1
|
Ye D, Liu Q, Zhang C, Dai E, Fan J, Wu L. Relationship between immune cells and the development of chronic lung allograft dysfunction. Int Immunopharmacol 2024; 137:112381. [PMID: 38865754 DOI: 10.1016/j.intimp.2024.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
A major cause of death for lung transplant recipients (LTRs) is the advent of chronic lung allograft dysfunction (CLAD), which has long plagued the long-term post-transplant prognosis and quality of survival of transplant patients. The intricacy of its pathophysiology and the irreversibility of its illness process present major obstacles to the clinical availability of medications. Immunotherapeutic medications are available, but they only aim to slow down the course of CLAD rather than having any therapeutic impact on the disease's development. For this reason, understanding the pathophysiology of CLAD is essential for both disease prevention and proven treatment. The immunological response in particular, in relation to chronic lung allograft dysfunction, has received a great deal of interest recently. Innate immune cells like natural killer cells, eosinophils, neutrophils, and mononuclear macrophages, as well as adaptive immunity cells like T and B cells, play crucial roles in this process through the release of chemokines and cytokines. The present review delves into changes and processes within the immune microenvironment, with a particular focus on the quantity, subtype, and characteristics of effector immune cells in the peripheral and transplanted lungs after lung transplantation. We incorporate and solidify the documented role of immune cells in the occurrence and development of CLAD with the advancements in recent years.
Collapse
Affiliation(s)
- Defeng Ye
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongliang Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enci Dai
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Bery AI, Belousova N, Hachem RR, Roux A, Kreisel D. Chronic Lung Allograft Dysfunction: Clinical Manifestations and Immunologic Mechanisms. Transplantation 2024:00007890-990000000-00842. [PMID: 39104003 DOI: 10.1097/tp.0000000000005162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The term "chronic lung allograft dysfunction" has emerged to describe the clinical syndrome of progressive, largely irreversible dysfunction of pulmonary allografts. This umbrella term comprises 2 major clinical phenotypes: bronchiolitis obliterans syndrome and restrictive allograft syndrome. Here, we discuss the clinical manifestations, diagnostic challenges, and potential therapeutic avenues to address this major barrier to improved long-term outcomes. In addition, we review the immunologic mechanisms thought to propagate each phenotype of chronic lung allograft dysfunction, discuss the various models used to study this process, describe potential therapeutic targets, and identify key unknowns that must be evaluated by future research strategies.
Collapse
Affiliation(s)
- Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| | - Natalia Belousova
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France
| | - Ramsey R Hachem
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Antoine Roux
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France
- Paris Transplant Group, INSERM U970s, Paris, France
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Robertson H, Kim HJ, Li J, Robertson N, Robertson P, Jimenez-Vera E, Ameen F, Tran A, Trinh K, O'Connell PJ, Yang JYH, Rogers NM, Patrick E. Decoding the hallmarks of allograft dysfunction with a comprehensive pan-organ transcriptomic atlas. Nat Med 2024:10.1038/s41591-024-03030-6. [PMID: 38890530 DOI: 10.1038/s41591-024-03030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
The pathogenesis of allograft (dys)function has been increasingly studied using 'omics'-based technologies, but the focus on individual organs has created knowledge gaps that neither unify nor distinguish pathological mechanisms across allografts. Here we present a comprehensive study of human pan-organ allograft dysfunction, analyzing 150 datasets with more than 12,000 samples across four commonly transplanted solid organs (heart, lung, liver and kidney, n = 1,160, 1,241, 1,216 and 8,853 samples, respectively) that we leveraged to explore transcriptomic differences among allograft dysfunction (delayed graft function, acute rejection and fibrosis), tolerance and stable graft function. We identified genes that correlated robustly with allograft dysfunction across heart, lung, liver and kidney transplantation. Furthermore, we developed a transfer learning omics prediction framework that, by borrowing information across organs, demonstrated superior classifications compared to models trained on single organs. These findings were validated using a single-center prospective kidney transplant cohort study (a collective 329 samples across two timepoints), providing insights supporting the potential clinical utility of our approach. Our study establishes the capacity for machine learning models to learn across organs and presents a transcriptomic transplant resource that can be employed to develop pan-organ biomarkers of allograft dysfunction.
Collapse
Affiliation(s)
- Harry Robertson
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hani Jieun Kim
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kinghorn Cancer Centre and Cancer Research Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Department of Renal and Transplantation Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Nicholas Robertson
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China
| | - Paul Robertson
- Department of Renal and Transplantation Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Elvira Jimenez-Vera
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Farhan Ameen
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Andy Tran
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Department of Renal and Transplantation Medicine, Westmead Hospital, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Jean Y H Yang
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Department of Renal and Transplantation Medicine, Westmead Hospital, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Ellis Patrick
- School of Mathematics and Statistics, The University of Sydney, Camperdown, New South Wales, Australia.
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia.
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China.
- Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.
| |
Collapse
|
4
|
Crowhurst TD, Butler JA, Bussell LA, Johnston SD, Yeung D, Hodge G, Snell GI, Yeo A, Holmes M, Holmes-Liew CL. Impulse Oscillometry Versus Spirometry to Detect Bronchiolitis Obliterans Syndrome in Bilateral Lung Transplant Recipients: A Prospective Diagnostic Study. Transplantation 2024; 108:1004-1014. [PMID: 38044496 DOI: 10.1097/tp.0000000000004868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD), and especially bronchiolitis obliterans syndrome (BOS), remain dominant causes of morbidity and mortality after lung transplantation. Interest is growing in the forced oscillation technique, of which impulse oscillometry (IOS) is a form, as a tool to improve our understanding of these disorders. However, data remain limited and no longitudinal studies have been published, meaning there is no information regarding any capacity IOS may have for the early detection of CLAD. METHODS We conducted a prospective longitudinal study enrolling a consecutive sample of adult bilateral lung transplant recipients with healthy lung allografts or CLAD and performed ongoing paired IOS and spirometry tests on a clinically determined basis. We assessed for correlations between IOS and spirometry and examined any predictive value either modality may hold for the early detection of BOS. RESULTS We enrolled 91 patients and conducted testing for 43 mo, collecting 558 analyzable paired IOS and spirometry tests, with a median of 9 tests per subject (interquartile range, 5-12) and a median testing interval of 92 d (interquartile range, 62-161). Statistically significant moderate-to-strong correlations were demonstrated between all IOS parameters and spirometry, except resistance at 20 Hz, which is a proximal airway measure. No predictive value for the early detection of BOS was found for IOS or spirometry. CONCLUSIONS This study presents the first longitudinal data from IOS after lung transplantation and adds considerably to the growing literature, showing unequivocal correlations with spirometry but failing to demonstrate a predictive value for BOS.
