1
|
Ravella S. Association between oral nutrition and inflammation after intestinal transplantation. Hum Immunol 2024; 85:110809. [PMID: 38724327 DOI: 10.1016/j.humimm.2024.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
Intestinal transplantation (Itx) can be a life-saving treatment for certain patient populations, including those patients with intestinal failure (IF) who develop life-threatening complications due to the use of parenteral nutrition (PN). Most patients who have undergone Itx are eventually able to tolerate a full oral diet. However, little guidance or consensus exists regarding optimizing the specific components of an oral diet for Itx patients, including macronutrients, micronutrients and dietary patterns. While oral dietary prescriptions have moved to the forefront of primary and preventive care, this movement has yet to occur across the field of organ transplantation. Evidence to date points to the role of systemic chronic inflammation (SCI) in a wide variety of chronic diseases as well as post-transplant graft dysfunction. This review will discuss current trends in oral nutrition for Itx patients and also offer novel insights into nutritional management techniques that may help to decrease SCI and chronic disease risk as well as optimize graft function.
Collapse
|
2
|
Visconti V, Wirtz S, Schiffer M, Müller-Deile J. Distinct Changes in Gut Microbiota of Patients With Kidney Graft Rejection. Transplant Direct 2024; 10:e1582. [PMID: 38380347 PMCID: PMC10876239 DOI: 10.1097/txd.0000000000001582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 02/22/2024] Open
Abstract
Background Kidney graft rejection still represents the major cause of graft loss in kidney transplant recipients. Of growing interest is the bidirectional relationship between gut microbiome and immune system suggesting that gut microbiota can affect allograft outcome. Methods In this cross-sectional case-control study, we characterized the gut microbial profile of adult renal transplant recipients with and without graft rejection to define a cohort-specific microbial fingerprint through 16S ribosomal RNA gene sequencing. We used very strict inclusion and exclusion criteria to address confounder of microbiota composition. Results Different relative abundances in several gut microbial taxa were detectable in control patients compared with patients with kidney allograft rejection. Alpha diversity was lower in the rejection group and beta diversity revealed dissimilarity between patients with and without kidney graft rejection (P < 0.01). When the rejection group was stratified according to different types of allograft rejection, major changes were identified between patients with chronic T-cellular-mediated rejection and controls. Changes in alpha diversity within the gut microbiome were related to the probability of chronic T-cellular-mediated rejection (P < 0.05). Kidney transplant patients without rejection showed significant enrichment of rather anti-inflammatory taxa whereas in the rejection group bacteria well known for their role in chronic inflammation were increased. For example, amplicon sequence variant (ASV) 362 belonging to the genus Bacteroides and ASV 312 belonging to Tannerellaceae were enriched in no rejection (P < 0.001 and P < 0.01), whereas ASV 365 was enriched in patients with allograft rejection (P = 0.04). Looking at metagenomic functions, a higher abundance of genes coding for enzymes involved in bacterial multidrug resistance and processing of short-chain fatty acids was found in patients without rejection but an increase in enzymes involved in nicotinamide adenine dinucleotide phosphate production was seen in patients with allograft rejection. Conclusions A distinct microbial fingerprint of patients with allograft rejection might serve as noninvasive biomarker in the future.
Collapse
Affiliation(s)
- Vanessa Visconti
- Department of Nephrology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- Medical Department 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| | - Janina Müller-Deile
- Department of Nephrology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Priscilla C, Kumar S, Kumar CG, Parameswaran S, Viswanathan P, Ganesh RN. Pre-transplant Ratio of Firmicutes/Bacteroidetes of Gut Microbiota as a Potential Biomarker of Allograft Rejection in Renal Transplant Recipients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022; 16:1799-1808. [DOI: 10.22207/jpam.16.3.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The advent of technologies has made allogenic transplantation a potential curative therapy for end-stage renal diseases, but the episodes of rejection still remain as one of the challenges in the post-transplant scenario. In the recent years, several human and animal studies have elucidated that gut microbial dysbiosis is closely linked with allogenic transplantation and post-transplant complications. But most of the studies focused on the use of high through-put sequencing technologies to analyze gut microbiota despite of its high cost, analysis and time constraints. Hence, in this work we aimed to study the impact of the two dominant gut phyla Firmicutes and Bacteroidetes on 38 renal transplant recipients, before and after transplantation and to find its association with allograft rejection. Significant changes (p<0.01) were observed in the relative abundances of the phyla Firmicutes and Bacteroidetes at pre- and post-transplant period. We have also found that the recipients who had an increase in Firmicutes/Bacteroidetes (F/B) ratio before transplant were highly prone to rejection in the first-year post-transplant. The Receiver Operating Characteristic (ROC) curve analysis has shown that the ratio of F/B were able to discriminate between rejection and non-rejection cases with an Area under the ROC Curve (AUC) of 0.91. Additionally, we observed that the ratio of F/B have reduced during the time of rejection postulating that gut microbial dysbiosis has more association with rejection. Thus, the assessment of F/B ratio using qPCR would be of a more practical approach for diagnosis and monitoring of graft function in a cost-effective and timely manner.
