained during the proliferative phase of the menstrual cycle from healthy fertile women and processed to single-cell suspensions which were submitted for sequencing. In addition to known endometrial cell types, bioinformatic analysis revealed multiple stromal populations suggestive of specific stromal niches with the ability to control inflammation and extracellular matrix composition. Ten different stromal cells and two pericyte subsets were identified. Applying different R packages (Seurat, SingleR, Velocyto) we established cell cluster diversity and cell lineage/trajectory, while using external data to validate our findings. By understanding healthy regeneration in the described stromal compartments, we aim to identify points of further investigation and possible targets for novel therapy development for benign gynecological disorders affecting endometrial regeneration and proliferation such as endometriosis and Asherman’s syndrome.
Collapse
Affiliation(s)
- Suzanna Queckbörner
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska University Hospital, S-171 64 Solna, Sweden; (S.Q.); (N.R.B.); (K.G.-D.)
| | - Carolina von Grothusen
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska University Hospital, S-171 64 Solna, Sweden; (S.Q.); (N.R.B.); (K.G.-D.)
- Correspondence:
| | - Nageswara Rao Boggavarapu
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska University Hospital, S-171 64 Solna, Sweden; (S.Q.); (N.R.B.); (K.G.-D.)
| | - Roy Mathew Francis
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, BMC, Husargatan 3, 752 37 Uppsala, Sweden;
- National Bioinformatics Infrastructure Sweden (NBIS), Department of Cell and Molecular Biology (ICM), Uppsala University, SciLifeLab, 751 24 Uppsala, Sweden
| | - Lindsay C. Davies
- Department of Laboratory Medicine, Karolinska Institutet, S-141 52 Huddinge, Sweden;
| | - Kristina Gemzell-Danielsson
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska University Hospital, S-171 64 Solna, Sweden; (S.Q.); (N.R.B.); (K.G.-D.)
| |
Collapse
|
5
|
Rodriguez‐Garcia M, Patel MV, Shen Z, Wira CR. The impact of aging on innate and adaptive immunity in the human female genital tract. Aging Cell 2021; 20:e13361. [PMID: 33951269 PMCID: PMC8135005 DOI: 10.1111/acel.13361] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
Mucosal tissues in the human female reproductive tract (FRT) are primary sites for both gynecological cancers and infections by a spectrum of sexually transmitted pathogens, including human immunodeficiency virus (HIV), that compromise women's health. While the regulation of innate and adaptive immune protection in the FRT by hormonal cyclic changes across the menstrual cycle and pregnancy are being intensely studied, little to nothing is known about the alterations in mucosal immune protection that occur throughout the FRT as women age following menopause. The immune system in the FRT has two key functions: defense against pathogens and reproduction. After menopause, natural reproductive function ends, and therefore, two overlapping processes contribute to alterations in immune protection in aging women: menopause and immunosenescence. The goal of this review is to summarize the multiple immune changes that occur in the FRT with aging, including the impact on the function of epithelial cells, immune cells, and stromal fibroblasts. These studies indicate that major aspects of innate and adaptive immunity in the FRT are compromised in a site‐specific manner in the FRT as women age. Further, at some FRT sites, immunological compensation occurs. Overall, alterations in mucosal immune protection contribute to the increased risk of sexually transmitted infections (STI), urogenital infections, and gynecological cancers. Further studies are essential to provide a foundation for the development of novel therapeutic interventions to restore immune protection and reverse conditions that threaten women's lives as they age.
Collapse
Affiliation(s)
| | - Mickey V. Patel
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Zheng Shen
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Charles R. Wira
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| |
Collapse
|
6
|
Rodriguez-Garcia M, Connors K, Ghosh M. HIV Pathogenesis in the Human Female Reproductive Tract. Curr HIV/AIDS Rep 2021; 18:139-156. [PMID: 33721260 PMCID: PMC9273024 DOI: 10.1007/s11904-021-00546-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Women remain disproportionately affected by the HIV/AIDS pandemic. The primary mechanism for HIV acquisition in women is sexual transmission, yet the immunobiological factors that contribute to HIV susceptibility remain poorly characterized. Here, we review current knowledge on HIV pathogenesis in women, focusing on infection and immune responses in the female reproductive tract (FRT). RECENT FINDINGS We describe recent findings on innate immune protection and HIV target cell distribution in the FRT. We also review multiple factors that modify susceptibility to infection, including sex hormones, microbiome, trauma, and how HIV risk changes during women's life cycle. Finally, we review current strategies for HIV prevention and identify barriers for research in HIV infection and pathogenesis in women. A complex network of interrelated biological and sociocultural factors contributes to HIV risk in women and impairs prevention and cure strategies. Understanding how HIV establishes infection in the FRT can provide clues to develop novel interventions to prevent HIV acquisition in women.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, 150 Harrison Ave, Boston, MA, 02111, USA
| | - Kaleigh Connors
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Mimi Ghosh
- Department of Epidemiology, Milken Institute School of Public Health and Health Services, The George Washington University, 800 22nd St NW, Washington, DC, 20052, USA.
