1
|
Patterson CM, Jolly EC, Burrows F, Ronan NJ, Lyster H. Conventional and Novel Approaches to Immunosuppression in Lung Transplantation. Clin Chest Med 2023; 44:121-136. [PMID: 36774159 DOI: 10.1016/j.ccm.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Most therapeutic advances in immunosuppression have occurred over the past few decades. Although modern strategies have been effective in reducing acute cellular rejection, excess immunosuppression comes at the price of toxicity, opportunistic infection, and malignancy. As our understanding of the immune system and allograft rejection becomes more nuanced, there is an opportunity to evolve immunosuppression protocols to optimize longer term outcomes while mitigating the deleterious effects of traditional protocols.
Collapse
Affiliation(s)
- Caroline M Patterson
- Transplant Continuing Care Unit, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Elaine C Jolly
- Division of Renal Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fay Burrows
- Department of Pharmacy, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Nicola J Ronan
- Transplant Continuing Care Unit, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Haifa Lyster
- Cardiothoracic Transplant Unit, Royal Brompton and Harefield Hospitals, Part of Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom; Kings College, London, United Kingdom; Pharmacy Department, Royal Brompton and Harefield Hospitals, Part of Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
2
|
Cottin V, Si-Mohamed S, Diesler R, Bonniaud P, Valenzuela C. Pleuroparenchymal fibroelastosis. Curr Opin Pulm Med 2022; 28:432-440. [PMID: 35855575 DOI: 10.1097/mcp.0000000000000907] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW Pleuroparenchymal fibroelastosis (PPFE) is a clinico-radiologic-pathologic interstitial lung disease (ILD) characterized by fibrosis that has upper lobe and subpleural predominance, involving both the visceral pleura and the subjacent subpleural lung parenchyma, and comprises dense fibroelastic changes with prominent elastosis of the alveolar walls together with fibrous thickening of the visceral pleura. The goal of this review is to summarize the state-of-the-art understanding in PPFE. RECENT FINDINGS PPFE was described in an increasing number of conditions. The course of disease is heterogeneous. Idiopathic PPFE, cases associated with telomerase-related gene mutations, cases related to a history of chemotherapy, and cases combining PPFE with a pattern of usual interstitial pneumonia, may have a particularly poor prognosis. Well-conducted retrospective studies identified marked PPFE features in approximately 10% of patients with idiopathic pulmonary fibrosis, 11% of patients with systemic sclerosis-associated ILD, 6.5% of patients with rheumatoid arthritis-associated ILD, and 23% of patients with hypersensitivity pneumonitis. Drug therapy has not been evaluated prospectively. A small retrospective study suggests that nintedanib may slow disease progression. However, whether the efficacy of antifibrotics is comparable in PPFE and in other forms of progressive pulmonary fibrosis warrants further evaluation. SUMMARY Accumulating data indicate that PPFE features are associated with poor prognosis in fibrosing ILDs. Further research on the management of PPFE is warranted.
Collapse
Affiliation(s)
- Vincent Cottin
- Department of Respiratory Medicine, National Reference Centre for Rare Pulmonary Diseases
| | - Salim Si-Mohamed
- Department of Thoracic Imaging, Louis Pradel Hospital, Hospices Civils de Lyon, UMR 754, Claude Bernard University Lyon 1, Lyon
| | - Rémi Diesler
- Department of Respiratory Medicine, National Reference Centre for Rare Pulmonary Diseases
| | - Philippe Bonniaud
- Constitutive Reference Center for Rare Pulmonary Diseases, Department of Pulmonary Medicine and Intensive Care Unit, Inserm U1231, University of Bourgogne-Franche Comté, Dijon, France
| | - Claudia Valenzuela
- Department of Respiratory Medicine, Hospital universitario de la Princesa, Universitad autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Matthaiou EI, Sharifi H, O'Donnell C, Chiu W, Owyang C, Chatterjee P, Turk I, Johnston L, Brondstetter T, Morris K, Cheng GS, Hsu JL. The safety and tolerability of pirfenidone for bronchiolitis obliterans syndrome after hematopoietic cell transplant (STOP-BOS) trial. Bone Marrow Transplant 2022; 57:1319-1326. [PMID: 35641662 PMCID: PMC9357121 DOI: 10.1038/s41409-022-01716-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/03/2023]
Abstract
Bronchiolitis obliterans syndrome (BOS) is the most morbid form of chronic graft-versus-host disease (cGVHD) after hematopoietic cell transplantation (HCT). Progressive airway fibrosis leads to a 5-year survival of 40%. Treatment options for BOS are limited. A single arm, 52-week, Phase I study of pirfenidone was conducted. The primary outcome was tolerability defined as maintaining the recommended dose of pirfenidone (2403 mg/day) without a dose reduction totaling more than 21 days, due to adverse events (AEs) or severe AEs (SAEs). Secondary outcomes included pulmonary function tests (PFTs) and patient reported outcomes (PROs). Among 22 participants treated for 1 year, 13 (59%) tolerated the recommended dose, with an average daily tolerated dose of 2325.6 mg/day. Twenty-two SAEs were observed, with 90.9% related to infections, none were attributed to pirfenidone. There was an increase in the average percent predicted forced expiratory volume in 1 s (FEV1%) of 7 percentage points annually and improvements in PROs related to symptoms of cGVHD. In this Phase I study, treatment with pirfenidone was safe. The stabilization in PFTs and improvements in PROs suggest the potential of pirfenidone for BOS treatment and support the value of a randomized controlled trial to evaluate the efficacy of pirfenidone in BOS after HCT. The study is registered in ClinicalTrials.gov (NCT03315741).
