1
|
Miao J, Zand L. Genotype-Phenotype Correlations with TRPC6-Associated Podocytopathy. J Am Soc Nephrol 2025:00001751-990000000-00521. [PMID: 39774909 DOI: 10.1681/asn.0000000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Affiliation(s)
- Jing Miao
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
2
|
Wooden B, Beenken A, Martinelli E, Saida K, Knob AL, Ke J, Pisani I, Jin G, Lane B, Mitrotti A, Colby E, Lim TY, Guglielmi F, Osborne AJ, Ahram DF, Wang C, Armand F, Zanoni F, Bomback AS, Delsante M, Appel GB, Ferrari MRA, Martino J, Sahdeo S, Breckenridge D, Petrovski S, Paul DS, Hall G, Magistroni R, Murtas C, Feriozzi S, Rampino T, Esposito P, Helmuth ME, Sampson MG, Kretzler M, Kiryluk K, Shril S, Gesualdo L, Maggiore U, Fiaccadori E, Gbadegesin R, Santoriello D, D'Agati VD, Saleem MA, Gharavi AG, Hildebrandt F, Pollak MR, Goldstein DB, Sanna-Cherchi S. Natural History and Clinicopathological Associations of TRPC6-Associated Podocytopathy. J Am Soc Nephrol 2024:00001751-990000000-00433. [PMID: 39352759 DOI: 10.1681/asn.0000000501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Key Points
We conducted a clinical, genetic, and pathological analysis on 64 cases from 39 families with TRPC6-associated podocytopathy (TRPC6-AP).Analysis of 37,542 individuals excluded a major contribution of loss-of-function variants to TRPC6-AP, legitimating current drug discovery approaches.This study identifies key features of disease that can help intervention studies design and suggests similarities between TRPC6-AP and primary FSGS.
Background
Understanding the genetic basis of human diseases has become integral to drug development and precision medicine. Recent advancements have enabled the identification of molecular pathways driving diseases, leading to targeted treatment strategies. The increasing investment in rare diseases by the biotech industry underscores the importance of genetic evidence in drug discovery and approval processes. Here we studied a monogenic Mendelian kidney disease, TRPC6-associated podocytopathy (TRPC6-AP), to present its natural history, genetic spectrum, and clinicopathological associations in a large cohort of patients with causal variants in TRPC6 to help define the specific features of disease and further facilitate drug development and clinical trials design.
Methods
The study involved 64 individuals from 39 families with TRPC6 causal missense variants. Clinical data, including age of onset, laboratory results, response to treatment, kidney biopsy findings, and genetic information, were collected from multiple centers nationally and internationally. Exome or targeted sequencing was performed, and variant classification was based on strict criteria. Structural and functional analyses of TRPC6 variants were conducted to understand their effect on protein function. In-depth reanalysis of light and electron microscopy specimens for nine available kidney biopsies was conducted to identify pathological features and correlates of TRPC6-AP.
Results
Large-scale sequencing data did not support causality for TRPC6 protein-truncating variants. We identified 21 unique TRPC6 missense variants, clustering in three distinct regions of the protein, and with different effects on TRPC6 3D protein structure. Kidney biopsy analysis revealed FSGS patterns of injury in most cases, along with distinctive podocyte features including diffuse foot process effacement and swollen cell bodies. Most patients presented in adolescence or early adulthood but with ample variation (average 22, SD ±14 years), with frequent progression to kidney failure but with variability in time between presentation and kidney failure.
Conclusions
This study provides insights into the genetic spectrum, clinicopathological associations, and natural history of TRPC6-AP.
Clinical Trial registry name and registration number:
A Study to Test BI 764198 in People With a Type of Kidney Disease Called Focal Segmental Glomerulosclerosis, NCT05213624.