Collapse
Affiliation(s)
- Thomas D Crowhurst
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Jessica A Butler
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Lauren A Bussell
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Sonya D Johnston
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - David Yeung
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Lung Transplant Service, The Alfred, Melbourne, VIC, Australia
| | - Greg Hodge
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Greg I Snell
- School of Medicine, Monash University, Melbourne, VIC, Australia
- SA Lung Transplant Unit, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Aeneas Yeo
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Mark Holmes
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Chien-Li Holmes-Liew
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Tissot A, Durand E, Goronflot T, Coiffard B, Renaud-Picard B, Roux A, Demant X, Mornex JF, Falque L, Salpin M, Le Pavec J, Villeneuve T, Boussaud V, Knoop C, Magnan A, Lair D, Berthelot L, Danger R, Brouard S. Blood MMP-9 measured at 2 years after lung transplantation as a prognostic biomarker of chronic lung allograft dysfunction. Respir Res 2024; 25:88. [PMID: 38336710 PMCID: PMC10858575 DOI: 10.1186/s12931-024-02707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Long-term outcomes of lung transplantation (LTx) remain hampered by chronic lung allograft dysfunction (CLAD). Matrix metalloproteinase 9 (MMP-9) is a secretory endopeptidase identified as a key mediator in fibrosis processes associated with CLAD. The objective of this study was to investigate whether plasma MMP9 levels may be prognostic of CLAD development. METHODS Participants were selected from the Cohort in Lung Transplantation (COLT) for which a biocollection was associated. We considered two time points, year 1 (Y1) and year 2 (Y2) post-transplantation, for plasma MMP-9 measurements. We analysed stable recipients at those time points, comparing those who would develop a CLAD within the 2 years following the measurement to those who would remain stable 2 years after. RESULTS MMP-9 levels at Y1 were not significantly different between the CLAD and stable groups (230 ng/ml vs. 160 ng/ml, p = 0.4). For the Y2 analysis, 129 recipients were included, of whom 50 developed CLAD within 2 years and 79 remained stable within 2 years. MMP-9 plasma median concentrations were higher in recipients who then developed CLAD than in the stable group (230 ng/ml vs. 118 ng/ml, p = 0.003). In the multivariate analysis, the Y2 MMP-9 level was independently associated with CLAD, with an average increase of 150 ng/ml (95% CI [0-253], p = 0.05) compared to that in the stable group. The Y2 ROC curve revealed a discriminating capacity of blood MMP-9 with an area under the curve of 66%. CONCLUSION Plasmatic MMP-9 levels measured 2 years after lung transplantation have prognostic value for CLAD.
Collapse
Affiliation(s)
- Adrien Tissot
- CHU Nantes, INSERM, Service de Pneumologie, l'institut du thorax, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes Université, 44093, Nantes, France.
| | - Eugénie Durand
- CHU de Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie (CR2TI), Nantes Université, Nantes, France
| | - Thomas Goronflot
- CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des données, INSERM, CIC 1413, Nantes Université, Nantes, France
| | - Benjamin Coiffard
- Department of Respiratory Medicine and Lung Transplantation, APHM, Hôpital Nord, Aix Marseille Univ, Marseille, France
| | - Benjamin Renaud-Picard
- Department of Respiratory Medicine and Strasbourg Lung Transplant Program, Inserm UMR 1260, Université de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Antoine Roux
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department Hôpital Foch, Suresnes, INRAe UMR 0892, Paris Transplant Group, Université de Versailles Saint Quentin Paris-Saclay, Paris, France
| | - Xavier Demant
- Service de Pneumologie, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Jean-François Mornex
- Université Lyon 1, PSL, EPHE, INRAE, IVPC, Hospices Civils de Lyon, groupement hospitalier est, service de pneumologie, Orphalung, RESPIFIL, Université de Lyon, Lyon, France
| | - Loïc Falque
- Service Hospitalier Universitaire de Pneumologie et Physiologie, CHU Grenoble Alpes, Pôle Thorax et Vaisseaux, Grenoble, France
| | - Mathilde Salpin
- APHP Nord-Université Paris Cité, Hôpital Bichat, Service de Pneumologie B et Transplantation Pulmonaire, PHERE UMRS 1152, Université Paris Cité, Paris, France
| | - Jérôme Le Pavec
- Service de Pneumologie et Transplantation Pulmonaire, Groupe hospitalier Marie-Lannelongue -Saint Joseph, Le Plessis-Robinson, Université Paris-Saclay, UMR_S 999, INSERM, Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Thomas Villeneuve
- CHU Toulouse, Service de Pneumologie, Université Toulouse III-Paul Sabatier, Toulouse, France
| | | | | | - Antoine Magnan
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department Hôpital Foch, Suresnes, INRAe UMR 0892, Paris Transplant Group, Université de Versailles Saint Quentin Paris-Saclay, Paris, France
| | - David Lair
- CHU Nantes, Nantes Université, Institut du Thorax, Lung O2, Nantes, France
| | - Laureline Berthelot
- CHU de Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie (CR2TI), Nantes Université, Nantes, France
| | - Richard Danger
- CHU de Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie (CR2TI), Nantes Université, Nantes, France
| | - Sophie Brouard
- CHU de Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie (CR2TI), Nantes Université, Nantes, France
| |
Collapse
|
6
|
Armati M, Cattelan S, Guerrieri M, Messina M, Perea B, Genovese M, d'Alessandro M, Gangi S, Cameli P, Perillo F, Bennett D, Fossi A, Bargagli E, Bergantini L. Collagen Type IV Alpha 5 Chain in Bronchiolitis Obliterans Syndrome After Lung Transplant: The First Evidence. Lung 2023; 201:363-369. [PMID: 37402896 PMCID: PMC10444639 DOI: 10.1007/s00408-023-00632-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Bronchiolitis obliterans syndrome (BOS) is the most common form of CLAD and is characterized by airflow limitation and an obstructive spirometry pattern without parenchymal opacities. The protein signature of BOS lesions concerns extracellular matrix organization and aberrant basement membrane composition. In this pilot study, we investigated the presence of COL4A5 in the serum of patients with BOS. METHODS 41 patients who had undergone LTX were enrolled. Of these, 27 developed BOS and 14 (control group) were considered stable at the time of serum sampling. Of BOS patients, serum samples were analysed at the time of BOS diagnosis and before the clinical diagnosis (pre-BOS). COL4A5 levels were detected through the ELISA kit. RESULTS Serum concentrations of COL4A5 were higher in pre-BOS than in stable patients (40.5 ± 13.9 and 24.8 ± 11.4, respectively, p = 0.048). This protein is not influenced by comorbidities, such as acute rejection or infections, or by therapies. Survival analysis also reveals that a higher level of COL4A5 was also associated with less probability of survival. Our data showed a correlation between concentrations of COL4A5 and FEV1 at the time of diagnosis of BOS. CONCLUSION Serum concentrations of COL4A5 can be considered a good prognostic marker due to their association with survival and correlation with functional parameters.
