1
|
Conrad CK, Hedlin H, Chin H, Hayes D, Heeger PS, Faro A, Goldfarb S, Melicoff-Portillo E, Thalachallour M, Odim J, Schecter M, Storch GA, Visner GA, Williams NM, Kesler K, Danziger-Isakov L, Sweet SC. Auto-inflammation and auto-immunity pathways are associated with emergence of BOS in pediatric lung transplantation. Pediatr Transplant 2022; 26:e14247. [PMID: 35146849 PMCID: PMC9086108 DOI: 10.1111/petr.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/05/2021] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Long-term survival after lung transplantation (LTx) is limited by chronic lung allograft dysfunction (CLAD). METHODS We report an analysis of cytokine profiles in bronchoalveolar lavage samples collected during a prospective multicenter non-interventional trial primarily designed to determine the impact of community-acquired respiratory viral infections (CARV) in outcomes after pediatric LTx. In this analysis, we identify potential biomarkers of auto-inflammation and auto-immunity associated with survival and risk of bronchiolitis obliterans (BOS) after LTx with cytokine analysis of bronchoalveolar lavage fluid (BALF) from 61 pediatric recipients. RESULTS Higher IL-23 (p = .048) and IL-31 (p = .035) levels were associated with the risk of BOS, and lower levels of epithelial growth factor (EGF) (p = .041) and eotaxin (EOX) (p = .017) were associated with BOS. Analysis using conditional inference trees to evaluate cytokines at each visit associated with survival identified soluble CD30 (p < .001), pro-inflammatory cytokine IL-23 (p = .02), and sTNFRI (p = .01) below cutoff levels as associated with BOS-free survival. CONCLUSIONS Our results indicate that post-LTx survival in children may be linked to activation of alternate pathways of the immune system that affect airway remodeling in addition to activation of "classical" pathways that have been described in adult LTx recipients. These may indicate pathways to target for intervention.
Collapse
Affiliation(s)
- Carol K Conrad
- Department of PediatricsStanford University School of Medicine, Palo Alto, California, USA
| | - Haley Hedlin
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, California, USA
| | | | - Don Hayes
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Albert Faro
- Cystic Fibrosis Foundation, Bethesda, Maryland, USA
| | - Samuel Goldfarb
- Masonic Children's Hospital, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Jonah Odim
- National Institutes of Health, NIAID, Bethesda, Maryland, USA
| | | | - Gregory A Storch
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gary A Visner
- Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Karen Kesler
- Rho Federal Systems, Durham, North Carolina, USA
| | | | | |
Collapse
|
2
|
Velosa APP, Brito L, de Jesus Queiroz ZA, Carrasco S, Tomaz de Miranda J, Farhat C, Goldenstein-Schainberg C, Parra ER, de Andrade DCO, Silva PL, Capelozzi VL, Teodoro WR. Identification of Autoimmunity to Peptides of Collagen V α1 Chain as Newly Biomarkers of Early Stage of Systemic Sclerosis. Front Immunol 2021; 11:604602. [PMID: 33643291 PMCID: PMC7907509 DOI: 10.3389/fimmu.2020.604602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with Systemic sclerosis (SSc) presents immune dysregulation, vasculopathy, and fibrosis of the skin and various internal organs. Pulmonary fibrosis leads to SSc-associated interstitial lung disease (ILD), which is the main cause of morbidity and mortality in SSc. Recently autoimmunity to type V collagen (Col V) has been characterized in idiopathic pulmonary fibrosis and show promise to be related to the development in SSc. Our aim was to evaluate autoimmunity to Col V α1(V) and α2(V) chains and to the antigenic peptides of these Col V chains in early-SSc sera employing lung tissue of SSc-ILD, as antigen source. We found that sera samples from patients with early-SSc were reactive to Col V (41.18%) and presented immunoreactivity for Col5A1(1.049) and Col5A1(1.439) peptides. The IgG isolated from early-SSc patients-anti-Col V positive sera (anti-ColV IgG) was adsorbed with α1(V) chain (anti-ColV IgG/ads-α1(V)) and α2(V) chain (anti-ColV IgG/ads-α2(V)) and biotinylated to evaluate the spectrum of reactivity in SSc-ILD patients lung biopsies by immunofluorescence. The SSc-ILD lung tissue samples immunostained with anti-ColV IgG showed increased green fluorescence in the vascular basement membrane, bronchiolar smooth muscle, and adventitial layer, contrasting with the tenue immunostaining in control lungs. Col V protein expression in these pulmonary compartments immunostained with early-SSc anti-ColV IgG was confirmed by immune colocalization assays with commercial anti-human Col V antibodies. In addition, SSc-ILD lung tissues immunostained with anti-ColV IgG/ads-α1(V) (sample in which Col V α1 chain-specific antibodies were removed) showed decreased green fluorescence compared to anti-ColV IgG and anti-ColV IgG/ads-α2(V). Our data show that autoimmunity to Col V in early-SSc was related to peptides of the α1(V) chain, suggesting that these antibodies could be biomarkers of SSc stages and potential target of immunotherapy with Col V immunogenic peptides.