Collapse
Affiliation(s)
- Efthymia Iliana Matthaiou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Husham Sharifi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian O'Donnell
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wayland Chiu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Clark Owyang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, USA
| | - Paulami Chatterjee
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ihsan Turk
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Johnston
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Theresa Brondstetter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Karen Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Guang-Shing Cheng
- Clinical Research Division, Section of Pulmonary and Critical Care, Fred Hutchinson Cancer Research Center, Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Joe L Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Abstract
Chronic lung allograft dysfunction (CLAD) is a syndrome of progressive lung function decline, subcategorized into obstructive, restrictive, and mixed phenotypes. The trajectory of CLAD is variable depending on the phenotype, with restrictive and mixed phenotypes having more rapid progression and lower survival. The mechanisms driving CLAD development remain unclear, though allograft injury during primary graft dysfunction, acute cellular rejection, antibody-mediated rejection, and infections trigger immune responses with long-lasting effects that can lead to CLAD months or years later. Currently, retransplantation is the only effective treatment.
Collapse
Affiliation(s)
- Aida Venado
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, 505 Parnassus Ave, M1093A, San Francisco, CA 94143-2204, USA.
| | - Jasleen Kukreja
- Division of Cardiothoracic Surgery, Univeristy of California, San Francisco, 500 Parnassus Ave, MU 405W Suite 305, San Francisco, CA 94143, USA
| | - John R Greenland
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, SF VAHCS Building 2, Room 453 (Mail stop 111D), 4150 Clement St, San Francisco CA 94121, USA
| |
Collapse
|
5
|
Immunosuppression in Lung Transplantation. Handb Exp Pharmacol 2021; 272:139-164. [PMID: 34796380 DOI: 10.1007/164_2021_548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunosuppression in lung transplantation is an area devoid of robust clinical data. This chapter will review the history of immunosuppression in lung transplantation. Additionally, it will evaluate the three classes of induction, maintenance, and rescue immunosuppression in detail. Induction immunosuppression in lung transplantation aims to decrease incidence of lung allograft rejection, however infectious risk must be considered when determining if induction is appropriate and which agent is most favorable. Similar to other solid organ transplant patient populations, a multi-drug approach is commonly prescribed for maintenance immunosuppression to minimize single agent drug toxicities. Emphasis of this review is placed on key medication considerations including dosing, adverse effects, and drug interactions. Clinical considerations will be reviewed per drug class given available literature. Finally, acute cellular, antibody mediated, and chronic rejection are reviewed.
Collapse
|
6
|
Mori Y, Yamano Y, Kataoka K, Yokoyama T, Matsuda T, Kimura T, Ogawa T, Watanabe F, Kondoh Y. Pulmonary rehabilitation for idiopathic pleuroparenchymal fibroelastosis: A retrospective study on its efficacy, feasibility, and safety. Respir Investig 2021; 59:849-858. [PMID: 34561207 DOI: 10.1016/j.resinv.2021.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The beneficial effects of pulmonary rehabilitation (PR) for patients with idiopathic pleuroparenchymal fibroelastosis (IPPFE) remain unknown. This study aimed to examine the efficacy, feasibility, and safety of PR for IPPFE. METHODS We retrospectively investigated 25 patients with IPPFE referred for PR between April 2007 and March 2017. The PR mainly consisted of a 10-week exercise training program. The primary outcome was a change in 6-min walk distance (6MWD). Secondary outcomes included changes in dyspnea (transition dyspnea index [TDI]), anxiety and depression (hospital anxiety and depression scale [HADS]), and health-related quality of life (HRQoL) (St George's respiratory questionnaire [SGRQ]). RESULTS Thirteen patients participated in the PR program (PRP). Recurrent pneumothorax was the most common reason for patients not participating in the PRP. Four patients discontinued the PRP due to the recurrence of pneumothorax, new onset of pneumomediastinum, stroke, and another reason, respectively. Nine patients completed the PRP. Significant improvement was observed in 6MWD (median [interquartile range], 90 m [55-116 m]; P = 0.033). Clinically important improvements in the 6MWD, and TDI, HADS-anxiety, HADS-depression, and SGRQ total domain scores were observed in seven (78%), five (56%), four (44%), four (44%), and five (56%) of the nine patients, respectively. CONCLUSIONS Patients with IPPFE benefited from PR in terms of exercise capacity, dyspnea, anxiety, depression, and HRQoL. Pneumothorax and pneumomediastinum may impede the implementation of a PRP for patients with IPPFE. While careful patient selection is required, PR may be an efficacious non-pharmacological approach for managing disabilities in patients with IPPFE.
Collapse
Affiliation(s)
- Yuta Mori
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan; Department of Respiratory Medicine, Ogaki Municipal Hospital, 4-86 Minaminokawa-cho, Ogaki, Gifu, 503-8502, Japan
| | - Yasuhiko Yamano
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Kensuke Kataoka
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Toshiki Yokoyama
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Toshiaki Matsuda
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Tomoki Kimura
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Tomoya Ogawa
- Department of Rehabilitation, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Fumiko Watanabe
- Department of Rehabilitation, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan.