Collapse
Affiliation(s)
- M Armati
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, 53100, Siena, Italy
| | - S Cattelan
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, 53100, Siena, Italy
| | - M Guerrieri
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, 53100, Siena, Italy
| | - M Messina
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, 53100, Siena, Italy
| | - B Perea
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, 53100, Siena, Italy
| | - M Genovese
- Unit of Respiratory Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - M d'Alessandro
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, 53100, Siena, Italy
| | - S Gangi
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, 53100, Siena, Italy
| | | | - F Perillo
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, 53100, Siena, Italy
| | - D Bennett
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, 53100, Siena, Italy
| | - A Fossi
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, 53100, Siena, Italy
| | - E Bargagli
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, 53100, Siena, Italy
| | - L Bergantini
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, 53100, Siena, Italy.
| |
Collapse
|
7
|
Pison C, Tissot A, Bernasconi E, Royer PJ, Roux A, Koutsokera A, Coiffard B, Renaud-Picard B, Le Pavec J, Mordant P, Demant X, Villeneuve T, Mornex JF, Nemska S, Frossard N, Brugière O, Siroux V, Marsland BJ, Foureau A, Botturi K, Durand E, Pellet J, Danger R, Auffray C, Brouard S, Nicod L, Magnan A. Systems prediction of chronic lung allograft dysfunction: Results and perspectives from the Cohort of Lung Transplantation and Systems prediction of Chronic Lung Allograft Dysfunction cohorts. Front Med (Lausanne) 2023; 10:1126697. [PMID: 36968829 PMCID: PMC10033762 DOI: 10.3389/fmed.2023.1126697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundChronic lung allograft dysfunction (CLAD) is the leading cause of poor long-term survival after lung transplantation (LT). Systems prediction of Chronic Lung Allograft Dysfunction (SysCLAD) aimed to predict CLAD.MethodsTo predict CLAD, we investigated the clinicome of patients with LT; the exposome through assessment of airway microbiota in bronchoalveolar lavage cells and air pollution studies; the immunome with works on activation of dendritic cells, the role of T cells to promote the secretion of matrix metalloproteinase-9, and subpopulations of T and B cells; genome polymorphisms; blood transcriptome; plasma proteome studies and assessment of MSK1 expression.ResultsClinicome: the best multivariate logistic regression analysis model for early-onset CLAD in 422 LT eligible patients generated a ROC curve with an area under the curve of 0.77. Exposome: chronic exposure to air pollutants appears deleterious on lung function levels in LT recipients (LTRs), might be modified by macrolides, and increases mortality. Our findings established a link between the lung microbial ecosystem, human lung function, and clinical stability post-transplant. Immunome: a decreased expression of CLEC1A in human lung transplants is predictive of the development of chronic rejection and associated with a higher level of interleukin 17A; Immune cells support airway remodeling through the production of plasma MMP-9 levels, a potential predictive biomarker of CLAD. Blood CD9-expressing B cells appear to favor the maintenance of long-term stable graft function and are a potential new predictive biomarker of BOS-free survival. An early increase of blood CD4 + CD57 + ILT2+ T cells after LT may be associated with CLAD onset. Genome: Donor Club cell secretory protein G38A polymorphism is associated with a decreased risk of severe primary graft dysfunction after LT. Transcriptome: blood POU class 2 associating factor 1, T-cell leukemia/lymphoma domain, and B cell lymphocytes, were validated as predictive biomarkers of CLAD phenotypes more than 6 months before diagnosis. Proteome: blood A2MG is an independent predictor of CLAD, and MSK1 kinase overexpression is either a marker or a potential therapeutic target in CLAD.ConclusionSystems prediction of Chronic Lung Allograft Dysfunction generated multiple fingerprints that enabled the development of predictors of CLAD. These results open the way to the integration of these fingerprints into a predictive handprint.
Collapse
Affiliation(s)
- Christophe Pison
- Service Hospitalier Universitaire de Pneumologie Physiologie, Pôle Thorax et Vaisseaux, Fédération Grenoble Transplantation, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, INSERM 1055, Grenoble, France
- *Correspondence: Christophe Pison,
| | - Adrien Tissot
- Service de Pneumologie, Institut du Thorax, CHU Nantes, Nantes, France
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Eric Bernasconi
- Unité de Transplantation Pulmonaire, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Suisse
| | - Pierre-Joseph Royer
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Antoine Roux
- Service de Pneumologie, Hôpital Foch, Suresnes, France
- Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement, INRAE, Jouy-en-Josas, France
| | - Angela Koutsokera
- Unité de Transplantation Pulmonaire, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Suisse
| | - Benjamin Coiffard
- Service de Pneumologie et de Transplantation Pulmonaire, APHM, Hôpital Nord, Aix Marseille Univ, Marseille, France
| | - Benjamin Renaud-Picard
- Service de Pneumologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Inserm UMR 1260, Regenerative Nanomedicine, Université de Strasbourg, Strasbourg, France
| | - Jérôme Le Pavec
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardiopulmonaire, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Pierre Mordant
- Service de Chirurgie Vasculaire, Thoracique et Transplantation Pulmonaire, Hôpital Bichat, AP-HP, INSERM U1152, Université Paris Cité, Paris, France
| | - Xavier Demant
- Service de Pneumologie et Transplantation Pulmonaire, CHU de Bordeaux, Bordeaux, France
| | - Thomas Villeneuve
- Service de Pneumologie, CHU de Toulouse, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Jean-Francois Mornex
- Université de Lyon, Université Lyon 1, PSL, EPHE, INRAE, IVPC, Lyon, France
- Hospices Civils de Lyon, GHE, Service de Pneumologie, RESPIFIL, Orphalung, Inserm CIC, Lyon, France
| | - Simona Nemska
- UMR 7200 - Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, CNRS-Université de Strasbourg, Illkirch, France
| | - Nelly Frossard
- UMR 7200 - Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, CNRS-Université de Strasbourg, Illkirch, France
| | - Olivier Brugière
- Service de Pneumologie, Hôpital Foch, Suresnes, France
- Laboratoire d’Immunologie de la Transplantation, Hôpital Saint-Louis, CEA/DRF/Institut de Biologie François Jacob, Unité INSERM 1152, Université Paris Diderot, USPC, Paris, France
| | - Valérie Siroux
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Benjamin J. Marsland
- Unité de Transplantation Pulmonaire, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Suisse
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Aurore Foureau
- Service de Pneumologie, Institut du Thorax, CHU Nantes, Nantes, France
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Karine Botturi
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Eugenie Durand
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Johann Pellet
- European Institute for Systems Biology and Medicine, Vourles, France
| | - Richard Danger
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, Vourles, France
| | - Sophie Brouard
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Laurent Nicod
- Unité de Transplantation Pulmonaire, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Suisse
| | - Antoine Magnan
- Service de Pneumologie, Hôpital Foch, Suresnes, France
- Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement, INRAE, Jouy-en-Josas, France
| | | |
Collapse
|
8
|
Markers of Bronchiolitis Obliterans Syndrome after Lung Transplant: Between Old Knowledge and Future Perspective. Biomedicines 2022; 10:biomedicines10123277. [PMID: 36552035 PMCID: PMC9775233 DOI: 10.3390/biomedicines10123277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) is the most common form of CLAD and is characterized by airflow limitation and an obstructive spirometric pattern without high-resolution computed tomography (HRCT) evidence of parenchymal opacities. Computed tomography and microCT analysis show abundant small airway obstruction, starting from the fifth generation of airway branching and affecting up to 40-70% of airways. The pathogenesis of BOS remains unclear. It is a multifactorial syndrome that leads to pathological tissue changes and clinical manifestations. Because BOS is associated with the worst long-term survival in LTx patients, many studies are focused on the early identification of BOS. Markers may be useful for diagnosis and for understanding the molecular and immunological mechanisms involved in the onset of BOS. Diagnostic and predictive markers of BOS have also been investigated in various biological materials, such as blood, BAL, lung tissue and extracellular vesicles. The aim of this review was to evaluate the scientific literature on markers of BOS after lung transplant. We performed a systematic review to find all available data on potential prognostic and diagnostic markers of BOS.