Collapse
Affiliation(s)
- Ana Paula Pereira Velosa
- Rheumatology Division of the Hospital das Clinicas FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Lais Brito
- Rheumatology Division of the Hospital das Clinicas FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Solange Carrasco
- Rheumatology Division of the Hospital das Clinicas FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jurandir Tomaz de Miranda
- Rheumatology Division of the Hospital das Clinicas FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cecília Farhat
- Department of Pathology of the Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cláudia Goldenstein-Schainberg
- Rheumatology Division of the Hospital das Clinicas FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Edwin Roger Parra
- Department of Pathology of the Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology of the Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clinicas FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Abstract
Despite induction immunosuppression and the use of aggressive maintenance immunosuppressive regimens, acute allograft rejection following lung transplantation is still a problem with important diagnostic and therapeutic challenges. As well as causing early graft loss and mortality, acute rejection also initiates the chronic alloimmune responses and airway-centred inflammation that predispose to bronchiolitis obliterans syndrome (BOS), also known as chronic lung allograft dysfunction (CLAD), which is a major source of morbidity and mortality after lung transplantation. Cellular responses to human leukocyte antigens (HLAs) on the allograft have traditionally been considered the main mechanism of acute rejection, but the influence of humoral immunity is increasingly recognised. As with other several other solid organ transplants, antibody-mediated rejection (AMR) is now a well-accepted and distinct clinical entity in lung transplantation. While acute cellular rejection (ACR) has defined histopathological criteria, transbronchial biopsy is less useful in AMR and its diagnosis is complicated by challenges in the measurement of antibodies directed against donor HLA, and a determination of their significance. Increasing awareness of the importance of non-HLA antigens further clouds this issue. Here, we review the pathophysiology, diagnosis, clinical presentation and treatment of ACR and AMR in lung transplantation, and discuss future potential biomarkers of both processes that may forward our understanding of these conditions.
Collapse
Affiliation(s)
- Mark Benzimra
- Heart and Lung Transplant Unit, St Vincent's Hospital, Sydney, Australia
| | - Greg L Calligaro
- Division of Pulmonology, Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa
| | - Allan R Glanville
- Heart and Lung Transplant Unit, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
4
|
Sullivan JA, Jankowska-Gan E, Hegde S, Pestrak MA, Agashe VV, Park AC, Brown ME, Kernien JF, Wilkes DS, Kaufman DB, Greenspan DS, Burlingham WJ. Th17 Responses to Collagen Type V, kα1-Tubulin, and Vimentin Are Present Early in Human Development and Persist Throughout Life. Am J Transplant 2017; 17:944-956. [PMID: 27801552 PMCID: PMC5626015 DOI: 10.1111/ajt.14097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/29/2016] [Accepted: 10/14/2016] [Indexed: 01/25/2023]
Abstract
T helper 17 (Th17)-dependent autoimmune responses can develop after heart or lung transplantation and are associated with fibro-obliterative forms of chronic rejection; however, the specific self-antigens involved are typically different from those associated with autoimmune disease. To investigate the basis of these responses, we investigated whether removal of regulatory T cells or blockade of function reveals a similar autoantigen bias. We found that Th17 cells specific for collagen type V (Col V), kα1-tubulin, and vimentin were present in healthy adult peripheral blood mononuclear cells, cord blood, and fetal thymus. Using synthetic peptides and recombinant fragments of the Col V triple helical region (α1[V]), we compared Th17 cells from healthy donors with Th17 cells from Col V-reactive heart and lung patients. Although the latter responded well to α1(V) fragments and peptides in an HLA-DR-restricted fashion, Th17 cells from healthy persons responded in an HLA-DR-restricted fashion to fragments but not to peptides. Col V, kα1-tubulin, and vimentin are preferred targets of a highly conserved, hitherto unknown, preexisting Th17 response that is MHC class II restricted. These data suggest that autoimmunity after heart and lung transplantation may result from dysregulation of an intrinsic mechanism controlling airway and vascular homeostasis.