| |
Collapse
|
7
|
Bos S, De Sadeleer LJ, Vanstapel A, Beeckmans H, Sacreas A, Yserbyt J, Wuyts WA, Vos R. Antifibrotic drugs in lung transplantation and chronic lung allograft dysfunction: a review. Eur Respir Rev 2021; 30:30/160/210050. [PMID: 34415849 DOI: 10.1183/16000617.0050-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
This review aims to provide an overview of pre-transplant antifibrotic therapy on peri-transplant outcomes and to address the possible role of antifibrotics in lung transplant recipients with chronic lung allograft dysfunction.Lung transplantation is an established treatment modality for patients with various end-stage lung diseases, of which idiopathic pulmonary fibrosis and other progressive fibrosing interstitial lung diseases are growing indications. Theoretically, widespread use of antifibrotics prior to lung transplantation may increase the risk of bronchial anastomotic complications and impaired wound healing.Long-term graft and patient survival are still hampered by development of chronic lung allograft dysfunction, on which antifibrotics may have a beneficial impact.Antifibrotics until the moment of lung transplantation proved to be safe, without increasing peri-transplant complications. Currently, best practice is to continue antifibrotics until time of transplantation. In a large multicentre randomised trial, pirfenidone did not appear to have a beneficial effect on lung function decline in established bronchiolitis obliterans syndrome. The results of antifibrotic therapy in restrictive allograft syndrome are eagerly awaited, but nonrandomised data from small case reports/series are promising.
Collapse
Affiliation(s)
- Saskia Bos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J De Sadeleer
- Dept of Respiratory Diseases, Ziekenhuis Oost-Limburg, Genk, Belgium.,Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Hanne Beeckmans
- Dept of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Wim A Wuyts
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Robin Vos
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Abstract
Interstitial fibrosis with tubule atrophy (IF/TA) is the response to virtually any sustained kidney injury and correlates inversely with kidney function and allograft survival. IF/TA is driven by various pathways that include hypoxia, renin-angiotensin-aldosterone system, transforming growth factor (TGF)-β signaling, cellular rejection, inflammation and others. In this review we will focus on key pathways in the progress of renal fibrosis, diagnosis and therapy of allograft fibrosis. This review discusses the role and origin of myofibroblasts as matrix producing cells and therapeutic targets in renal fibrosis with a particular focus on renal allografts. We summarize current trends to use multi-omic approaches to identify new biomarkers for IF/TA detection and to predict allograft survival. Furthermore, we review current imaging strategies that might help to identify and follow-up IF/TA complementary or as alternative to invasive biopsies. We further discuss current clinical trials and therapeutic strategies to treat kidney fibrosis.Supplemental Visual Abstract; http://links.lww.com/TP/C141.
Collapse
|
9
|
Bennett D, Lanzarone N, Fossi A, Perillo F, De Vita E, Luzzi L, Paladini P, Bargagli E, Sestini P, Rottoli P. Pirfenidone in chronic lung allograft dysfunction: a single cohort study. Panminerva Med 2020; 62. [DOI: 10.23736/s0031-0808.19.03840-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
10
|
Tian D, Huang H, Wen HY. Noninvasive methods for detection of chronic lung allograft dysfunction in lung transplantation. Transplant Rev (Orlando) 2020; 34:100547. [PMID: 32498976 DOI: 10.1016/j.trre.2020.100547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/15/2020] [Accepted: 04/16/2020] [Indexed: 02/05/2023]
Abstract
Lung transplantation (LTx) is the only therapeutic option for end-stage lung diseases. Chronic lung allograft dysfunction (CLAD), which manifests as airflow restriction and/or obstruction, is the primary factor limiting the long-term survival of patients after surgery. According to histopathological and radiographic findings, CLAD comprises two phenotypes, bronchiolitis obliterans syndrome and restrictive allograft syndrome. Half of all lung recipients will develop CLAD in 5 years, and this rate may increase up to 75% 10 years after surgery owing to the paucity in accurate and effective early detection and treatment methods. Recently, many studies have presented noninvasive methods for detecting CLAD and improving diagnosis and intervention. However, the significance of accurately detecting CLAD remains controversial. We reviewed published studies that have presented noninvasive methods for detecting CLAD to highlight the current knowledge on clinical symptoms, spirometry, imaging examinations, and other methods to detect the disease.
Collapse
Affiliation(s)
- Dong Tian
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Department of Thoracic Surgery, West China Hospital, West China Hospital, Sichuan University, Chengdu, China.