Collapse
|
9
|
Niroomand A, Ghaidan H, Hallgren O, Hansson L, Larsson H, Wagner D, Mackova M, Halloran K, Hyllén S, Lindstedt S. Corticotropin releasing hormone as an identifier of bronchiolitis obliterans syndrome. Sci Rep 2022; 12:8413. [PMID: 35589861 PMCID: PMC9120482 DOI: 10.1038/s41598-022-12546-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Lung transplantion (LTx) recipients have low long-term survival and a high incidence of bronchiolitis obliterans syndrome (BOS), an inflammation of the small airways in chronic rejection of a lung allograft. There is great clinical need for a minimally invasive biomarker of BOS. Here, 644 different proteins were analyzed to detect biomarkers that distinguish BOS grade 0 from grades 1–3. The plasma of 46 double lung transplant patients was analyzed for proteins using a high-component, multiplex immunoassay that enables analysis of protein biomarkers. Proximity Extension Assay (PEA) consists of antibody probe pairs which bind to targets. The resulting polymerase chain reaction (PCR) reporter sequence can be quantified by real-time PCR. Samples were collected at baseline and 1-year post transplantation. Enzyme-linked immunosorbent assay (ELISA) was used to validate the findings of the PEA analysis across both time points and microarray datasets from other lung transplantation centers demonstrated the same findings. Significant decreases in the plasma protein levels of CRH, FERC2, IL-20RA, TNFB, and IGSF3 and an increase in MMP-9 and CTSL1 were seen in patients who developed BOS compared to those who did not. In this study, CRH is presented as a novel potential biomarker in the progression of disease because of its decreased levels in patients across all BOS grades. Additionally, biomarkers involving the remodeling of the extracellular matrix (ECM), such as MMP-9 and CTSL1, were increased in BOS patients.
Collapse
Affiliation(s)
- Anna Niroomand
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Haider Ghaidan
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, 221 85, Lund, Sweden
| | - Oskar Hallgren
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lennart Hansson
- Department of Pulmonology and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Hillevi Larsson
- Department of Pulmonology and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Darcy Wagner
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Martina Mackova
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Kieran Halloran
- Alberta Transplant Applied Genomics Center, University of Alberta, Edmonton, Canada
| | - Snejana Hyllén
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden. .,Department of Clinical Sciences, Lund University, Lund, Sweden. .,Lund Stem Cell Center, Lund University, Lund, Sweden. .,Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, 221 85, Lund, Sweden.
| |
Collapse
|
10
|
Inamoto Y, Martin PJ, Onstad LE, Cheng GS, Williams KM, Pusic I, Ho VT, Arora M, Pidala J, Flowers MED, Gooley TA, Lawler RL, Hansen JA, Lee SJ. Relevance of Plasma Matrix Metalloproteinase-9 for Bronchiolitis Obliterans Syndrome after Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2021; 27:759.e1-759.e8. [PMID: 34126278 DOI: 10.1016/j.jtct.2021.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Bronchiolitis obliterans syndrome (BOS) is a highly morbid form of chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (HCT). Several plasma proteins have been identified as biomarkers for BOS after lung transplantation. The relevance of these biomarkers in BOS patients after allogeneic HCT has not been examined. We hypothesized that biomarkers associated with BOS after lung transplantation are also associated with BOS after allogeneic HCT. We tested plasma samples from 33 adult HCT patients who participated in a phase II multicenter study of fluticasone, azithromycin, and montelukast (FAM) treatment for new-onset BOS (NCT01307462), and matched control samples of HCT patients who had non-BOS chronic GVHD (n = 31) and those who never experienced chronic GVHD (n = 29) (NCT00637689 and NCT01902576). Candidate biomarkers included matrix metalloproteinase-9 (MMP-9), MMP-3, and chitinase-3-like-1 glycoprotein (YKL-40). MMP-9 concentrations were higher in the patients with BOS compared with those with non-BOS chronic GVHD (P = .04) or no chronic GVHD (P < .001). MMP-3 concentrations were higher in patients with BOS (P < .001) or non-BOS chronic GVHD (P < .001) compared with those with no chronic GVHD. YKL-40 concentrations did not differ statistically among the 3 groups. MMP-9 concentrations before starting FAM therapy were higher in patients who experienced treatment failure within 6 months compared with those with treatment success (P = .006), whereas MMP-3 or YKL-40 concentrations did not differ statistically between these 2 groups. Patients with an MMP-9 concentration ≥200,000 pg/mL before starting FAM therapy had worse overall survival compared with those with lower MMP-9 concentrations. Our data suggest that plasma MMP-9 concentration could serve as a relevant biomarker at diagnosis of BOS after allogeneic HCT for prognostication of survival and for prediction of treatment response. Further validation is needed to confirm our findings.
Collapse
Affiliation(s)
- Yoshihiro Inamoto
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan.
| | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Lynn E Onstad
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Guang-Shing Cheng
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Kirsten M Williams
- Division of Blood and Marrow Transplantation, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Iskra Pusic
- Division of Medicine and Oncology, Washington University, Saint Louis, Missouri
| | - Vincent T Ho
- Division of Hematological Malignancies, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Mukta Arora
- Division of Hematology/Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Joseph Pidala
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Mary E D Flowers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Ted A Gooley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Richard L Lawler
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John A Hansen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Iasella CJ, Hoji A, Popescu I, Wei J, Snyder ME, Zhang Y, Xu W, Iouchmanov V, Koshy R, Brown M, Fung M, Langelier C, Lendermon EA, Dugger D, Shah R, Lee J, Johnson B, Golden J, Leard LE, Kleinhenz ME, Kilaru S, Hays SR, Singer JP, Sanchez PG, Morrell MR, Pilewski JM, Greenland JR, Chen K, McDyer JF. Type-1 immunity and endogenous immune regulators predominate in the airway transcriptome during chronic lung allograft dysfunction. Am J Transplant 2021; 21:2145-2160. [PMID: 33078555 PMCID: PMC8607839 DOI: 10.1111/ajt.16360] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) remains the major complication limiting long-term survival among lung transplant recipients (LTRs). Limited understanding of CLAD immunopathogenesis and a paucity of biomarkers remain substantial barriers for earlier detection and therapeutic interventions for CLAD. We hypothesized the airway transcriptome would reflect key immunologic changes in disease. We compared airway brush-derived transcriptomic signatures in CLAD (n = 24) versus non-CLAD (n = 21) LTRs. A targeted assessment of the proteome using concomitant bronchoalveolar lavage (BAL) fluid for 24 cytokines/chemokines and alloimmune T cell responses was performed to validate the airway transcriptome. We observed an airway transcriptomic signature of differential genes expressed (DGEs) in CLAD marked by Type-1 immunity and striking upregulation of two endogenous immune regulators: indoleamine 2, 3 dioxygenase 1 (IDO-1) and tumor necrosis factor receptor superfamily 6B (TNFRSF6B). Advanced CLAD staging was associated with a more intense airway transcriptome signature. In a validation cohort using the identified signature, we found an area under the curve (AUC) of 0.77 for CLAD LTRs. Targeted proteomic analyses revealed a predominant Type-1 profile with detection of IFN-γ, TNF-α, and IL-1β as dominant CLAD cytokines, correlating with the airway transcriptome. The airway transcriptome provides novel insights into CLAD immunopathogenesis and biomarkers that may impact diagnosis of CLAD.