Collapse
Affiliation(s)
- Jeremy A Sullivan
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792,To whom correspondence should be addressed: 600 Highland Avenue, Room G4/702, Madison, WI 53792. Tel: (608) 263-0119 Fax: (608)262-6280,
| | - Ewa Jankowska-Gan
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - Subramanya Hegde
- Current Address: Abbvie Bio-Research Center, 100 Research Dr., Worcester, MA 01605
| | - Matthew A Pestrak
- Current Address: Department of Surgery, Ohio State University, 410 W 10th Ave, Columbus, OH 43210
| | - Vrushali V Agashe
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - Arick C Park
- Department of Cell & Regenerative Biology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - Matthew E Brown
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - John F Kernien
- Department of Cell & Regenerative Biology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - David S Wilkes
- Department of Medicine, University of Indiana, 340 W 10th St Suite 6200 Indianapolis, IN 46202
| | - Dixon B Kaufman
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - Daniel S Greenspan
- Department of Cell & Regenerative Biology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - William J Burlingham
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792,To whom correspondence should be addressed: 600 Highland Avenue, Room G4/702, Madison, WI 53792. Tel: (608) 263-0119 Fax: (608)262-6280,
| |
Collapse
|
5
|
Immune Responses to Tissue-Restricted Nonmajor Histocompatibility Complex Antigens in Allograft Rejection. J Immunol Res 2017; 2017:6312514. [PMID: 28164137 PMCID: PMC5253484 DOI: 10.1155/2017/6312514] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/06/2016] [Indexed: 01/02/2023] Open
Abstract
Chronic diseases that result in end-stage organ damage cause inflammation, which can reveal sequestered self-antigens (SAgs) in that organ and trigger autoimmunity. The thymus gland deletes self-reactive T-cells against ubiquitously expressed SAgs, while regulatory mechanisms in the periphery control immune responses to tissue-restricted SAgs. It is now established that T-cells reactive to SAgs present in certain organs (e.g., lungs, pancreas, and intestine) are incompletely eliminated, and the dysregulation of peripheral immuneregulation can generate immune responses to SAgs. Therefore, chronic diseases can activate self-reactive lymphocytes, inducing tissue-restricted autoimmunity. During organ transplantation, donor lymphocytes are tested against recipient serum (i.e., cross-matching) to detect antibodies (Abs) against donor human leukocyte antigens, which has been shown to reduce Ab-mediated hyperacute rejection. However, primary allograft dysfunction and rejection still occur frequently. Because donor lymphocytes do not express tissue-restricted SAgs, preexisting Abs against SAgs are undetectable during conventional cross-matching. Preexisting and de novo immune responses to tissue-restricted SAgs (i.e., autoimmunity) play a major role in rejection. In this review, we discuss the evidence that supports autoimmunity as a contributor to rejection. Testing for preexisting and de novo immune responses to tissue-restricted SAgs and treatment based on immune responses after organ transplantation may improve short- and long-term outcomes after transplantation.
Collapse
|
6
|
Bharat A, Chiu S, Zheng Z, Sun H, Yeldandi A, DeCamp MM, Perlman H, Budinger GRS, Mohanakumar T. Lung-Restricted Antibodies Mediate Primary Graft Dysfunction and Prevent Allotolerance after Murine Lung Transplantation. Am J Respir Cell Mol Biol 2016; 55:532-541. [PMID: 27144500 DOI: 10.1165/rcmb.2016-0077oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Over one-third of lung recipients have preexisting antibodies against lung-restricted antigens: collagen (Col) type V and K-α1 tubulin (KAT). Although clinical studies have shown association of these antibodies with primary graft dysfunction (PGD), their biological significance remains unclear. We tested whether preexisting lung-restricted antibodies can mediate PGD and prevent allotolerance. A murine syngeneic (C57BL/6) or allogeneic (C57BL/6 to BALB/c) left lung transplantation model was used. Rabbit polyclonal antibodies were produced against KAT and Col-V and injected pretransplantation. T cell frequency was analyzed using enzyme-linked immunospot, whereas alloantibodies were determined using flow cytometry. Wet:dry ratio, arterial oxygenation, and histology were used to determine PGD. Preexisting Col-V or KAT, but not isotype control, antibodies lead to dose-dependent development of PGD after syngeneic lung transplantation, as evidenced by poor oxygenation and increased wet:dry ratio. Histology confirmed alveolar and capillary edema. The native right lung remained unaffected. Epitope spreading was observed where KAT antibody treatment led to the development of IL-17-producing CD4+ T cells and humoral response against Col-V, or vice versa. In contrast, isotype control antibody failed to induce Col-V- or KAT-specific cellular or humoral immunity. In addition, none of the mice developed immunity against a non-lung antigen, collagen type II. Preexisting lung-restricted antibodies, but not isotype control, prevented development of allotolerance using the MHC-related 1 and cytotoxic T-lymphocyte-associated protein 4-Ig regimen. Lung-restricted antibodies can induce both early and delayed lung graft dysfunction. These antibodies can also cause spreading of lung-restricted immunity and promote alloimmunity. Antibody-directed therapy to treat preexisting lung-restricted antibodies might reduce PGD after lung transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Harris Perlman