| | - Heng Huang
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hong-Ying Wen
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
11
|
Pluchart H, Chanoine S, Briault A, Claustre J, Bedouch P. Restrictive allograft dysfunction after lung transplantation: is there a place for nintedanib?—a case report. Fundam Clin Pharmacol 2020; 34:408-411. [DOI: 10.1111/fcp.12522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Hélène Pluchart
- Pôle pharmacie Centre Hospitalier Universitaire Grenoble Alpes F-38000 Grenoble France
- Université Grenoble Alpes F-38000 Grenoble France
- CNRS, TIMC‐IMAG UMR 5525, ThEMAS F-38000 Grenoble France
| | - Sébastien Chanoine
- Pôle pharmacie Centre Hospitalier Universitaire Grenoble Alpes F-38000 Grenoble France
- Université Grenoble Alpes F-38000 Grenoble France
- CNRS, TIMC‐IMAG UMR 5525, ThEMAS F-38000 Grenoble France
| | - Amandine Briault
- Service Hospitalier Universitaire de Pneumologie Pôle Thorax et Vaisseaux, Centre Hospitalier Universitaire Grenoble Alpes F-38000 Grenoble France
| | - Johanna Claustre
- Université Grenoble Alpes F-38000 Grenoble France
- Service Hospitalier Universitaire de Pneumologie Pôle Thorax et Vaisseaux, Centre Hospitalier Universitaire Grenoble Alpes F-38000 Grenoble France
| | - Pierrick Bedouch
- Pôle pharmacie Centre Hospitalier Universitaire Grenoble Alpes F-38000 Grenoble France
- Université Grenoble Alpes F-38000 Grenoble France
- CNRS, TIMC‐IMAG UMR 5525, ThEMAS F-38000 Grenoble France
| |
Collapse
|
12
|
Chua F, Desai SR, Nicholson AG, Devaraj A, Renzoni E, Rice A, Wells AU. Pleuroparenchymal Fibroelastosis. A Review of Clinical, Radiological, and Pathological Characteristics. Ann Am Thorac Soc 2019; 16:1351-1359. [PMID: 31425665 PMCID: PMC6945468 DOI: 10.1513/annalsats.201902-181cme] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pleuroparenchymal fibroelastosis (PPFE) is an unusual pulmonary disease with unique clinical, radiological, and pathological characteristics. Designated a rare idiopathic interstitial pneumonia in 2013, its name refers to a combination of fibrosis involving the visceral pleura and fibroelastotic changes predominating in the subpleural lung parenchyma. Although a number of disease associations have been described, no single cause of PPFE has been unequivocally identified. A diagnosis of PPFE is most commonly achieved by identifying characteristic abnormalities on computed tomographic scans. The earliest changes are consistently located in the upper lobes close to the lung apices, the same locations where subsequent disease progression is also most conspicuous. When sufficiently severe, the disease leads to progressive volume loss of the upper lobes, which, in combination with decreased body mass, produces platythorax. Once regarded as a slowly progressing entity, it is now acknowledged that some patients with PPFE follow an inexorably progressive course that culminates in irreversible respiratory failure and early death. In the absence of effective medical drug treatment, lung transplant remains the only therapeutic option for this disorder. This review focuses on improving early disease recognition and evaluating its pathophysiological impact and discusses working approaches for its management.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandra Rice
- Department of Pathology, Royal Brompton Hospital, London, United Kingdom
| | | |
Collapse
|
13
|
Abstract
Lung transplantation is an accepted therapeutic option for end-stage lung diseases. Its history starts in the 1940s, initially hampered by early deaths due to perioperative problems and acute rejection. Improvement of surgical techniques and the introduction of immunosuppressive drugs resulted in longer survival. Chronic lung allograft dysfunction (CLAD), a new complication appeared and remains the most serious complication today. CLAD, the main reason why survival after lung transplantation is impaired compared to other solid-organ transplantations is characterized by a gradually increasing shortness of breath, reflected in a deterioration of pulmonary function status, respiratory insufficiency and possibly death.
Collapse
|
14
|
Qiu ZZ, He JM, Zhang HX, Yu ZH, Zhang ZW, Zhou H. Renoprotective effects of pirfenidone on chronic renal allograft dysfunction by reducing renal interstitial fibrosis in a rat model. Life Sci 2019; 233:116666. [PMID: 31325427 DOI: 10.1016/j.lfs.2019.116666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/24/2023]
Abstract
AIM Pirfenidone (PFD) has been used as medication for idiopathic pulmonary fibrosis due to its ability in reducing lung fibrosis. However, the underlying mode of action in renal fibrosis during chronic renal allograft dysfunction (CRAD) requires further investigation. Therefore, the present study was conducted to explore the effects of PFD on renal injury induced by CRAD. MAIN METHODS Initially, the CRAD rat model was established, followed by the intragastric administration of PFD to the rats. Urine and blood samples were collected and tested against indicators of renal functions. The renal tissues were microscopically observed to determine the changes in pathological morphology. The anti-inflammatory, anti-fibrotic and anti-oxidant properties of PFD were explored in the setting of CRAD. KEY FINDINGS The success rate of model establishment was 92.31%, which was reflected by weight loss, appetite loss, faded fur, and retarded reaction, with the symptoms found to exacerbate with time. PFD treatment could improve renal function, ameliorate inflammation and renal fibrosis as well as promote the anti-oxidant ability of renal allograft, indicating its potential role as an effective therapeutic agent for CRAD. SIGNIFICANCE In conclusion, PFD was found to have renoprotective effects on renal injury induced by CRAD, which resulted in the alleviation of inflammation and renal fibrosis, providing novelty for CRAD clinical treatment.
Collapse
Affiliation(s)
- Zhen-Zhen Qiu
- Department of Physical Education, Minjiang University, Fuzhou 350108, PR China
| | - Ji-Ming He
- Department of Urology, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine (The People's Hospital of Fujian Province), Fuzhou 350004, PR China
| | - Hao-Xiang Zhang
- Department of Gastroenterology, General Hospital of Tibet Military Region PLA, Lhasa 850003, PR China
| | - Zuo-Hua Yu
- Department of Urology, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine (The People's Hospital of Fujian Province), Fuzhou 350004, PR China
| | - Zhi-Wei Zhang
- Department of Research, Beijing Zhong Jian Dong Ke Company, Beijing 100176, PR China
| | - Hao Zhou
- Department of Urology, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine (The People's Hospital of Fujian Province), Fuzhou 350004, PR China.
