1
|
Balle C, Happel AU, Heffron R, Jaspan HB. Contraceptive effects on the cervicovaginal microbiome: Recent evidence including randomized trials. Am J Reprod Immunol 2023; 90:e13785. [PMID: 37881121 PMCID: PMC10696626 DOI: 10.1111/aji.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Until recently, most data regarding the effects of non-barrier contraceptives on the mucosal microbiome have derived from observational studies, which are potentially biased due to behavioral confounders that may mask their true biological effects. METHOD OF STUDY This narrative review summarises recent evidence of the effect of contraceptives on the cervicovaginal microbiome, emphasising data obtained through randomized trials. RESULTS Good quality data describe that initiation of long-acting progestin-only contraceptives, including levonorgestrel (LNG)-implant and the injectables depot-medroxyprogesterone acetate (DMPA-IM) and norethisterone enanthate (NET-EN) do not alter the mucosal microbial environment. Likewise, no strong evidence exists that the use of oral contraceptive pills (OCPs) is associated with alterations of the vaginal microbiome or increased risk of bacterial sexually transmitted infections (STIs). Limited data on the effect of intravaginal rings (IVRs) on the mucosal environment exist and show conflicting effects on the vaginal microbiota. Copper intrauterine device (Cu-IUD) initiation has been associated with bacterial vaginosis (BV) acquisition, including in a randomized trial. LNG-IUDs may have similar affects but need to be evaluated further. CONCLUSION Different synthetic hormones have divergent effects on the microbiome and therefore novel hormonal methods need to be rigorously evaluated. Furthermore, the addition of antiretrovirals into multipurpose technologies may alter the effects of the hormonal component. There is thus a critical need to improve our understanding of the biological effects of contraceptive hormones and delivery methods with different pharmacokinetic and chemical properties on the mucosal microbiome in rigorous trials, to inform the development of novel contraceptives and improve individual family planning guidance.
Collapse
Affiliation(s)
- Christina Balle
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Anna-Ursula Happel
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Renee Heffron
- University of Washington Department of Global Health, Seattle, WA, USA
| | - Heather B. Jaspan
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- University of Washington Department of Global Health, Seattle, WA, USA
- Seattle Children’s Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Pathare ADS, Saare M, Meltsov A, Lawarde A, Modhukur V, Kalinina A, Sekavin A, Kukushkina V, Karro H, Salumets A, Peters M. The cervical transcriptome changes during the menstrual cycle but does not predict the window of implantation. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1224919. [PMID: 37519341 PMCID: PMC10375708 DOI: 10.3389/frph.2023.1224919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The expression of genes in female reproductive organs is influenced by the cyclic changes in hormone levels during the menstrual cycle. While the molecular changes in the endometrium that facilitate embryo implantation have been extensively studied, there is limited knowledge about the impact of the menstrual cycle on cervical cells. Cervical cells can be easily and routinely collected using a cytobrush during gynecological examination, offering a standardized approach for diagnostic testing. In this study we investigated how the transcriptome of cervical cells changes during the menstrual cycle and assessed the utility of these cells to determine endometrial receptivity. Methods Endocervical cells were collected with cytobrushes from 16 healthy women at different menstrual cycle phases in natural cycles and from four women undergoing hormonal replacement cycles. RNA sequencing was applied to gain insight into the transcriptome of cervical cells. Results Transcriptome analysis identified four differentially expressed genes (DEGs) between early- and mid-secretory samples, suggesting that the transcriptome of cervical cells does not change significantly during the opening of the implantation window. The most differences appeared during the transition to the late secretory phase (2136 DEGs) before the onset of menstruation. Cervical cells collected during hormonal replacement cycles showed 1899 DEGs enriched in immune system processes. Conclusions The results of our study suggested that cervical cells undergo moderate transcriptomic changes throughout the menstrual cycle; however, these changes do not reflect the gene expression pattern of endometrial tissue and offer little or no potential for endometrial receptivity diagnostics.