Collapse
Affiliation(s)
- Benjamin Wooden
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Elena Martinelli
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Ken Saida
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Andrea L Knob
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Juntao Ke
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Isabella Pisani
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gina Jin
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Brandon Lane
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Adele Mitrotti
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Elizabeth Colby
- Department of Pediatric Nephrology, Bristol Renal and Royal Bristol Children Hospital, University of Bristol, Bristol, United Kingdom
| | - Tze Y Lim
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Francesca Guglielmi
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amy J Osborne
- Department of Pediatric Nephrology, Bristol Renal and Royal Bristol Children Hospital, University of Bristol, Bristol, United Kingdom
| | - Dina F Ahram
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Chen Wang
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Farid Armand
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Francesca Zanoni
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Divisione di Nefrologia, Dialisi e Trapianti di Rene, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Andrew S Bomback
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Marco Delsante
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gerald B Appel
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Massimo R A Ferrari
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Jeremiah Martino
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | | | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R D, AstraZeneca, Cambridge, United Kingdom
| | - Dirk S Paul
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R D, AstraZeneca, Cambridge, United Kingdom
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Riccardo Magistroni
- Section of Nephrology, Surgical, Medical and Dental Department of Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Nephrology, Dialysis and Transplant Unit, University Hospital of Modena, Modena, Italy
| | - Corrado Murtas
- Division of Nephrology and Dialysis, Belcolle Hospital, Viterbo, Italy
| | - Sandro Feriozzi
- Division of Nephrology and Dialysis, Belcolle Hospital, Viterbo, Italy
| | - Teresa Rampino
- Unit of Nephrology, Department of Internal Medicine, Pavia University, Dialysis and Transplantation Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pasquale Esposito
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- Nephrology, Dialysis and Transplantation Clinics, IRCCS Policlinico San Martino, Genova, Italy
| | - Margaret E Helmuth
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Shirlee Shril
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Loreto Gesualdo
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Umberto Maggiore
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Enrico Fiaccadori
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Dominick Santoriello
- The Renal Pathology Laboratory of the Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Vivette D D'Agati
- The Renal Pathology Laboratory of the Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Moin A Saleem
- Department of Pediatric Nephrology, Bristol Renal and Royal Bristol Children Hospital, University of Bristol, Bristol, United Kingdom
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Friedhelm Hildebrandt
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Martin R Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
3
|
Di H, Wang Q, Liang D, Zhang J, Gao E, Zheng C, Yu X, Liu Z. Genetic features and kidney morphological changes in women with X-linked Alport syndrome. J Med Genet 2023; 60:1169-1176. [PMID: 37225412 DOI: 10.1136/jmg-2023-109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND X-linked Alport syndrome (XLAS) caused by COL4A5 pathogenic variants usually has heterogeneous phenotypes in female patients. The genetic characteristics and glomerular basement membrane (GBM) morphological changes in women with XLAS need to been further investigated. METHODS A total of 83 women and 187 men with causative COL4A5 variants were enrolled for comparative analysis. RESULTS Women were more frequently carrying de novo COL4A5 variants compared with men (47% vs 8%, p=0.001). The clinical manifestations in women were variable, and no genotype-phenotype correlation was observed. Coinherited podocyte-related genes, including TRPC6, TBC1D8B, INF2 and MYH9, were identified in two women and five men, and the modifying effects of coinherited genes contributed to the heterogeneous phenotypes in these patients. X-chromosome inactivation (XCI) analysis of 16 women showed that 25% were skewed XCI. One patient preferentially expressing the mutant COL4A5 gene developed moderate proteinuria, and two patients preferentially expressing the wild-type COL4A5 gene presented with haematuria only. GBM ultrastructural evaluation demonstrated that the degree of GBM lesions was associated with the decline in kidney function for both genders, but more severe GBM changes were found in men compared with women. CONCLUSIONS The high frequency of de novo variants carried by women indicates that the lack of family history tends to make them susceptible to be underdiagnosed. Coinherited podocyte-related genes are potential contributors to the heterogeneous phenotype of some women. Furthermore, the association between the degree of GBM lesions and decline in kidney function is valuable in evaluating the prognosis for patients with XLAS.