Collapse
Affiliation(s)
- Carlo J. Iasella
- Department of Pharmacy and Therapeutics, University of
Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Aki Hoji
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Iulia Popescu
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Jianxin Wei
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Mark E. Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Wei Xu
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Vera Iouchmanov
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Ritchie Koshy
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Mark Brown
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Monica Fung
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Charles Langelier
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Elizabeth A. Lendermon
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Daniel Dugger
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Rupal Shah
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Joyce Lee
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Bruce Johnson
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Jeffrey Golden
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Lorriana E. Leard
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Mary Ellen Kleinhenz
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Silpa Kilaru
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Steven R. Hays
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Jonathan P. Singer
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Pablo G. Sanchez
- Department of Cardiothoracic Surgery, University of
Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew R. Morrell
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Joseph M. Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - John R. Greenland
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Kong Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - John F. McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| |
Collapse
|
12
|
Nemska S, Daubeuf F, Obrecht A, Israel-Biet D, Stern M, Kessler R, Roux A, Tavakoli R, Villa P, Tissot A, Danger R, Reber L, Durand E, Foureau A, Brouard S, Magnan A, Frossard N. Overexpression of the MSK1 Kinase in Patients With Chronic Lung Allograft Dysfunction and Its Confirmed Role in a Murine Model. Transplantation 2021; 105:1212-1224. [PMID: 33560725 DOI: 10.1097/tp.0000000000003606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD) and its obstructive form, the obliterative bronchiolitis (OB), are the main long-term complications related to high mortality rate postlung transplantation. CLAD treatment lacks a significant success in survival. Here, we investigated a new strategy through inhibition of the proinflammatory mitogen- and stress-activated kinase 1 (MSK1) kinase. METHODS MSK1 expression was assessed in a mouse OB model after heterotopic tracheal allotransplantation. Pharmacological inhibition of MSK1 (H89, fasudil, PHA767491) was evaluated in the murine model and in a translational model using human lung primary fibroblasts in proinflammatory conditions. MSK1 expression was graded over time in biopsies from a cohort of CLAD patients. RESULTS MSK1 mRNA progressively increased during OB (6.4-fold at D21 posttransplantation). Inhibition of MSK1 allowed to counteract the damage to the epithelium (56% restoration for H89), and abolished the recruitment of MHCII+ (94%) and T cells (100%) at the early inflammatory phase of OB. In addition, it markedly decreased the late fibroproliferative obstruction in allografts (48%). MSK1 inhibitors decreased production of IL-6 (whose transcription is under the control of MSK1) released from human lung fibroblasts (96%). Finally, we confirmed occurrence of a 2.9-fold increased MSK1 mRNA expression in lung biopsies in patients at 6 months before CLAD diagnosis as compared to recipients with stable lung function. CONCLUSIONS These findings suggest the overall interest of the MSK1 kinase either as a marker or as a potential therapeutic target in lung dysfunction posttransplantation.
Collapse
Affiliation(s)
- Simona Nemska
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Plateforme de Chimie Biologie Intégrative de Strasbourg (PCBIS) UMS 3286 CNRS, Université de Strasbourg, Labex Medalis, 300 Bld Brant, Illkirch, France
| | - Adeline Obrecht
- Plateforme de Chimie Biologie Intégrative de Strasbourg (PCBIS) UMS 3286 CNRS, Université de Strasbourg, Labex Medalis, 300 Bld Brant, Illkirch, France
| | | | - Marc Stern
- Hôpital Foch, Suresnes, INRAe UMR 0892, Université de Versailles Saint-Quentin Paris-Saclay, Paris, France
| | - Romain Kessler
- Service de Pneumologie, CHU Strasbourg, Strasbourg, France
| | - Antoine Roux
- Hôpital Foch, Suresnes, INRAe UMR 0892, Université de Versailles Saint-Quentin Paris-Saclay, Paris, France
| | - Reza Tavakoli
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Pascal Villa
- Plateforme de Chimie Biologie Intégrative de Strasbourg (PCBIS) UMS 3286 CNRS, Université de Strasbourg, Labex Medalis, 300 Bld Brant, Illkirch, France
| | - Adrien Tissot
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
- Service de Pneumologie, L'institut du thorax, CHU Nantes, Nantes, France
| | - Richard Danger
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
- Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Labex IGO, Nantes, France
| | - Laurent Reber
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Eugénie Durand
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
| | - Aurore Foureau
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
- Service de Pneumologie, L'institut du thorax, CHU Nantes, Nantes, France
| | - Sophie Brouard
- CHU Nantes, Inserm, UMR 1064, Centre de Recherche en Transplantation et Immunologie, Nantes Université, ITUN, Nantes, France
- Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Labex IGO, Nantes, France
| | - Antoine Magnan
- Service de Pneumologie, L'institut du thorax, CHU Nantes, Nantes, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| |
Collapse
|
13
|
Vanstapel A, Goldschmeding R, Broekhuizen R, Nguyen T, Sacreas A, Kaes J, Heigl T, Verleden SE, De Zutter A, Verleden G, Weynand B, Verbeken E, Ceulemans LJ, Van Raemdonck DE, Neyrinck AP, Schoemans HM, Vanaudenaerde BM, Vos R. Connective Tissue Growth Factor Is Overexpressed in Explant Lung Tissue and Broncho-Alveolar Lavage in Transplant-Related Pulmonary Fibrosis. Front Immunol 2021; 12:661761. [PMID: 34122421 PMCID: PMC8187127 DOI: 10.3389/fimmu.2021.661761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background Connective tissue growth factor (CTGF) is an important mediator in several fibrotic diseases, including lung fibrosis. We investigated CTGF-expression in chronic lung allograft dysfunction (CLAD) and pulmonary graft-versus-host disease (GVHD). Materials and Methods CTGF expression was assessed by quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry in end-stage CLAD explant lung tissue (bronchiolitis obliterans syndrome (BOS), n=20; restrictive allograft syndrome (RAS), n=20), pulmonary GHVD (n=9). Unused donor lungs served as control group (n=20). Next, 60 matched lung transplant recipients (BOS, n=20; RAS, n=20; stable lung transplant recipients, n=20) were included for analysis of CTGF protein levels in plasma and broncho-alveolar lavage (BAL) fluid at 3 months post-transplant, 1 year post-transplant, at CLAD diagnosis or 2 years post-transplant in stable patients. Results qPCR revealed an overall significant difference in the relative content of CTGF mRNA in BOS, RAS and pulmonary GVHD vs. controls (p=0.014). Immunohistochemistry showed a significant higher percentage and intensity of CTGF-positive respiratory epithelial cells in BOS, RAS and pulmonary GVHD patients vs. controls (p<0.0001). BAL CTGF protein levels were significantly higher at 3 months post-transplant in future RAS vs. stable or BOS (p=0.028). At CLAD diagnosis, BAL protein content was significantly increased in RAS patients vs. stable (p=0.0007) and BOS patients (p=0.042). CTGF plasma values were similar in BOS, RAS, and stable patients (p=0.74). Conclusions Lung CTGF-expression is increased in end-stage CLAD and pulmonary GVHD; and higher CTGF-levels are present in BAL of RAS patients at CLAD diagnosis. Our results suggest a potential role for CTGF in CLAD, especially RAS, and pulmonary GVHD.