| |
Collapse
|
15
|
Bondeelle L, Gras J, Michonneau D, Houdouin V, Hermet E, Blin N, Nicolini F, Michallet M, Dominique S, Huynh A, Leroy S, Socié G, Thabut G, Reynaud-Gaubert M, Tazi A, Bergeron A. Pleuroparenchymal fibroelastosis after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2019; 55:982-986. [PMID: 31413312 DOI: 10.1038/s41409-019-0636-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/16/2019] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Louise Bondeelle
- Univ Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Saint-Louis, Service de Pneumologie, F-75010, Paris, France
| | - Julien Gras
- Univ Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Saint-Louis, Service de Pneumologie, F-75010, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Saint-Louis, Service de Maladies infectieuses, F-75010, Paris, France
| | - David Michonneau
- Univ Paris Diderot, Sorbonne Paris Cité AP-HP, Hôpital Saint-Louis, Service d'Hématologie-Greffe, F-75010, Paris, France
| | - Véronique Houdouin
- Univ Paris Diderot, Sorbonne Paris Cité AP-HP, Hôpital Robert Debré, Service de Pédiatrie, F-75010, Paris, France
| | - Eric Hermet
- Service de thérapie cellulaire et d'hématologie clinique adulte, Université d'Auvergne EA3846, CIC-501, CHU Clermont-Ferrand Hôpital Estaing, Clermont-Ferrand, France
| | - Nicolas Blin
- Service d'Hématologie, CHU Nantes, Nantes, France
| | | | | | - Stéphane Dominique
- Service de Pneumologie, CHU Caen, Avenue Côte de Nacre, 14000, Caen, France
| | - Anne Huynh
- Secteur de greffe, CHU-Oncopole, Toulouse, France
| | - Sylvie Leroy
- Univ Côte d'Azur, CHU Nice, Department of Pulmonary Medicine, FHU OncoAge, Nice, France
| | - Gérard Socié
- Univ Paris Diderot, Sorbonne Paris Cité AP-HP, Hôpital Saint-Louis, Service d'Hématologie-Greffe, F-75010, Paris, France
| | - Gabriel Thabut
- Univ Paris Diderot, Sorbonne Paris Cité, Service de Pneumologie, Transplantation pulmonaire, Hôpital Bichat, 46 Rue Henri Huchard, 75877, Paris, France
| | - Martine Reynaud-Gaubert
- Service de Pneumologie, maladies respiratoires rares, mucoviscidose; CHU de Marseille - Hôpital Nord, Chemin des Bourrely, 13915, Marseille, Cedex 20, France
| | - Abdellatif Tazi
- Univ Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Saint-Louis, Service de Pneumologie, F-75010, Paris, France.,UMR 1153 CRESS, Biostatistics and Clinical Epidemiology Research Team, F-75010, Paris, France
| | - Anne Bergeron
- Univ Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Saint-Louis, Service de Pneumologie, F-75010, Paris, France. .,UMR 1153 CRESS, Biostatistics and Clinical Epidemiology Research Team, F-75010, Paris, France.
| |
Collapse
|
16
|
Diagnosis, Pathophysiology and Experimental Models of Chronic Lung Allograft Rejection. Transplantation 2019; 102:1459-1466. [PMID: 29683998 DOI: 10.1097/tp.0000000000002250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic rejection is the Achilles heel of modern lung transplantation, characterized by a slow, progressive decline in allograft function. Clinically, this manifests as obstructive disease, restrictive disease, or a mixture of the 2 depending on the underlying pathology. The 2 major phenotypes of chronic rejection include bronchiolitis obliterans syndrome and restrictive allograft syndrome. The last decade of research has revealed that each of these phenotypes has a unique underlying pathophysiology which may require a distinct treatment regimen for optimal control. Insights into the intricate alloimmune pathways contributing to chronic rejection have been gained from both large and small animal models, suggesting directions for future research. In this review, we explore the pathological hallmarks of chronic rejection, recent insights gained from both clinical and basic science research, and the current state of animal models of chronic lung rejection.
Collapse
|
17
|
Chronic lung allograft dysfunction: Definition, diagnostic criteria, and approaches to treatment-A consensus report from the Pulmonary Council of the ISHLT. J Heart Lung Transplant 2019; 38:493-503. [PMID: 30962148 DOI: 10.1016/j.healun.2019.03.009] [Citation(s) in RCA: 513] [Impact Index Per Article: 102.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
|
18
|
Glanville AR, Verleden GM, Todd JL, Benden C, Calabrese F, Gottlieb J, Hachem RR, Levine D, Meloni F, Palmer SM, Roman A, Sato M, Singer LG, Tokman S, Verleden SE, von der Thüsen J, Vos R, Snell G. Chronic lung allograft dysfunction: Definition and update of restrictive allograft syndrome-A consensus report from the Pulmonary Council of the ISHLT. J Heart Lung Transplant 2019; 38:483-492. [PMID: 31027539 DOI: 10.1016/j.healun.2019.03.008] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Allan R Glanville
- Lung Transplant Unit, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | | | - Jamie L Todd
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | | | - Fiorella Calabrese
- Department of Cardiothoracic and Vascular Sciences, University of Padova Medical School, Padova, Italy
| | - Jens Gottlieb
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center for Lung Research, Hannover, Germany
| | - Ramsey R Hachem
- Division of Pulmonary & Critical Care, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Deborah Levine
- Pulmonary Disease and Critical Care Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Federica Meloni
- Department of Respiratory Diseases Policlinico San Matteo Foundation & University of Pavia, Pavia, Italy
| | - Scott M Palmer
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Antonio Roman
- Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Masaaki Sato
- Department of Thoracic Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Lianne G Singer
- Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sofya Tokman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | - Jan von der Thüsen
- Department of Pathology, University Medical Center, Rotterdam, The Netherlands
| | - Robin Vos
- University Hospital Gasthuisberg, Leuven, Belgium
| | - Gregory Snell
- Lung Transplant Service, The Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Role of 18F-FDG PET/CT in Restrictive Allograft Syndrome After Lung Transplantation. Transplantation 2019; 103:823-831. [DOI: 10.1097/tp.0000000000002393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Validation of a post-transplant chronic lung allograft dysfunction classification system. J Heart Lung Transplant 2019; 38:166-173. [DOI: 10.1016/j.healun.2018.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/25/2023] Open
|
21
|
Vos R, Wuyts WA, Gheysens O, Goffin KE, Schaevers V, Verleden SE, Van Herck A, Sacreas A, Heigl T, McDonough JE, Yserbyt J, Godinas L, Dupont LJ, Neyrinck AP, Van Raemdonck DE, Verbeken EK, Vanaudenaerde BM, Verleden GM. Pirfenidone in restrictive allograft syndrome after lung transplantation: A case series. Am J Transplant 2018; 18:3045-3059. [PMID: 30019840 DOI: 10.1111/ajt.15019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/25/2023]