Collapse
|
4
|
Qiu F, Lu W, Ye S, Liu H, Zeng Q, Huang H, Liang CL, Chen Y, Zheng F, Zhang Q, Lu CJ, Dai Z. Berberine Promotes Induction of Immunological Tolerance to an Allograft via Downregulating Memory CD8 + T-Cells Through Altering the Gut Microbiota. Front Immunol 2021; 12:646831. [PMID: 33643325 PMCID: PMC7907598 DOI: 10.3389/fimmu.2021.646831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence has linked the gut microbiota dysbiosis to transplant rejection while memory T-cells pose a threat to long-term transplant survival. However, it's unclear if the gut microbiome alters the formation and function of alloreactive memory T-cells. Here we studied the effects of berberine, a narrow-spectrum antibiotic that is barely absorbed when orally administered, on the gut microbiota, memory T-cells, and allograft survival. In this study, C57BL/6 mice transplanted with islets or a heart from BALB/c mice were treated orally with berberine. Allograft survival was observed, while spleen, and lymph node T-cells from recipient mice were analyzed using a flow cytometer. High-throughput sequencing and qPCR were performed to analyze the gut microbiota. CD8+ T-cells from recipients were cultured with the bacteria to determine potential T-cell memory cross-reactivity to a specific pathogen. We found that berberine suppressed islet allograft rejection, reduced effector CD8+CD44highCD62Llow and central memory CD8+CD44highCD62Lhigh T-cells (TCM), altered the gut microbiota composition and specifically lowered Bacillus cereus abundance. Further, berberine promoted long-term islet allograft survival induced by conventional costimulatory blockade and induced cardiac allograft tolerance as well. Re-colonization of B. cereus upregulated CD8+ TCM cells and reversed long-term islet allograft survival induced by berberine plus the conventional costimulatory blockade. Finally, alloantigen-experienced memory CD8+ T-cells from transplanted recipients rapidly responded to B. cereus in vitro. Thus, berberine prolonged allograft survival by repressing CD8+ TCM through regulating the gut microbiota. We have provided the first evidence that donor-specific memory T-cell generation is linked to a specific microbe and uncovered a novel mechanism underlying the therapeutic effects of berberine. This study may be implicated for suppressing human transplant rejection since berberine is already used in clinic to treat intestinal infections.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihui Lu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shulin Ye
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiaohuang Zeng
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiding Huang
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun-Ling Liang
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchao Chen
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang Zheng
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qunfang Zhang
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan-Jian Lu
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Savic S, Caseley EA, McDermott MF. Moving towards a systems-based classification of innate immune-mediated diseases. NATURE REVIEWS. RHEUMATOLOGY 2020. [PMID: 32107482 DOI: 10.1038/s41584-020-0377-5)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Autoinflammation as a distinct disease category was first reported in 1999 as a group of monogenic disorders characterized by recurrent episodes of systemic and organ-specific inflammation, known as periodic fever syndromes. Since this original description, the focus has shifted considerably to the inclusion of complex multifactorial conditions with an autoinflammatory basis. Furthermore, the boundaries of what are considered to be autoinflammatory disorders are constantly evolving and currently encompass elements of immunodeficiency and autoimmunity. Notable developments in the intervening 20 years include substantial progress in understanding how the different inflammasomes are activated, how infection is sensed by the innate immune system and how intracellular signalling systems are consequently activated and integrated with many different cellular functions in the autoinflammatory process. With these developments, the field of autoinflammation is moving from a gene-centric view of innate immune-mediated disease towards a systems-based concept, which describes how various convergent pathways, including pyrin and the actin cytoskeleton, protein misfolding and cellular stress, NF-κB dysregulation and interferon activation, contribute to the autoinflammatory process. The development and adoption of a systems-based concept of systemic autoinflammatory diseases is anticipated to have implications for the development of treatments that target specific components of the innate immune system.