Collapse
Affiliation(s)
- Amruta D. S. Pathare
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Merli Saare
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Alvin Meltsov
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ankita Lawarde
- Competence Centre on Health Technologies, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Vijayachitra Modhukur
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | | | - Aire Sekavin
- Women’s Clinic, Tartu University Hospital, Tartu, Estonia
| | | | - Helle Karro
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Women’s Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Maire Peters
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| |
Collapse
|
3
|
Hughes SM, Levy CN, Katz R, Lokken EM, Anahtar MN, Hall MB, Bradley F, Castle PE, Cortez V, Doncel GF, Fichorova R, Fidel PL, Fowke KR, Francis SC, Ghosh M, Hwang LY, Jais M, Jespers V, Joag V, Kaul R, Kyongo J, Lahey T, Li H, Makinde J, McKinnon LR, Moscicki AB, Novak RM, Patel MV, Sriprasert I, Thurman AR, Yegorov S, Mugo NR, Roxby AC, Micks E, Hladik F. Changes in concentrations of cervicovaginal immune mediators across the menstrual cycle: a systematic review and meta-analysis of individual patient data. BMC Med 2022; 20:353. [PMID: 36195867 PMCID: PMC9533580 DOI: 10.1186/s12916-022-02532-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/16/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hormonal changes during the menstrual cycle play a key role in shaping immunity in the cervicovaginal tract. Cervicovaginal fluid contains cytokines, chemokines, immunoglobulins, and other immune mediators. Many studies have shown that the concentrations of these immune mediators change throughout the menstrual cycle, but the studies have often shown inconsistent results. Our understanding of immunological correlates of the menstrual cycle remains limited and could be improved by meta-analysis of the available evidence. METHODS We performed a systematic review and meta-analysis of cervicovaginal immune mediator concentrations throughout the menstrual cycle using individual participant data. Study eligibility included strict definitions of the cycle phase (by progesterone or days since the last menstrual period) and no use of hormonal contraception or intrauterine devices. We performed random-effects meta-analyses using inverse-variance pooling to estimate concentration differences between the follicular and luteal phases. In addition, we performed a new laboratory study, measuring select immune mediators in cervicovaginal lavage samples. RESULTS We screened 1570 abstracts and identified 71 eligible studies. We analyzed data from 31 studies, encompassing 39,589 concentration measurements of 77 immune mediators made on 2112 samples from 871 participants. Meta-analyses were performed on 53 immune mediators. Antibodies, CC-type chemokines, MMPs, IL-6, IL-16, IL-1RA, G-CSF, GNLY, and ICAM1 were lower in the luteal phase than the follicular phase. Only IL-1α, HBD-2, and HBD-3 were elevated in the luteal phase. There was minimal change between the phases for CXCL8, 9, and 10, interferons, TNF, SLPI, elafin, lysozyme, lactoferrin, and interleukins 1β, 2, 10, 12, 13, and 17A. The GRADE strength of evidence was moderate to high for all immune mediators listed here. CONCLUSIONS Despite the variability of cervicovaginal immune mediator measurements, our meta-analyses show clear and consistent changes during the menstrual cycle. Many immune mediators were lower in the luteal phase, including chemokines, antibodies, matrix metalloproteinases, and several interleukins. Only interleukin-1α and beta-defensins were higher in the luteal phase. These cyclical differences may have consequences for immunity, susceptibility to infection, and fertility. Our study emphasizes the need to control for the effect of the menstrual cycle on immune mediators in future studies.
Collapse
Affiliation(s)
- Sean M Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Claire N Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Ronit Katz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Erica M Lokken
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Melis N Anahtar
- Ragon Institute of MIT and Harvard, Massachusetts General Hospital, Boston, MA, USA
| | | | - Frideborg Bradley
- Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Philip E Castle
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Valerie Cortez
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Raina Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Paul L Fidel
- Louisiana State University Health, New Orleans, LA, USA
| | - Keith R Fowke
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Suzanna C Francis
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Mimi Ghosh
- Department of Epidemiology, The George Washington University, Washington, DC, USA
| | - Loris Y Hwang
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mariel Jais
- Office of Laboratory Safety, The George Washington University, Washington, DC, USA
| | | | - Vineet Joag
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Kyongo
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Timothy Lahey
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Huiying Li
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College, London, England, UK
- IAVI, New York, NY, USA
| | - Lyle R McKinnon
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Anna-Barbara Moscicki
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Mickey V Patel
- Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Intira Sriprasert
- Department of OB/GYN, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Sergey Yegorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nelly Rwamba Mugo
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Alison C Roxby
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutch, Seattle, WA, USA
| | - Elizabeth Micks
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA.