Collapse
Affiliation(s)
- Hongling Di
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qing Wang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Department of Nephrology, General Hospital of Eastern Theater Command, Naval Medical University, Shanghai, Shanghai, China
| | - Dandan Liang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jiahui Zhang
- The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaomin Yu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Jiang S, Gu L, Hu Y, Ren Y, Yang Z, Chai C, Yu B, Ge H, Cao Z, Zhao F. Inhibition of TRPC6 suppressed TGFβ-induced fibroblast-myofibroblast transdifferentiation in renal interstitial NRK-49F cells. Exp Cell Res 2022; 421:113374. [PMID: 36206825 DOI: 10.1016/j.yexcr.2022.113374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/29/2022]
Abstract
Renal fibrosis is a global health concern with limited curative treatment. Canonical transient receptor potential channel 6 (TRPC6), a nonselective cation channel, has been shown to regulate the renal fibrosis in murine models. However, the molecular mechanism is unclear. Fibroblast-myofibroblast transdifferentiation is one of the critical steps in the progression of renal fibrosis. In the present study, we demonstrate that transforming growth factor (TGF)-β1 exposure significantly increases the TRPC6 expression in renal interstitial fibroblast NRK-49F cells. Pharmacological inhibition of TRPC6 and knockdown of Trpc6 by siRNA alleviate TGF-β1-increased expression levels of α-smooth muscle actin (α-SMA) and collagen I, two key markers of myofibroblasts. Although direct activation of TRPC6 by 1-oleoyl-2-acetyl-sn-glycerol (OAG) does not affect the expression of α-SMA and collagen I, OAG potentiates TGF-β1-induced fibroblast-myofibroblast transdifferentiation. Further study demonstrates that TGF-β1 exposure increases the phosphorylation level of p38 and Yes-associated protein (YAP) translocation into the nuclei. Inhibition of p38 and YAP decreases TGF-β1-enhanced TRPC6 and α-SMA expression. In conclusion, we demonstrate that TRPC6 is a key regulator of TGF-β1-induced fibroblast-myofibroblast transdifferentiation and provides the mechanism of how TGF-β1 exposure regulates TRPC6 expression in NRK-49F fibroblasts.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Lifei Gu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518057, China
| | - Yixin Hu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Younan Ren
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Zhao Yang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chengzhi Chai
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Haitao Ge
- Jiangsu Suzhong Pharmaceutical Group Co., Ltd., Taizhou, Jiangsu, 225500, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
5
|
Massengill S, Trachtman H. Genetic Spectrum of Nephrotic Syndrome: Impact of Podocytopathy in Adult Life. Adv Chronic Kidney Dis 2022; 29:221-224. [PMID: 36084968 DOI: 10.1053/j.ackd.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022]
Abstract
A substantial number of patients with focal segmental glomerulosclerosis (FSGS) have a pathogenic genetic mutation in a podocyte protein as the cause of their disease. The mutations can affect a wide range of cell functions including the actin cytoskeleton, cell adhesion and motility, mitochondrial function, and nuclear pore proteins. The likelihood of a genetic cause declines with age, from approximately 30% in children and adolescents to 10% in adulthood, and the specific proteins involved and the pattern of inheritance differ in the 2 age groups. The presence of a genetic cause for FSGS can have important clinical ramifications including the need for a diagnostic kidney biopsy, medical management, and the risk of recurrent disease after kidney transplantation. This review summarizes the spectrum of genetic causes of nephrotic syndrome, primarily FSGS, in adults with a focus on diagnosis, presentation, and management.
Collapse
Affiliation(s)
| | - Howard Trachtman
- Department of Pediatrics, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
6
|
Identification of Nephrin gene variants in Indian children associated with Steroid sensitive and Steroid resistant nephrotic syndrome. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
7
|
Khaliq OP, Konoshita T, Moodley J, Naicker T. The association of NPHS1 and ACNT4 gene polymorphisms with pre-eclampsia. Eur J Obstet Gynecol Reprod Biol 2021; 266:9-14. [PMID: 34555552 DOI: 10.1016/j.ejogrb.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The main objective of this study is to investigate the association of the NPHS1 gene polymorphisms (rs437168) and ACTN4 (rs3745895) in the pathogenesis of PE in women of African Ancestry. MATERIALS AND METHODS 637 blood samples, normotensive pregnant (n = 280) and pre-eclampsia (n = 357) were included. The PE group was sub-divided into early onset pre-eclampsia (n = 187) and late onset pre-eclampsia (n = 170). rs74315346, rs869025495, rs121908415, rs3745895, and rs437168 were genotyped from isolated DNA using real time PCR. RESULTS The C allele of rs437168 (NPHS1) was significantly higher in PE compared to controls. [C vs T; p = 0.0323*] and [CC vs CT/TT; p = 0.0464*]. A comparison between the subtypes of PE and controls showed that the C allele was significantly higher in EOPE compared to controls [p = 0.0027**], [CC vs CT/TT; p = 0.0111*], [CC/CT vs TT p = 0.0198*] and LOPE. [p = 0.0259*]. The other SNPs genotyped showed no signification associations with PE. CONCLUSION This study found that the C allele of rs437168 is significantly associated with the pathogenesis of early onset PE and may be accountable for renal injury, which is a risk factor for the development of EOPE in women of African Ancestry.