Collapse
Affiliation(s)
- Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK. .,National Institute for Health Research-Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, UK. .,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK.
| | - Emily A Caseley
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK.
| |
Collapse
|
6
|
Moving towards a systems-based classification of innate immune-mediated diseases. Nat Rev Rheumatol 2020; 16:222-237. [DOI: 10.1038/s41584-020-0377-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
|
7
|
Affiliation(s)
- Mandeep R Mehra
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02492, USA.
| |
Collapse
|
8
|
Ardalan M, Vahed SZ. Gut microbiota and renal transplant outcome. Biomed Pharmacother 2017; 90:229-236. [DOI: 10.1016/j.biopha.2017.02.114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
|
9
|
Abstract
PURPOSE OF REVIEW This article summarizes the complex interplay between the microbiota and host immune responses, and its impact on intestinal transplantation and allograft rejection. RECENT FINDINGS Recent findings highlight the importance of Paneth cells as crucial producers of antimicrobial peptides that control the intestinal host-microbial interface as well as the essential role of NOD2 as a master regulator of antimicrobial host defenses. Moreover, complex interactions between innate and adaptive immune responses have been shown to critically shape host antimicrobial Th17 responses, which may be key for the pathogenesis of inflammatory bowel diseases and intestinal allograft rejection. SUMMARY A growing body of evidence indicates that crosstalk between the microbiome and innate and adaptive host immunity determines alloimmune responses and outcomes in intestinal transplantation. Elaboration of this emerging field might lead to novel mechanistic insight into these complex interactions and allow for new therapeutic approaches.
Collapse
|
10
|
Abstract
Increasing evidence indicates that microbes have a large influence on immune function. Previous studies have linked pathogenic microorganisms with decreased allograft tolerance and subsequent rejection. In this issue of the JCI, Lei and colleagues demonstrate that commensal organisms also influence the host response to allograft transplantation. Using murine skin and cardiac transplant models, the authors demonstrate that allograft rejection is accelerated in mice with a normal microbiome compared with germ-free animals and antibiotic-treated mice. The increased graft rejection observed in conventional animals was due to enhanced T cell priming and was mediated through type I IFN. Together, these results suggest that altering a patient's microbial community prior to transplant could improve allograft acceptance.
Collapse
|
11
|
Ochando J, Kwan WH, Ginhoux F, Hutchinson JA, Hashimoto D, Collin M. The Mononuclear Phagocyte System in Organ Transplantation. Am J Transplant 2016; 16:1053-69. [PMID: 26602545 DOI: 10.1111/ajt.13627] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 01/25/2023]
Abstract
The mononuclear phagocyte system (MPS) comprises monocytes, macrophages and dendritic cells (DCs). Over the past few decades, classification of the cells of the MPS has generated considerable controversy. Recent studies into the origin, developmental requirements and function of MPS cells are beginning to solve this problem in an objective manner. Using high-resolution genetic analyses and fate-mapping studies, three main mononuclear phagocyte lineages have been defined, namely, macrophage populations established during embryogenesis, monocyte-derived cells that develop during adult life and DCs. These subsets and their diverse subsets have specialized functions that are largely conserved between species, justifying the introduction of a new, universal scheme of nomenclature and providing the framework for therapeutic manipulation of immune responses in the clinic. In this review, we have commented on the implications of this novel MPS classification in solid organ transplantation.
Collapse
Affiliation(s)
- J Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - W-H Kwan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - F Ginhoux
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Singapore, Singapore
| | - J A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - D Hashimoto
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
12
|
Ochando J, Kwan WH, Ginhoux F, Hutchinson JA, Hashimoto D, Collin M. The Mononuclear Phagocyte System in Organ Transplantation. Am J Transplant 2016. [DOI: 10.1111/ajt.13627 and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J. Ochando
- Department of Oncological Sciences; Icahn School of Medicine at Mount Sinai; New York NY
| | - W.-H. Kwan
- Department of Microbiology; Icahn School of Medicine at Mount Sinai; New York NY
| | - F. Ginhoux
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove; Singapore Singapore
| | - J. A. Hutchinson
- Department of Surgery; University Hospital Regensburg; Regensburg Germany
| | - D. Hashimoto
- Department of Hematology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - M. Collin
- Institute of Cellular Medicine; Newcastle University; Newcastle UK
| |
Collapse
|