Abstract
Pirfenidone may attenuate the decline of pulmonary function in restrictive allograft syndrome (RAS) after lung transplantation. We retrospectively assessed all lung transplant recipients with RAS who were treated with pirfenidone for at least 3 months (n = 11) in our lung transplant center and report on their long-term outcomes following initiation of pirfenidone. Main outcome parameters included evolution of pulmonary function and overall survival. Pirfenidone appears to attenuate the decline in forced vital capacity and forced expiratory volume in 1 second. Notably, 3 patients were bridged to redo-transplantation with pirfenidone for 11 (5-12) months and are currently alive, while 3 other patients demonstrate long-term stabilization of pulmonary function after 26.6 (range 18.4-46.6) months of treatment. Median overall 3-year survival after RAS diagnosis was 54.5%. Subjective intolerance, mainly anorexia and nausea, necessitating pirfenidone dose de-escalation in 55% of patients, as well as calcineurin dose increase requirements with about 20% are important complications during pirfenidone treatment after lung transplantation. Our findings provide further evidence that pirfenidone appears to be safe and may attenuate the rate of decline in lung function in patients with RAS, but the actual clinical benefit cannot be assessed in the context of this study design and requires further investigation in a larger randomized trial.
Collapse
Affiliation(s)
- Robin Vos
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), Division of Respiratory Diseases, KU Leuven, Leuven, Belgium
| | - Wim A Wuyts
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), Division of Respiratory Diseases, KU Leuven, Leuven, Belgium
| | - Olivier Gheysens
- Department of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Karolien E Goffin
- Department of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Veronique Schaevers
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Stijn E Verleden
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Anke Van Herck
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Annelore Sacreas
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Tobias Heigl
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - John E McDonough
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), Division of Respiratory Diseases, KU Leuven, Leuven, Belgium
| | - Laurent Godinas
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), Division of Respiratory Diseases, KU Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), Division of Respiratory Diseases, KU Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Bart M Vanaudenaerde
- Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), Division of Respiratory Diseases, KU Leuven, Leuven, Belgium
| | - Geert M Verleden
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), Division of Respiratory Diseases, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Parker WF, Bag R. Chronic Lung Allograft Dysfunction. CURRENT PULMONOLOGY REPORTS 2018. [DOI: 10.1007/s13665-018-0208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
|
24
|
Abstract
Chronic lung allograft dysfunction (CLAD) is the major limitation to posttransplant survival. This review highlights the evolving definition of CLAD, risk factors, treatment, and expected outcomes after the development of CLAD.
Collapse
|
25
|
Boerner EB, Costabel U, Wessendorf TE, Theegarten D, Bonella F. Idiopathic pleuroparenchymal fibroelastosis (PPFE) - A case study of a rare entity. REVISTA PORTUGUESA DE PNEUMOLOGIA 2017; 23:352-355. [PMID: 28780989 DOI: 10.1016/j.rppnen.2017.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/25/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
Idiopathic pleuroparenchymal fibroelastosis (IPPFE) was recognized as a rare new entity. We report the case of a 63 years old female suffering from progressive dyspnea and dry cough for three years. Two years before admission to our hospital, idiopathic pulmonary fibrosis (IPF) was diagnosed in another hospital and treatment with prednisolone and N-acetylcysteine (NAC) was commenced. At admission HRCT showed upper lobe dominant fibrosis and associated pleural thickening. Surgical biopsies were re-evaluated and revealed fibroelastosis with pleural thickening and a probable UIP pattern, consistent with idiopathic PPFE. Treatment with pirfenidone was initiated due to progression under prednisolone and NAC. Upper lobe predominant pleural thickening with associated subpleural fibrotic changes should raise suspicion of PPFE.
Collapse
Affiliation(s)
- E B Boerner
- Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University Hospital, University of Duisburg, Essen, Germany.
| | - U Costabel
- Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University Hospital, University of Duisburg, Essen, Germany
| | - T E Wessendorf
- Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University Hospital, University of Duisburg, Essen, Germany
| | - D Theegarten
- Department of Pathology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - F Bonella
- Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University Hospital, University of Duisburg, Essen, Germany
| |
Collapse
|
26
|
Verleden SE, Vos R, Vanaudenaerde BM, Verleden GM. Chronic lung allograft dysfunction phenotypes and treatment. J Thorac Dis 2017; 9:2650-2659. [PMID: 28932572 DOI: 10.21037/jtd.2017.07.81] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) remains a major hurdle limiting long-term survival post lung transplantation. Given the clinical heterogeneity of CLAD, recently two phenotypes of CLAD have been defined [bronchiolitis obliterans syndrome (BOS) vs. restrictive allograft syndrome (RAS) or restrictive CLAD (rCLAD)]. BOS is characterized by an obstructive pulmonary function, air trapping on CT and obliterative bronchiolitis (OB) on histopathology, while RAS/rCLAD patients show a restrictive pulmonary function, persistent pleuro-parenchymal infiltrates on CT and pleuroparenchymal fibro-elastosis on biopsies. Importantly, the patients with RAS/rCLAD have a severely limited survival post diagnosis of 6-18 months compared to 3-5 years after BOS diagnosis. In this review, we will review historical evidence for this heterogeneity and we will highlight the clinical, radiological, histopathological characteristics of both phenotypes, as well as their risk factors. Treatment of CLAD remains troublesome, nevertheless, we will give an overview of different treatment strategies that have been tried with some success. Adequate phenotyping remains difficult but is clearly needed for both clinical and scientific purposes.