Collapse
Affiliation(s)
- Olive P Khaliq
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, South Africa.
| | - Tadashi Konoshita
- Third Department of Internal Medicine, University of Fukui Faculty of Medicine Sciences, Fukui, Japan
| | - Jagidesa Moodley
- Department of Obstetrics and Gynecology and Women's Health and HIV Research Group, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, South Africa
| |
Collapse
|
8
|
Theophilus UI, John JR, Ihab S, Ahmed H. Recurrent Focal Segmental Glomerulosclerosis After Kidney Transplantation in African Americans: Review of the Current Evidence. EXP CLIN TRANSPLANT 2021; 19:1245-1256. [PMID: 34269655 DOI: 10.6002/ect.2020.0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES In many countries of sub-Saharan Africa, the most common causes of end-stage kidney disease are hypertension, chronic glomerulonephritis, and diabetes mellitus. So far, literature on recurrent focal segmental glomerulosclerosis in sub-Saharan African populations is limited. With the intention of providing guidance for best practices in sub-Saharan Africa, we reviewed available evidence for African Americans, a population with a similar genetic background. We chose this population as a pseudo-population to show how similar genetic backgrounds can predict disease occurrence in similar populations residing in different continents. MATERIALS AND METHODS Our extended PubMed and Scopus literature search used these key words: "focal segmental glomerulosclerosis in African Americans" (search 1), "recurrent focal segmental glomerulosclerosis after kidney transplantation" (search 2), "risk factors for recurrent focal segmental glomerulosclerosis" (search 3); and "APOL1 gene and kidney transplantation" (search 4). RESULTS/CONCLUSIONS Search 1 yielded 4 articles, search 2 yielded 44 articles, search 3 yielded 6 articles, and search 4 yielded 8 articles. African Americans were shown to be disproportionately predisposed to endstage kidney disease, traceable to focal segmental glomerulosclerosis (the most common cause of glomerulonephritis leading to end-stage kidney disease). Apolipoprotein L1 presence in 22% of African Americans explained the odds ratio of 17 in developing focal segmental glomerulosclerosis and 8 times lifetime risk of end-stage kidney disease. Focal segmental glomerulosclerosis recurred in 30% of kidney transplant recipients; risk factors included young age, rapid progression to end-stage kidney disease, and White race recipient. Circulating permeability factors played a central role in primary and recurrent focal segmental glomerulosclerosis. For recurrent cases, transplant biopsy has remained the gold standard for diagnosis, with treatment involving a multi-modal approach, often resulting in partial or complete remission of proteinuria; allograft loss can occur if treatment is not successful. More randomized clinical trials are needed to chart the way forward for prolonged allograft function.
Collapse
Affiliation(s)
- Umeizudike I Theophilus
- From the Department of Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos State, Nigeria
| | | | | | | |
Collapse
|
9
|
Jia X, Yamamura T, Gbadegesin R, McNulty MT, Song K, Nagano C, Hitomi Y, Lee D, Aiba Y, Khor SS, Ueno K, Kawai Y, Nagasaki M, Noiri E, Horinouchi T, Kaito H, Hamada R, Okamoto T, Kamei K, Kaku Y, Fujimaru R, Tanaka R, Shima Y, Baek J, Kang HG, Ha IS, Han KH, Yang EM, Abeyagunawardena A, Lane B, Chryst-Stangl M, Esezobor C, Solarin A, Dossier C, Deschênes G, Vivarelli M, Debiec H, Ishikura K, Matsuo M, Nozu K, Ronco P, Cheong HI, Sampson MG, Tokunaga K, Iijima K. Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome. Kidney Int 2020; 98:1308-1322. [PMID: 32554042 DOI: 10.1016/j.kint.2020.05.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022]
Abstract
To understand the genetics of steroid-sensitive nephrotic syndrome (SSNS), we conducted a genome-wide association study in 987 childhood SSNS patients and 3,206 healthy controls with Japanese ancestry. Beyond known associations in the HLA-DR/DQ region, common variants in NPHS1-KIRREL2 (rs56117924, P=4.94E-20, odds ratio (OR) =1.90) and TNFSF15 (rs6478109, P=2.54E-8, OR=0.72) regions achieved genome-wide significance and were replicated in Korean, South Asian and African populations. Trans-ethnic meta-analyses including Japanese, Korean, South Asian, African, European, Hispanic and Maghrebian populations confirmed the significant associations of variants in NPHS1-KIRREL2 (Pmeta=6.71E-28, OR=1.88) and TNFSF15 (Pmeta=5.40E-11, OR=1.33) loci. Analysis of the NPHS1 risk alleles with glomerular NPHS1 mRNA expression from the same person revealed allele specific expression with significantly lower expression of the transcript derived from the risk haplotype (Wilcox test p=9.3E-4). Because rare pathogenic variants in NPHS1 cause congenital nephrotic syndrome of the Finnish type (CNSF), the present study provides further evidence that variation along the allele frequency spectrum in the same gene can cause or contribute to both a rare monogenic disease (CNSF) and a more complex, polygenic disease (SSNS).