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutch, Seattle, WA, USA.
| |
Collapse
|
4
|
Drvar V, Ćurko-Cofek B, Karleuša L, Aralica M, Rogoznica M, Kehler T, Legović D, Rukavina D, Laskarin G. Granulysin expression and granulysin-mediated apoptosis in the peripheral blood of osteoarthritis patients. Biomed Rep 2022; 16:44. [PMID: 35478928 PMCID: PMC9016702 DOI: 10.3892/br.2022.1527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease caused by mechanical damage and metabolic factors that support the development of low-grade inflammation. Increased levels of T helper 1 pro-inflammatory cytokines in the serum of OA patients may support granulysin (GNLY) mediated cytotoxicity, which in-turn may contribute to the pathogenesis of OA. In the present study, GNLY expression and cytotoxic/apoptotic mechanisms mediated by GNLY in the peripheral blood of OA patients were assessed. A total of 40 non-obese women (median age of 64 years old) with knee OA, and 40 controls (median age 62 years old) were enrolled in the study. GNLY, IFN-γ and IL-4 expression levels were investigated in peripheral blood lymphocytes (PBLs) using flow cytometry, immunocytochemistry and/or confocal microscopy. Natural killer (NK) GNLY-mediated apoptosis through NK effectors against K-562 targets was analyzed using the PKH-26 18-h cytotoxicity assay. Serum GNLY levels were assessed using ELISA. The percentage of GNLY+PBLs was higher in the OA patients than that in the controls due to the increase in the proportions of GNLY+ cells in the natural killer (NK), T and natural killer T (NKT) subsets. GNLY localization inside exocytotic lysosomal-associated membrane protein-1+ granules was ~40% in both groups. However, the intensity of GNLY labeling in PBLs was higher in OA patients than in the controls, and it was supported by the increased expression of IFN-γ relative to IL-4 in NK and T cells from OA patients. The serum GNLY concentration was <0.3 ng/ml in both groups. RC8 anti-GNLY mAb by itself was unable to significantly alter early apoptosis, whereas RC8 anti-GNLY mAb combined with anti-perforin mAb significantly reduced NK-mediated early apoptosis of K-562 targets in the OA patients, whilst not exerting a notable effect in the controls. Anti-perforin mAb by itself did not affect apoptosis significantly. These results suggest that in women with knee OA, GNLY expression in the PBL subsets and GNLY-mediated early apoptosis of K-562 targets are increased compared with the controls and accompanied by intracellular dominance of IFN-γ over IL-4 in NK cells.
Collapse
Affiliation(s)
- Vedrana Drvar
- Clinical Department of Laboratory Diagnostics, University Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia,Correspondence to: Dr Božena Ćurko-Cofek, Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Merica Aralica
- Clinical Department of Laboratory Diagnostics, University Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Marija Rogoznica
- Hospital for Medical Rehabilitation of Health and Lung Diseases and Rheumatism ‘Thalassotherapia-Opatija’, 51410 Opatija, Croatia
| | - Tatjana Kehler
- Hospital for Medical Rehabilitation of Health and Lung Diseases and Rheumatism ‘Thalassotherapia-Opatija’, 51410 Opatija, Croatia,Department of Medical Rehabilitation, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Dalen Legović
- Clinic for Orthopaedic Surgery Lovran, 51415 Lovran, Croatia
| | - Daniel Rukavina
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia,Department of Biomedical Sciences in Rijeka, Croatian Academy of Sciences and Arts, 51000 Rijeka, Croatia
| | - Gordana Laskarin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia,Hospital for Medical Rehabilitation of Health and Lung Diseases and Rheumatism ‘Thalassotherapia-Opatija’, 51410 Opatija, Croatia
| |
Collapse
|
5
|
Balle C, Gupta PM, Tharp GK, Nelson SA, Konstantinus IN, Lennard K, Jaumdally SZ, Happel AU, Barnabas SL, Gill K, Bekker LG, Passmore JAS, Jaspan HB, Bosinger SE. Systems Analysis Reveals Contraceptive-Induced Alteration of Cervicovaginal Gene Expression in a Randomized Trial. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:781687. [PMID: 36303659 PMCID: PMC9580795 DOI: 10.3389/frph.2022.781687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Hormonal contraceptives (HCs) are vital in managing the reproductive health of women. However, HC usage has been linked to perturbations in cervicovaginal immunity and increased risk of sexually transmitted infections. Here, we evaluated the impact of three HCs on the cervicovaginal environment using high-throughput transcriptomics. From 2015 to 2017, 130 adolescent females aged 15-19 years were enrolled into a substudy of UChoose, a single-site, open-label randomized, crossover trial (NCT02404038) and randomized to injectable norethisterone-enanthate (Net-En), combined oral contraceptives (COC), or etonorgesterol/ethinyl-estradiol-combined contraceptive vaginal ring (CCVR). Cervicovaginal samples were collected after 16 weeks of randomized HC use and analyzed by RNA-Seq, 16S rRNA gene sequencing, and Luminex analysis. Participants in the CCVR arm had a significant elevation of transcriptional networks driven by IL-6, IL-1, and NFKB, and lower expression of genes supporting epithelial barrier integrity. An integrated multivariate analysis demonstrated that networks of microbial dysbiosis and inflammation best discriminated the CCVR arm from the other contraceptive groups, while genes involved in epithelial cell differentiation were predictive of the Net-En and COC arms. Collectively, these data from a randomized trial represent the most comprehensive "omics" analyses of the cervicovaginal response to HCs and provide important mechanistic guidelines for the provision of HCs in sub-Saharan Africa.
Collapse
Affiliation(s)
- Christina Balle
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Prachi M. Gupta
- Yerkes Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Gregory K. Tharp
- Yerkes Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Sydney A. Nelson
- Yerkes Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Iyaloo N. Konstantinus
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Namibia Institute of Pathology, Windhoek, Namibia
| | - Katie Lennard
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Shameem Z. Jaumdally
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anna-Ursula Happel
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shaun L. Barnabas
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Desmond Tutu Health Centre, University of Cape Town, Cape Town, South Africa,Family Clinical Research Center, Stellenbosch University, Tygerberg, South Africa
| | - Katherine Gill
- Desmond Tutu Health Centre, University of Cape Town, Cape Town, South Africa
| | - Linda-Gail Bekker
- Desmond Tutu Health Centre, University of Cape Town, Cape Town, South Africa
| | - Jo-Ann S. Passmore
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,National Health Laboratory Service, Cape Town, South Africa
| | - Heather B. Jaspan
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States,Department of Pediatrics and Global Health, University of Washington, Seattle, WA, United States
| | - Steven E. Bosinger
- Yerkes Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, GA, United States,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States,Emory Vaccine Center, Emory University, Atlanta, GA, United States,*Correspondence: Steven E. Bosinger
| |
Collapse
|
6
|
Traxinger BR, Richert-Spuhler LE, Lund JM. Mucosal tissue regulatory T cells are integral in balancing immunity and tolerance at portals of antigen entry. Mucosal Immunol 2022; 15:398-407. [PMID: 34845322 PMCID: PMC8628059 DOI: 10.1038/s41385-021-00471-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023]
Abstract
Foxp3+ regulatory T cells (Tregs) are a subset of CD4+ T cells that exert suppressive control over other immune cells. Tregs are critical for preventing systemic autoimmunity and maintaining peripheral tolerance, and yet they also assist in orchestration of immunity to pathogenic insult, wherein they limit collateral immunopathology and assist in facilitating a fine balance between immune tolerance and effector activity. Tregs have been extensively studied in lymphoid tissues, and a growing body of work has characterized phenotypically distinct Tregs localized in various nonlymphoid tissue compartments. These tissue Tregs can perform location-specific, alternative functions, highlighting their dynamic, context-dependent roles. Tregs have also been identified in mucosal tissues where specialized physiological functions are paramount, including helping the host to respond appropriately to pathogenic versus innocuous antigens that are abundant at mucosal portals of antigen entry. As in other tissue Treg compartments, mucosal Tregs in the respiratory, gastrointestinal, and genitourinary tracts are distinct from circulating counterparts and can carry out mucosa-specific functions as well as classic suppressive functions that are the hallmark of Tregs. In this review, we summarize current knowledge regarding mucosal Tregs in both health and disease.
Collapse
Affiliation(s)
- Brianna R Traxinger
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Laura E Richert-Spuhler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer M Lund
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|