Collapse
Affiliation(s)
- Arno Vanstapel
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tri Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annelore Sacreas
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Janne Kaes
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Tobias Heigl
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Stijn E Verleden
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Alexandra De Zutter
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit, Leuven, Belgium
| | - Geert Verleden
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Respiratory Diseases, Lung Transplant Unit, University Hospital Leuven, Leuven, Belgium
| | - Birgit Weynand
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Erik Verbeken
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Thoracic Surgery University Hospital Leuven, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Thoracic Surgery University Hospital Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Department of Cardiovascular Sciences, Katholieke Universiteit, Leuven, Belgium.,Department of Anesthesiology, University Hospital Leuven, Leuven, Belgium
| | | | - Bart M Vanaudenaerde
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Robin Vos
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Respiratory Diseases, Lung Transplant Unit, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Amubieya O, Ramsey A, DerHovanessian A, Fishbein GA, Lynch JP, Belperio JA, Weigt SS. Chronic Lung Allograft Dysfunction: Evolving Concepts and Therapies. Semin Respir Crit Care Med 2021; 42:392-410. [PMID: 34030202 DOI: 10.1055/s-0041-1729175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary factor that limits long-term survival after lung transplantation is chronic lung allograft dysfunction (CLAD). CLAD also impairs quality of life and increases the costs of medical care. Our understanding of CLAD continues to evolve. Consensus definitions of CLAD and the major CLAD phenotypes were recently updated and clarified, but it remains to be seen whether the current definitions will lead to advances in management or impact care. Understanding the potential differences in pathogenesis for each CLAD phenotype may lead to novel therapeutic strategies, including precision medicine. Recognition of CLAD risk factors may lead to earlier interventions to mitigate risk, or to avoid risk factors all together, to prevent the development of CLAD. Unfortunately, currently available therapies for CLAD are usually not effective. However, novel therapeutics aimed at both prevention and treatment are currently under investigation. We provide an overview of the updates to CLAD-related terminology, clinical phenotypes and their diagnosis, natural history, pathogenesis, and potential strategies to treat and prevent CLAD.
Collapse
Affiliation(s)
- Olawale Amubieya
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Allison Ramsey
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ariss DerHovanessian
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gregory A Fishbein
- Department of Pathology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A Belperio
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - S Samuel Weigt
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
15
|
van der Ploeg EA, Melgert BN, Burgess JK, Gan CT. The potential of biomarkers of fibrosis in chronic lung allograft dysfunction. Transplant Rev (Orlando) 2021; 35:100626. [PMID: 33992914 DOI: 10.1016/j.trre.2021.100626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/27/2022]
Abstract
Chronic lung allograft dysfunction (CLAD) is the major long-term cause of morbidity and mortality after lung transplantation. Both bronchiolitis obliterans syndrome and restrictive lung allograft syndrome, two main types of CLAD, lead to fibrosis in either the small airways or alveoli and pleura. Pathological pathways in CLAD and other types of fibrosis, for example idiopathic pulmonary fibrosis, are assumed to overlap and therefore fibrosis biomarkers could aid in the early detection of CLAD. These biomarkers could help to differentiate between different phenotypes of CLAD and could, in comparison to biomarkers of inflammation, possibly distinguish an infectious event from CLAD when a decline in lung function is present. This review gives an overview of known CLAD specific biomarkers, describes new promising fibrosis biomarkers currently investigated in other types of fibrosis, and discusses the possible use of these fibrosis biomarkers for CLAD.
Collapse
Affiliation(s)
- Eline A van der Ploeg
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Medicine, PO Box 30. 001, 9700, RB, Groningen, the Netherlands.
| | - Barbro N Melgert
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, PO box 196, 9700, AD, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, PO Box 30.001, 9700, RB, Groningen, the Netherlands.
| | - Janette K Burgess
- University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, PO Box 30.001, 9700, RB, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, PO Box 30.001, 9700, RB, Groningen, the Netherlands.
| | - C Tji Gan
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Medicine, PO Box 30. 001, 9700, RB, Groningen, the Netherlands.
| |
Collapse
|
16
|
Jungraithmayr W, Yamada Y, Haberecker M, Breuer E, Schuurmans M, Dubs L, Itani S, Janker F, Weder W, Schmitt-Opitz I, Jang JH. CD26 as a target against fibrous formation in chronic airway rejection lesions. Life Sci 2021; 278:119496. [PMID: 33894269 DOI: 10.1016/j.lfs.2021.119496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022]
Abstract
AIMS Chronic lung allograft dysfunction (CLAD) after lung transplantation (Tx) is the clinical result of chronic airway rejection lesions (CARL), histomorphologically described as either obliterative remodeling of small airways or alveolar fibroelastosis, or as a combination of both. We here investigated the CD26-inhibitory effect on CD26-expressing CARL. MAIN METHODS CARL were induced by BALB/c → C57BL/6 mouse Tx under mild immunosuppression. CARL-related pro-fibrotic mediators were determined by RT-qPCR and western blotting (WB), EMT and ERK markers by WB. CD26 co-expression by immunofluorescence. CD26 was inhibited by Vildagliptin, gene depleted by CD26-/- mice. Primary lung fibroblasts were employed for ex vivo analyses. Samples from lung transplant patients with CLAD were analyzed by immunohistochemistry. KEY FINDINGS CARL revealed a significantly higher expression of profibrotic proteins vs. normal lungs (p < 0.05). CD26 and EMT co-expressed in CARL with significantly higher Vimentin, Slug, Hif-1α, α-SMA expression vs. normal lungs (p < 0.05). Vildagliptin decreased the expression of α-SMA and N-cadherin in wild type (WT) lung fibroblasts (p < 0.05). Primary lung fibroblasts from WT and CD26-/- mice treated with TGF-β1, IFN-γ, and FGF showed a reduction of EMT protein expression, proliferation, and reduced activation of ERK in CD26-/- mice vs. WT mice. CD26-positive cells were found in patient samples with CLAD in areas of loose fibrosis, but not in areas of dense fibrosis. SIGNIFICANCE CD26 is expressed in CARL-developing lung transplants and CD26-inhibition downregulates fibrosis-forming mediators and fibroblast proliferation. CD26 thus qualifies as a target to attenuate the development of CARL mainly via modulation of ERK and the EMT pathway.