Collapse
Affiliation(s)
- Xiaoyuan Jia
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rasheed Gbadegesin
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michelle T McNulty
- Department of Medicine-Nephrology, Boston Children's Hospital, Boston, Massachussetts, USA; Medical and Population Genetics, Broad Institute, Cambridge, Massachussetts, USA
| | - Kyuyong Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuki Hitomi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Dongwon Lee
- Department of Medicine-Nephrology, Boston Children's Hospital, Boston, Massachussetts, USA; Medical and Population Genetics, Broad Institute, Cambridge, Massachussetts, USA; Harvard Medical School, Boston, Massachussetts, USA
| | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuko Ueno
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Kawai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Eisei Noiri
- Department of Hemodialysis and Apheresis, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Nephrology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Takayuki Okamoto
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Koichi Kamei
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - Yoshitsugu Kaku
- Department of Nephrology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Rika Fujimaru
- Department of Pediatrics, Osaka City General Hospital, Osaka, Japan
| | - Ryojiro Tanaka
- Department of Nephrology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | | | - Jiwon Baek
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Kyoung Hee Han
- Department of Pediatrics, Jeju National University School of Medicine, Jeju, Korea
| | - Eun Mi Yang
- Department of Pediatrics, Chonnam National University Children's Hospital, Gwangju, Korea
| | | | - Asiri Abeyagunawardena
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Brandon Lane
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Megan Chryst-Stangl
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Christopher Esezobor
- Department of Paediatrics, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Adaobi Solarin
- Department of Pediatrics, Lagos State University Teaching Hospital, Ikeja, Nigeria
| | | | - Claire Dossier
- Department of Paediatric Nephrology, Public Assistance Hospital of Paris, Robert-Debré Hospital, Paris, France
| | - Georges Deschênes
- Center of Research on Inflammation, Institut National de la Santé et de la Recherche Médicale UMR 1149, University Sorbonne-Paris, Paris, France
| | | | - Marina Vivarelli
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Hanna Debiec
- Sorbonne University, INSERM UMR_S1155, and Nephrology Day Hospital, Department of Nephrology, Hôpital Tenon, Paris France
| | - Kenji Ishikura
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan; KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Pierre Ronco
- Sorbonne University, INSERM UMR_S1155, and Nephrology Day Hospital, Department of Nephrology, Hôpital Tenon, Paris France
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Matthew G Sampson
- Department of Medicine-Nephrology, Boston Children's Hospital, Boston, Massachussetts, USA; Medical and Population Genetics, Broad Institute, Cambridge, Massachussetts, USA; Harvard Medical School, Boston, Massachussetts, USA
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
10
|
Post-Translational Modification and Natural Mutation of TRPC Channels. Cells 2020; 9:cells9010135. [PMID: 31936014 PMCID: PMC7016788 DOI: 10.3390/cells9010135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transient Receptor Potential Canonical (TRPC) channels are homologues of Drosophila TRP channel first cloned in mammalian cells. TRPC family consists of seven members which are nonselective cation channels with a high Ca2+ permeability and are activated by a wide spectrum of stimuli. These channels are ubiquitously expressed in different tissues and organs in mammals and exert a variety of physiological functions. Post-translational modifications (PTMs) including phosphorylation, N-glycosylation, disulfide bond formation, ubiquitination, S-nitrosylation, S-glutathionylation, and acetylation play important roles in the modulation of channel gating, subcellular trafficking, protein-protein interaction, recycling, and protein architecture. PTMs also contribute to the polymodal activation of TRPCs and their subtle regulation in diverse physiological contexts and in pathological situations. Owing to their roles in the motor coordination and regulation of kidney podocyte structure, mutations of TRPCs have been implicated in diseases like cerebellar ataxia (moonwalker mice) and focal and segmental glomerulosclerosis (FSGS). The aim of this review is to comprehensively integrate all reported PTMs of TRPCs, to discuss their physiological/pathophysiological roles if available, and to summarize diseases linked to the natural mutations of TRPCs.