Collapse
Affiliation(s)
- Stijn E Verleden
- Department of Clinical and Experimental Medicine, Lung Transplant Unit, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Clinical and Experimental Medicine, Lung Transplant Unit, KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Department of Clinical and Experimental Medicine, Lung Transplant Unit, KU Leuven, Leuven, Belgium
| | - Geert M Verleden
- Department of Clinical and Experimental Medicine, Lung Transplant Unit, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Kneidinger N, Milger K, Janitza S, Ceelen F, Leuschner G, Dinkel J, Königshoff M, Weig T, Schramm R, Winter H, Behr J, Neurohr C. Lung volumes predict survival in patients with chronic lung allograft dysfunction. Eur Respir J 2017; 49:49/4/1601315. [DOI: 10.1183/13993003.01315-2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Identification of disease phenotypes might improve the understanding of patients with chronic lung allograft dysfunction (CLAD). The aim of the study was to assess the impact of pulmonary restriction and air trapping by lung volume measurements at the onset of CLAD.A total of 396 bilateral lung transplant recipients were analysed. At onset, CLAD was further categorised based on plethysmography. A restrictive CLAD (R-CLAD) was defined as a loss of total lung capacity from baseline. CLAD with air trapping (AT-CLAD) was defined as an increased ratio of residual volume to total lung capacity. Outcome was survival after CLAD onset. Patients with insufficient clinical information were excluded (n=95).Of 301 lung transplant recipients, 94 (31.2%) developed CLAD. Patients with R-CLAD (n=20) and AT-CLAD (n=21), respectively, had a significantly worse survival (p<0.001) than patients with non-R/AT-CLAD. Both R-CLAD and AT-CLAD were associated with increased mortality when controlling for multiple confounding variables (hazard ratio (HR) 3.57, 95% CI 1.39–9.18; p=0.008; and HR 2.65, 95% CI 1.05–6.68; p=0.039). Furthermore, measurement of lung volumes was useful to identify patients with combined phenotypes.Measurement of lung volumes in the long-term follow-up of lung transplant recipients allows the identification of patients who are at risk for worse outcome and warrant special consideration.
Collapse
|
28
|
Restrictive allograft syndrome after lung transplantation: new radiological insights. Eur Radiol 2016; 27:2810-2817. [DOI: 10.1007/s00330-016-4643-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/31/2016] [Accepted: 10/10/2016] [Indexed: 01/16/2023]
|
29
|
Affiliation(s)
- Song Yee Kim
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Gauthier JM, Hachem RR, Kreisel D. Update on Chronic Lung Allograft Dysfunction. CURRENT TRANSPLANTATION REPORTS 2016; 3:185-191. [PMID: 28090432 DOI: 10.1007/s40472-016-0112-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic lung allograft dysfunction (CLAD) encompasses a range of pathologies that cause a transplanted lung to not achieve or maintain normal function. CLAD manifests as airflow restriction and/or obstruction and is predominantly a result of chronic rejection. Three distinct phenotypes of chronic rejection are now recognized: bronchiolitis obliterans, neutrophilic reversible allograft dysfunction, and restrictive allograft syndrome. Recent investigations have revealed that each phenotype has a unique pathology and histopathological findings, suggesting that treatment regimens should be tailored to the underlying etiology. CLAD is poorly responsive to treatment once diagnosed, and therefore the prevention of the factors that predispose a patient to develop CLAD is critically important. Small and large animal models have contributed significantly to our understanding of CLAD and more studies are needed to develop treatment regimens that are effective in humans.
Collapse
Affiliation(s)
- Jason M Gauthier
- Department of Surgery, Washington University in St. Louis, Saint Louis, MO
| | - Ramsey R Hachem
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University in St. Louis, Saint Louis, MO ; Department of Pathology & Immunology, Washington University in St. Louis, Saint Louis, MO
| |
Collapse
|
31
|
Verleden GM, Vos R, Vanaudenaerde B, Dupont L, Yserbyt J, Van Raemdonck D, Verleden S. Current views on chronic rejection after lung transplantation. Transpl Int 2015; 28:1131-9. [PMID: 25857869 DOI: 10.1111/tri.12579] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/28/2015] [Accepted: 04/07/2015] [Indexed: 01/01/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) was recently introduced as an overarching term mainly to classify patients with chronic rejection after lung transplantation, although other conditions may also qualify for CLAD. Initially, only the development of a persistent and obstructive pulmonary function defect, clinically identified as bronchiolitis obliterans syndrome (BOS), was considered as chronic rejection, if no other cause could be identified. It became clear in recent years that some patients do not qualify for this definition, although they developed a chronic and persistent decrease in FEV1 , without another identifiable cause. As the pulmonary function decline in these patients was rather restrictive, this was called restrictive allograft syndrome (RAS). In the present review, we will further elaborate on these two CLAD phenotypes, with specific attention to the diagnostic criteria, the role of pathology and imaging, the risk factors, outcome, and the possible treatment options.