Collapse
Affiliation(s)
- Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland.
| | - Yoshito Yamada
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Martina Haberecker
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Eva Breuer
- Department of Visceral Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Macé Schuurmans
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Linus Dubs
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Saria Itani
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Florian Janker
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Jae-Hwi Jang
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Potential novel biomarkers for chronic lung allograft dysfunction and azithromycin responsive allograft dysfunction. Sci Rep 2021; 11:6799. [PMID: 33762606 PMCID: PMC7990920 DOI: 10.1038/s41598-021-85949-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
Chronic Lung Allograft Dysfunction (CLAD), manifesting as Bronchiolitis Obliterans Syndrome (BOS) or Restrictive Allograft Syndrome (RAS), is the main reason for adverse long-term outcome after Lung Transplantation (LTX). Until now, no specific biomarkers exist to differentiate between CLAD phenotypes. Therefore, we sought to find suitable cytokines to distinguish between BOS, RAS and Azithromycin Responsive Allograft Dysfunction (ARAD); and reveal potential similarities or differences to end-stage fibrotic diseases. We observed significantly increased Lipocalin-2 serum concentrations in RAS compared to BOS patients. In addition, in RAS patients immunohistochemistry revealed Lipocalin-2 expression in bronchial epithelium and alveolar walls. Patients with ARAD showed significantly lower Activin-A serum concentrations compared to Stable-LTX and BOS patients. Further, increased serum concentrations of Lipocalin-2 and Activin-A were predictors of worse freedom-from-CLAD in Stable-LTX patients. These biomarkers serve as promising serum biomarkers for CLAD prediction and seem suitable for implementation in clinical practice.
Collapse
|
18
|
Janciauskiene S, Royer PJ, Fuge J, Wrenger S, Chorostowska-Wynimko J, Falk C, Welte T, Reynaud-Gaubert M, Roux A, Tissot A, Magnan A. Plasma Acute Phase Proteins as Predictors of Chronic Lung Allograft Dysfunction in Lung Transplant Recipients. J Inflamm Res 2020; 13:1021-1028. [PMID: 33299339 PMCID: PMC7721309 DOI: 10.2147/jir.s272662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022] Open
Abstract
Cumulating reports suggest that acute phase proteins (APPs) have diagnostic and prognostic value in different clinical conditions. Among others, APPs are proposed to serve as markers that help to control the outcome of transplant recipients. Here, we questioned whether plasma concentrations of APPs mirror the development of chronic lung allograft dysfunction (CLAD). We performed blinded analysis of serial plasma samples retrospectively collected from 35 lung transplanted patients, of whom 25 developed CLAD and 10 remained stable during the follow-up period of 3 to 4.5 years. Albumin (ALB), alpha1-antitrypsin (AAT), high sensitivity C-reactive protein (CRPH), antithrombin-3 (AT3), ceruloplasmin (CER), and alpha2-macroglobulin (A2MG) were measured by the nephelometric method. We found that within the first six months post-transplantation, levels of A2MG, CER and AAT were higher in stable patients relative to those who later developed CLAD. Moreover, in stable patient’s plasma CRPH levels decreased during the follow-up period whereas opposite, in those developing CLAD, the CRPH gradually increased. The ALB levels became significantly lower at the end of the follow-up period in CLAD relative to a stable group. A logistic regression model based on A2MG, CER and AT3 at cut-offs levels of ≥175.5 mg/dL, ≥37.8 mg/dL and ≥27.35 mg/dL enabled to discriminate between stable and CLAD patients with a sensitivity of 87.5%, 100% and 62.5%, and specificity of 65.9%, 72.7% and 79.5%, respectively. We identified A2MG (below 175.5 mg/dL) as an independent predictor of CLAD (hazard ratio 11.5, 95% CI (1.5–91.3), p<0.021). Our findings suggest that profiles of certain APPs may help to predict the development of lung dysfunction at the very early stages after transplantation.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases, BREATH German Center for Lung Research (DZL) Hannover University School, Hannover, Germany.,Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Pierre-Joseph Royer
- CHU de Nantes, Centre National De Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - Jan Fuge
- Department of Pulmonary and Infectious Diseases, BREATH German Center for Lung Research (DZL) Hannover University School, Hannover, Germany
| | - Sabine Wrenger
- Department of Pulmonary and Infectious Diseases, BREATH German Center for Lung Research (DZL) Hannover University School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research DZIF Hannover Braunschweig Site, TTU-IICH, Hannover, Germany
| | - Tobias Welte
- Department of Pulmonary and Infectious Diseases, BREATH German Center for Lung Research (DZL) Hannover University School, Hannover, Germany
| | - Martine Reynaud-Gaubert
- Department ofPulmonary Diseases and Lung Transplantation, CHU Nord de Marseille; IHU - Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Antoine Roux
- Hôpital Foch, Suresnes, France.,Université Versailles Saint-Quentin- en-Yvelines, Versailles, France.,l'Institut du Thorax, Université de Nantes, Nantes, France
| | - Adrien Tissot
- CHU de Nantes, Centre National De Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - Antoine Magnan
- CHU de Nantes, Centre National De Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| |
Collapse
|
19
|
Yoshiyasu N, Sato M. Chronic lung allograft dysfunction post-lung transplantation: The era of bronchiolitis obliterans syndrome and restrictive allograft syndrome. World J Transplant 2020; 10:104-116. [PMID: 32864356 PMCID: PMC7428788 DOI: 10.5500/wjt.v10.i5.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic lung allograft dysfunction (CLAD) following lung transplantation limits long-term survival considerably. The main reason for this is a lack of knowledge regarding the pathological condition and the establishment of treatment. The consensus statement from the International Society for Heart and Lung Transplantation on CLAD in 2019 classified CLAD into two main phenotypes: Bronchiolitis obliterans syndrome and restrictive allograft syndrome. Along with this clear classification, further exploration of the mechanisms and the development of appropriate prevention and treatment strategies for each phenotype are desired. In this review, we summarize the new definition of CLAD and update and summarize the existing knowledge on the underlying mechanisms of bronchiolitis obliterans syndrome and restrictive allograft syndrome, which have been elucidated from clinicopathological observations and animal experiments worldwide.