Collapse
|
11
|
Wang M, Wang R, He X, Yu M, Xia Z, Gao C. Two Children With Novel TRPC6 Spontaneous Missense Mutations and Atypical Phenotype: A Case Report and Literature Review. Front Pediatr 2020; 8:269. [PMID: 32509715 PMCID: PMC7249804 DOI: 10.3389/fped.2020.00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/29/2020] [Indexed: 01/21/2023] Open
Abstract
Background: The phenotypes of TRPC6 mutations have been reported mainly in familial and sporadic focal segmental glomerulosclerosis (FSGS), which can occur in both adults and children. Herein, we report on two children with novel TRPC6 spontaneous missense mutations associated with immune complex-mediated glomerulonephritis and minor glomerular abnormality (MGA) that showed to be resistant to corticosteroids and other immunosuppressants. Case Presentation: A 9-year-old girl presented with steroid-resistant nephrotic syndrome (SRNS), while another 11-year-old boy developed proteinuria at 7 years old. Treatment with a variety of immunosuppressants had no effect, and the renal biopsy showed immune complex-mediated glomerulonephritis and MGA. No members of their family were clinically affected. Genetic testing was performed in the two patients, revealing two novel spontaneous missense mutations in TRPC6-N110S and P112R. The girl developed end-stage renal disease (ESRD) 5 months after onset while the boy continued to have sub-nephrotic range proteinuria and normal creatinine. Conclusions: Two novel TRPC6 mutations were associated with the atypical phenotype-immune complex-mediated glomerulonephritis and MGA, rather than FSGS as previously reported. Their rates of disease progression are different. Genetic testing is helpful to identify the etiology and avoid the side effects brought on by immunosuppressants.
Collapse
Affiliation(s)
- Meiqiu Wang
- Department of Pediatrics, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Ren Wang
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xu He
- Department of Pediatrics, Jinling Hospital, Nanjing, China
| | - Min Yu
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Neonatology, Taizhou People's Hospital, Taizhou, China
| | - Zhengkun Xia
- Department of Pediatrics, Jinling Hospital, Nanjing, China
| | - Chunlin Gao
- Department of Pediatrics, Jinling Hospital, Nanjing, China
| |
Collapse
|
12
|
Polat OK, Uno M, Maruyama T, Tran HN, Imamura K, Wong CF, Sakaguchi R, Ariyoshi M, Itsuki K, Ichikawa J, Morii T, Shirakawa M, Inoue R, Asanuma K, Reiser J, Tochio H, Mori Y, Mori MX. Contribution of Coiled-Coil Assembly to Ca 2+/Calmodulin-Dependent Inactivation of TRPC6 Channel and its Impacts on FSGS-Associated Phenotypes. J Am Soc Nephrol 2019; 30:1587-1603. [PMID: 31266820 DOI: 10.1681/asn.2018070756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND TRPC6 is a nonselective cation channel, and mutations of this gene are associated with FSGS. These mutations are associated with TRPC6 current amplitude amplification and/or delay of the channel inactivation (gain-of-function phenotype). However, the mechanism of the gain-of-function in TRPC6 activity has not yet been clearly solved. METHODS We performed electrophysiologic, biochemical, and biophysical experiments to elucidate the molecular mechanism underlying calmodulin (CaM)-mediated Ca2+-dependent inactivation (CDI) of TRPC6. To address the pathophysiologic contribution of CDI, we assessed the actin filament organization in cultured mouse podocytes. RESULTS Both lobes of CaM helped induce CDI. Moreover, CaM binding to the TRPC6 CaM-binding domain (CBD) was Ca2+-dependent and exhibited a 1:2 (CaM/CBD) stoichiometry. The TRPC6 coiled-coil assembly, which brought two CBDs into adequate proximity, was essential for CDI. Deletion of the coiled-coil slowed CDI of TRPC6, indicating that the coiled-coil assembly configures both lobes of CaM binding on two CBDs to induce normal CDI. The FSGS-associated TRPC6 mutations within the coiled-coil severely delayed CDI and often increased TRPC6 current amplitudes. In cultured mouse podocytes, FSGS-associated channels and CaM mutations led to sustained Ca2+ elevations and a disorganized cytoskeleton. CONCLUSIONS The gain-of-function mechanism found in FSGS-causing mutations in TRPC6 can be explained by impairments of the CDI, caused by disruptions of TRPC's coiled-coil assembly which is essential for CaM binding. The resulting excess Ca2+ may contribute to structural damage in the podocytes.