- 3 Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - G R Scott Budinger
- 3 Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | | |
Collapse
|
7
|
Chiu S, Fernandez R, Subramanian V, Sun H, DeCamp MM, Kreisel D, Perlman H, Budinger GRS, Mohanakumar T, Bharat A. Lung Injury Combined with Loss of Regulatory T Cells Leads to De Novo Lung-Restricted Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2016; 197:51-7. [PMID: 27194786 DOI: 10.4049/jimmunol.1502539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/21/2016] [Indexed: 01/02/2023]
Abstract
More than one third of patients with chronic lung disease undergoing lung transplantation have pre-existing Abs against lung-restricted self-Ags, collagen type V (ColV), and k-α1 tubulin (KAT). These Abs can also develop de novo after lung transplantation and mediate allograft rejection. However, the mechanisms leading to lung-restricted autoimmunity remain unknown. Because these self-Ags are normally sequestered, tissue injury is required to expose them to the immune system. We previously showed that respiratory viruses can induce apoptosis in CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), the key mediators of self-tolerance. Therefore, we hypothesized that lung-tissue injury can lead to lung-restricted immunity if it occurs in a setting when Tregs are impaired. We found that human lung recipients who suffer respiratory viral infections experienced a decrease in peripheral Tregs. Pre-existing lung allograft injury from donor-directed Abs or gastroesophageal reflux led to new ColV and KAT Abs post respiratory viral infection. Similarly, murine parainfluenza (Sendai) respiratory viral infection caused a decrease in Tregs. Intratracheal instillation of anti-MHC class I Abs, but not isotype control, followed by murine Sendai virus infection led to development of Abs against ColV and KAT, but not collagen type II (ColII), a cartilaginous protein. This was associated with expansion of IFN-γ-producing CD4(+) T cells specific to ColV and KAT, but not ColII. Intratracheal anti-MHC class I Abs or hydrochloric acid in Foxp3-DTR mice induced ColV and KAT, but not ColII, immunity, only if Tregs were depleted using diphtheria toxin. We conclude that tissue injury combined with loss of Tregs can lead to lung-tissue-restricted immunity.
Collapse
Affiliation(s)
- Stephen Chiu
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Ramiro Fernandez
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | | | - Haiying Sun
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Malcolm M DeCamp
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Daniel Kreisel
- Washington University School of Medicine, St. Louis, MO 63110
| | - Harris Perlman
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - G R Scott Budinger
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | | | - Ankit Bharat
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| |
Collapse
|
8
|
Agashe VV, Burlingham WJ. Autoimmune Reactivity in Graft Injury: Player or Bystander? CURRENT TRANSPLANTATION REPORTS 2015; 2:211-221. [PMID: 29057202 DOI: 10.1007/s40472-015-0068-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organ transplantation is the only viable treatment for several end-stage organ failures. However chronic rejection prevents long-term graft survival. Traditionally this rejection was attributed to the development of alloimmunity in transplant patients. However recent evidence suggests that autoimmunity plays a larger role in chronic rejection of certain organ transplants, than alloimmunity. In this review we will focus on the history of autoimmunity in solid-organ transplantation and at look the Collagen Type V, K-α-tubulin, Vimentin, Cardiac myosin and Heat Shock Proteins as classical examples of auto-antigens in organ transplantation. We will also look at some of the recent reports looking at the mechanisms of autoimmunity and try to provide answers to some of the age-old questions in autoimmunity.
Collapse
Affiliation(s)
- Vrushali V Agashe
- Comparative Biomedical Sciences Graduate Program.,Department of Surgery-Transplant division, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI 53795, USA
| | - William J Burlingham
- Department of Surgery-Transplant division, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI 53795, USA
| |
Collapse
|