Collapse
Affiliation(s)
- Geert M Verleden
- Department of Clinical and Experimental Medicine, Laboratory for Respiratory Diseases, Lung Transplantation Unit, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Clinical and Experimental Medicine, Laboratory for Respiratory Diseases, Lung Transplantation Unit, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Department of Clinical and Experimental Medicine, Laboratory for Respiratory Diseases, Lung Transplantation Unit, KU Leuven - University of Leuven, Leuven, Belgium
| | - Lieven Dupont
- Department of Clinical and Experimental Medicine, Laboratory for Respiratory Diseases, Lung Transplantation Unit, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | | | - Stijn Verleden
- Department of Clinical and Experimental Medicine, Laboratory for Respiratory Diseases, Lung Transplantation Unit, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Salvadori M, Bertoni E. What's new in clinical solid organ transplantation by 2013. World J Transplant 2014; 4:243-66. [PMID: 25540734 PMCID: PMC4274595 DOI: 10.5500/wjt.v4.i4.243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/11/2014] [Accepted: 07/27/2014] [Indexed: 02/05/2023] Open
Abstract
Innovative and exciting advances in the clinical science in solid organ transplantation continuously realize as the results of studies, clinical trials, international conferences, consensus conferences, new technologies and discoveries. This review will address to the full spectrum of news in transplantation, that verified by 2013. The key areas covered are the transplantation activity, with particular regards to the donors, the news for solid organs such as kidney, pancreas, liver, heart and lung, the news in immunosuppressive therapies, the news in the field of tolerance and some of the main complications following transplantation as infections and cancers. The period of time covered by the study starts from the international meetings held in 2012, whose results were published in 2013, up to the 2013 meetings, conferences and consensus published in the first months of 2014. In particular for every organ, the trends in numbers and survival have been reviewed as well as the most relevant problems such as organ preservation, ischemia reperfusion injuries, and rejections with particular regards to the antibody mediated rejection that involves all solid organs. The new drugs and strategies applied in organ transplantation have been divided into new way of using old drugs or strategies and drugs new not yet on the market, but on phase Ito III of clinical studies and trials.
Collapse
|
33
|
Verleden SE, Ruttens D, Vandermeulen E, Bellon H, Van Raemdonck DE, Dupont LJ, Vanaudenaerde BM, Verleden G, Vos R. Restrictive chronic lung allograft dysfunction: Where are we now? J Heart Lung Transplant 2014; 34:625-30. [PMID: 25577564 DOI: 10.1016/j.healun.2014.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 02/07/2023] Open
Abstract
Chronic lung allograft dysfunction (CLAD) remains a frequent and troublesome complication after lung transplantation. Apart from bronchiolitis obliterans syndrome (BOS), a restrictive phenotype of CLAD (rCLAD) has recently been recognized, which occurs in approximately 30% of CLAD patients. The main characteristics of rCLAD include a restrictive pulmonary function pattern with a persistent decline in lung function (FEV1, FVC and TLC), persistent parenchymal infiltrates and (sub)pleural thickening on chest CT scan, as well as pleuroparenchymal fibroelastosis and obliterative bronchiolitis on histopathologic examination. Once diagnosed, median survival is only 6 to 18 months compared with 3 to 5 years with BOS. In this perspective we review the historic evidence for rCLAD and describe the different diagnostic criteria and prognosis. Furthermore, we elaborate on the typical radiologic and histopathologic presentations of rCLAD and highlight risk factors and mechanisms. Last, we summarize some opportunities for further research including the urgent need for adequate therapy. In this perspective we not only assess the current knowledge, but also clarify the existing gaps in understanding this increasingly recognized complication after lung transplantation.
Collapse
Affiliation(s)
- Stijn E Verleden
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium.
| | - David Ruttens
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Elly Vandermeulen
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Hannelore Bellon
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Lieven J Dupont
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Geert Verleden
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| | - Robin Vos
- Department of Clinical and Experimental Medicine, Laboratory of Pneumology, Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospitals, Leuven, Belgium
| |
Collapse
|
34
|
Scheffert JL, Raza K. Immunosuppression in lung transplantation. J Thorac Dis 2014; 6:1039-53. [PMID: 25132971 DOI: 10.3978/j.issn.2072-1439.2014.04.23] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/16/2014] [Indexed: 01/10/2023]
Abstract
Lung transplantation can be a life-saving procedure for those with end-stage lung diseases. Unfortunately, long term graft and patient survival are limited by both acute and chronic allograft rejection, with a median survival of just over 6 years. Immunosuppressive regimens are employed to reduce the rate of rejection, and while protocols vary from center to center, conventional maintenance therapy consists of triple drug therapy with a calcineurin inhibitor (cyclosporine or tacrolimus), antiproliferative agents [azathioprine (AZA), mycophenolate, sirolimus (srl), everolimus (evl)], and corticosteroids (CS). Roughly 50% of lung transplant centers also utilize induction therapy, with polyclonal antibody preparations [equine or rabbit anti-thymocyte globulin (ATG)], interleukin 2 receptor antagonists (IL2RAs) (daclizumab or basiliximab), or alemtuzumab. This review summarizes these agents and the data surrounding their use in lung transplantation, as well as additional common and novel therapies in lung transplantation. Despite the progression of the management of lung transplant recipients, they continue to be at high risk of treatment-related complications, and poor graft and patient survival. Randomized clinical trials are needed to allow for the development of better agents, regimens and techniques to address above mentioned issues and reduce morbidity and mortality among lung transplant recipients.
Collapse
Affiliation(s)
- Jenna L Scheffert
- 1 NewYork-Presbyterian Hospital/Columbia University Medical Center, Department of Pharmacy, USA ; 2 Lung Transplant Program, Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, USA
| | - Kashif Raza
- 1 NewYork-Presbyterian Hospital/Columbia University Medical Center, Department of Pharmacy, USA ; 2 Lung Transplant Program, Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, USA
| |
Collapse
|