Collapse
Affiliation(s)
- Onur K Polat
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
| | - Masatoshi Uno
- Department of Biophysics, Graduate School of Science.,Department of Molecular Engineering, Graduate School of Engineering
| | - Terukazu Maruyama
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
| | - Ha Nam Tran
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering.,Department of Technology and Ecology, Laboratory of Environmental Systems Biology, Graduate School of Global Environmental Studies
| | - Kayo Imamura
- Department of Biophysics, Graduate School of Science
| | - Chee Fah Wong
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering.,Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Perak, Malaysia
| | - Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Mariko Ariyoshi
- Department of Molecular Engineering, Graduate School of Engineering
| | - Kyohei Itsuki
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Jun Ichikawa
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Kyoto, Japan
| | | | - Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, School of Medicine, Chiba University, Chiba, Japan
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | | | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,
| |
Collapse
|
13
|
Zhuo L, Huang L, Yang Z, Li G, Wang L. A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis. BMC MEDICAL GENETICS 2019; 20:111. [PMID: 31216994 PMCID: PMC6585123 DOI: 10.1186/s12881-019-0845-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) is still one of the common causes of refractory nephrotic syndrome. Nephrin, encoded by podocyte-specific NPHS1 gene, participated in the pathogenesis of FSGS. The sites of NPHS1 mutations in FSGS is not clarified very well. In this study, we investigated the specific mutations of NPHS1 gene in Chinese patients with sporadic FSGS. METHODS A total of 309 patients with sporadic FSGS were collected and screened for NPHS1 mutations by second-generation sequencing. The variants were compared with those extracted from 2504 healthy controls in the 1000 Genomes Project. The possible pathogenic roles of missense variants were predicted by three different software. We also compared these candidate causal mutations with those summarized from the previous studies. RESULTS Thirty-two genetic mutations of NPHS1 gene were identified in FSGS patients, including 12 synonymous mutations, 17 missense mutations, 1 splicing mutation, and 2 intron mutations, of which c.G3315A (p.S1105S) was the most common variant (261/309). A novel missense mutation c.G2638 T (p.V880F) and a novel splicing mutation 35830957 C > T were identified in FSGS patients. The frequencies of the four synonymous mutations (c.C294T [p.I98I], c.C2223T [p.T741 T], c.C2289T [p.V763 V], c.G3315A [p.S1105S]) were much higher in FSGS patients than in controls. The frequencies of the four missense mutations (c.G349A [p.E117K], c.G1339A [p.E447K], c.G1802C [p.G601A], c.C2398T [p.R800C]) were much higher and one (c.A3230G [p.N1077S]) was lower in FSGS patients than in controls. Five missense mutations, c.C616A (p.P206T), c.G1802C (p.G601A), c.C2309T (p.P770L), c.G2869C (p.V957 L), and c.C3274T (p.R1092C), were predicted to be pathogenic mutations by software analysis. CONCLUSIONS NPHS1 gene mutations were quite common in sporadic FSGS patients. We strongly recommend mutation analysis of the NPHS1 gene in the clinical management of FSGS patients.