| |
Collapse
|
7
|
de Lara LM, Parthasarathy RS, Rodriguez-Garcia M. Mucosal Immunity and HIV Acquisition in Women. CURRENT OPINION IN PHYSIOLOGY 2020; 19:32-38. [PMID: 33103019 DOI: 10.1016/j.cophys.2020.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Women acquire HIV through sexual transmission. Women worldwide represent half of the people living with HIV, but young women in endemic areas are disproportionally affected. Low transmission rates per sexual act in women suggest that local immune protective mechanisms in the genital tract have the potential to prevent infection. However, conditions that induce genital inflammation are known to increase the risk of HIV acquisition. The female genital tract (FGT) is divided into different anatomical compartments with distinct reproductive functions. The immune cells present in each of these compartments are specialized in balancing reproduction and protection against infections, and are the same cells that can encounter and respond to HIV. Understanding the physiological and pathological factors that influence mucosal immune cell presence, susceptibility to HIV-infection and anti-HIV immune responses in the FGT is necessary to develop preventive strategies. Here we review recent advances in our understanding of HIV infection in the human female genital tract, with an emphasis on the characterization of the mucosal cells susceptible to HIV-infection, innate immune responses and mucosal factors that increase genital inflammation and influence susceptibility to HIV acquisition in women.
Collapse
Affiliation(s)
- Laura Moreno de Lara
- Department of Immunology, Tufts University School of Medicine, Boston, MA.,Immunology Unit, Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
| | - Ragav S Parthasarathy
- Department of Immunology, Tufts University School of Medicine, Boston, MA.,Immunology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA.,Immunology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| |
Collapse
|
8
|
Arévalo Romero H, Vargas Pavía TA, Velázquez Cervantes MA, Flores Pliego A, Helguera Repetto AC, León Juárez M. The Dual Role of the Immune Response in Reproductive Organs During Zika Virus Infection. Front Immunol 2019; 10:1617. [PMID: 31354746 PMCID: PMC6637308 DOI: 10.3389/fimmu.2019.01617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Zika virus is a mosquito-borne viral disease that emerged as a significant health problem in the Americas after an epidemic in 2015. Especially concerning are cases where Zika is linked to the development of brain abnormalities in newborns. Unlike other flaviviruses, Zika can be transmitted sexually, increasing the potential for intraspecies infection. Several reports show that the virus can persist for months in the testis of males after clearance of viremia, and that females are highly susceptible to infection via sexual transmission. The most common route of sexual transmission is male-to-female, which suggests that the mechanism driving persistence of Zika in the testis is essential for dissemination. The immune system plays an essential role in Zika infection. In females, a robust response inhibits the virus to control the infection. In males, however, the immunological response to Zika infection correlates with viral persistence. Thus, the immune system may have a dual role in sexually transmitted pathogenesis. The mechanism by which the immune system allows the virus to enter an immune-privileged site while continuing to disseminate is unclear. In this mini-review, we highlight advances in our knowledge of sexually transmitted Zika virus pathogenesis and the possible mechanisms mounted by the immune system that control or exacerbate the infection.
Collapse
Affiliation(s)
- Haruki Arévalo Romero
- Laboratory of Immunology and Molecular Microbiology, Multidisciplinary Academic Division of Jalpa de Méndez, Department of Genomics, University Juárez Autonomous of Tabasco, Jalpa de Méndez, Mexico
| | - Tania A Vargas Pavía
- Laboratory of Perinatal Virology, Department of Immuno-Biochemistry, National Institution of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Manuel A Velázquez Cervantes
- Laboratory of Perinatal Virology, Department of Immuno-Biochemistry, National Institution of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Arturo Flores Pliego
- Laboratory of Perinatal Virology, Department of Immuno-Biochemistry, National Institution of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Addy C Helguera Repetto
- Laboratory of Perinatal Virology, Department of Immuno-Biochemistry, National Institution of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| | - Moises León Juárez
- Laboratory of Perinatal Virology, Department of Immuno-Biochemistry, National Institution of Perinatology "Isidro Espinosa de los Reyes", Mexico City, Mexico
| |
Collapse
|