Collapse
Affiliation(s)
- Ling Zhuo
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Duan, 1st Circle Road, Qingyang District, Chengdu, Sichuan, 610072, People's Republic of China
| | - Lulin Huang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhenglin Yang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Duan, 1st Circle Road, Qingyang District, Chengdu, Sichuan, 610072, People's Republic of China.
| | - Li Wang
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West 2nd Duan, 1st Circle Road, Qingyang District, Chengdu, Sichuan, 610072, People's Republic of China
| |
Collapse
|
14
|
RNA sequencing of isolated cell populations expressing human APOL1 G2 risk variant reveals molecular correlates of sickle cell nephropathy in zebrafish podocytes. PLoS One 2019; 14:e0217042. [PMID: 31158233 PMCID: PMC6546218 DOI: 10.1371/journal.pone.0217042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/05/2019] [Indexed: 12/04/2022] Open
Abstract
Kidney failure occurs in 5–13% of individuals with sickle cell disease and is associated with early mortality. Two APOL1 alleles (G1 and G2) have been identified as risk factors for sickle cell disease nephropathy. Both risk alleles are prevalent in individuals with recent African ancestry and have been associated with nephropathic complications in other diseases. Despite the association of G1 and G2 with kidney dysfunction, the mechanisms by which these variants contribute to increased risk remain poorly understood. Previous work in zebrafish models suggest that the G2 risk allele functions as a dominant negative, whereas the G1 allele is a functional null. To understand better the cellular pathology attributed to APOL1 G2, we investigated the in vivo effects of the G2 risk variant on distinct cell types using RNA sequencing. We surveyed APOL1 G2 associated transcriptomic alterations in podocytes and vascular endothelial cells isolated from zebrafish larvae expressing cell-type specific reporters. Our analysis identified many transcripts (n = 7,523) showing differential expression between APOL1 G0 (human wild-type) and APOL1 G2 exposed podocytes. Conversely, relatively few transcripts (n = 107) were differentially expressed when comparing APOL1 G0 and APOL1 G2 exposed endothelial cells. Pathway analysis of differentially expressed transcripts in podocytes showed enrichment for autophagy associated terms such as “Lysosome” and “Phagosome”, implicating these pathways in APOL1 G2 associated kidney dysfunction. This work provides insight into the molecular pathology of APOL1 G2 nephropathy which may offer new therapeutic strategies for multiple disease contexts such as sickle cell nephropathy.
Collapse
|
15
|
Filler G, Restrepo JM. The urgent need for more research on how to treat recurrent focal and segmental glomerulosclerosis. Pediatr Transplant 2018; 22:e13215. [PMID: 29717532 DOI: 10.1111/petr.13215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Guido Filler
- Departments of Paediatrics and Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,The Lilibeth Caberto Kidney Clinical Research Unit, Western University, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Jaime M Restrepo
- Department of Pediatric Nephrology and Transplantation, Fundación Valle del Líli, Cali, Colombia
| |
Collapse
|
16
|
Zhang H, Wang F, Liu X, Zhong X, Yao Y, Xiao H. Steroid-resistant nephrotic syndrome caused by co-inheritance of mutations at NPHS1 and ADCK4 genes in two Chinese siblings. Intractable Rare Dis Res 2017; 6:299-303. [PMID: 29259860 PMCID: PMC5735285 DOI: 10.5582/irdr.2017.01037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hereditary nephrotic syndrome often presents with steroid-resistance and onset within the first year of life. Mutations in genes highly expressed in podocytes have been found in two thirds of these patients, especially NPHS1 and NPHS2 among at least 29 genetic causes that have been discovered. We reported two siblings with steroid-resistant nephrotic syndrome caused by co-inheritance of mutations at NPHS1 (c.1339G>A, p.E447K) and ACDK4 (c.748G>C, p.D250H) genes. The siblings presented with steroid-resistant nephrotic syndrome and pathological lesions of focal segmental glomerulosclerosis (FSGS), while the elder sister also developed hypertension, renal failure and cardiac dysfunction.
Collapse
Affiliation(s)
- Hongwen Zhang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Xiaoyu Liu
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Xuhui Zhong
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Yong Yao
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Huijie Xiao
- Department of Pediatric, Peking University First Hospital, Beijing, China
- Address correspondence to: Dr. Huijie Xiao, Department of Pediatric, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China. E-mail:
| |
Collapse
|
17
|
Affiliation(s)
- Sandra Amaral
- Division of Nephrology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Alicia Neu
- Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
19
|
|