Collapse
Affiliation(s)
- Nobuyuki Yoshiyasu
- Department of Thoracic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| |
Collapse
|
20
|
Colas L, Hassoun D, Magnan A. Needs for Systems Approaches to Better Treat Individuals With Severe Asthma: Predicting Phenotypes and Responses to Treatments. Front Med (Lausanne) 2020; 7:98. [PMID: 32296705 PMCID: PMC7137032 DOI: 10.3389/fmed.2020.00098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/05/2020] [Indexed: 01/19/2023] Open
Abstract
Asthma is a frequent heterogeneous multifactorial chronic disease whose severe forms remain largely uncontrolled despite the availability of many drugs and educational therapy. Several phenotypes and endotypes of severe asthma have been described over the last two decades. Typical type-2-immunity-driven asthma remains the most frequent phenotype, and several targeted therapies have been developed and are now available. On the contrary, non-type-2 immunity-driven severe asthma is less understood and still requires efficient innovative therapies. A personalized approach would allow improving asthma control with the help of robust biomarkers able to predict phenotypes/endotypes, exacerbations, response to targeted treatments and, in the future, possible curative options. Some data from large multicenter cohorts have emerged in recent years, especially in transcriptomics. These data have to be integrated and reproduced longitudinally to provide a systems approach for asthma care. In this focused review, the needs for such an approach and the available data will be reviewed as well as the next steps for achieving personalized medicine in asthma.
Collapse
Affiliation(s)
- Luc Colas
- Nantes Université, CHU de Nantes, Plateforme Transversale d'Allergologie, Nantes, France.,Nantes Université, INSERM UMR 1087, CNRS UMR 6291, Nantes, France.,Nantes Université, Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Nantes, France
| | - Dorian Hassoun
- Nantes Université, INSERM UMR 1087, CNRS UMR 6291, Nantes, France.,Nantes Université, CHU de Nantes, Service de Pneumologie, Nantes, France
| | - Antoine Magnan
- Nantes Université, INSERM UMR 1087, CNRS UMR 6291, Nantes, France.,Nantes Université, CHU de Nantes, Service de Pneumologie, Nantes, France
| |
Collapse
|
21
|
Abstract
Introduction: Lung transplantation remains an important treatment for patients with end stage lung disease. Chronic lung allograft dysfunction (CLAD) remains the greatest limiting factor for long term survival. As the diagnosis of CLAD is based on pulmonary function tests, significant lung injury is required before a diagnosis is feasible, likely when irreversible damage has already occurred. Therefore, research is ongoing for early CLAD recognition, with biomarkers making up a substantial amount of this research.Areas covered: The purpose of this review is to describe available biomarkers, focusing on those which aid in predicting CLAD and distinguishing between different CLAD phenotypes. We describe biomarkers presenting in bronchial alveolar lavage (BAL) as well as circulating in peripheral blood, both of which offer an appealing alternative to lung biopsy.Expert opinion: Development of CLAD involves complex, multiple immune and nonimmune mechanisms. Therefore, evaluation of potential CLAD biomarkers serves a dual purpose: clinically, the goal remains early detection and identification of patients at increased risk. Simultaneously, biomarkers offer insight into the different mechanisms involved in the pathophysiology of CLAD, leading to the development of possible interventions. The ultimate goal is the development of both preventive and early intervention strategies for CLAD to improve the overall survival of our lung transplant recipients.
Collapse
Affiliation(s)
- Osnat Shtraichman
- Division of Pulmonary, Allergy & Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Pulmonary institute, Rabin Medical Center, Petach Tikva, Israel; Sackler School of Medicine, Tel Aviv, Israel
| | - Joshua M Diamond
- Division of Pulmonary, Allergy & Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Renaud-Picard B, Vallière K, Toussaint J, Kreutter G, El-Habhab A, Kassem M, El-Ghazouani F, Olland A, Hirschi S, Porzio M, Chenard MP, Toti F, Kessler L, Kessler R. Epithelial-mesenchymal transition and membrane microparticles: Potential implications for bronchiolitis obliterans syndrome after lung transplantation. Transpl Immunol 2020; 59:101273. [PMID: 32097721 DOI: 10.1016/j.trim.2020.101273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Long term survival post lung transplantation (LTx) is limited by the occurrence of bronchiolitis obliterans syndrome (BOS). One mechanism involved is the epithelial-mesenchymal transition (EMT). Membrane microparticles (MPs) are known to be involved in some respiratory diseases and in other organs allograft rejection episodes. We hypothesized that leukocyte-derived MPs likely contribute to EMT. To emphasize this physiological concept, our objectives were to: (1) confirm the presence of EMT on explanted lungs from patients who underwent a second LTx for BOS; 2) characterize circulating MPs in transplanted patients, with or without BOS; (3) evaluate in vitro the effect of monocyte-derived MPs in EMT of human bronchial epithelial cells. Our IHC analysis on explanted graft lungs revealed significant pathological signs of EMT with an inhomogeneous destruction of the bronchial epithelium, with decreased expression of the epithelial protein E-cadherin and increased expression of the mesenchymal protein Vimentin. The immunophenotyping of MPs demonstrated that the concentration of MPs carrying E-cadherin was lower in patients affected by BOS (p = .007). In vitro, monocyte-derived MPs produced with LPS were associated with decreased E-cadherin expression (p < .05) along with significant morphological and functional cell modifications. MPs may play a role in EMT onset in bronchial epithelium following LTx.
Collapse
Affiliation(s)
- Benjamin Renaud-Picard
- Department of Respiratory Medicine and Strasbourg Lung Transplant Program, University Hospital of Strasbourg, France; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, France; Faculty of Medicine, Federation of Translational Medicine (FMTS), Strasbourg, France.
| | - Kevin Vallière
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, France
| | - Justine Toussaint
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, France
| | - Guillaume Kreutter
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, France
| | - Ali El-Habhab
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, France
| | - Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, France
| | - Fatiha El-Ghazouani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, France
| | - Anne Olland
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, France; Faculty of Medicine, Federation of Translational Medicine (FMTS), Strasbourg, France; Department of Thoracic Surgery and Strasbourg Lung Transplant Program, University Hospital of Strasbourg, France
| | - Sandrine Hirschi
- Department of Respiratory Medicine and Strasbourg Lung Transplant Program, University Hospital of Strasbourg, France
| | - Michele Porzio
- Department of Respiratory Medicine and Strasbourg Lung Transplant Program, University Hospital of Strasbourg, France
| | | | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, France
| | - Laurence Kessler
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, France; Faculty of Medicine, Federation of Translational Medicine (FMTS), Strasbourg, France
| | - Romain Kessler
- Department of Respiratory Medicine and Strasbourg Lung Transplant Program, University Hospital of Strasbourg, France; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, University of Strasbourg, France; Faculty of Medicine, Federation of Translational Medicine (FMTS), Strasbourg, France
| |
Collapse
|
23
|
Brosseau C, Danger R, Durand M, Durand E, Foureau A, Lacoste P, Tissot A, Roux A, Reynaud-Gaubert M, Kessler R, Mussot S, Dromer C, Brugière O, Mornex JF, Guillemain R, Claustre J, Magnan A, Brouard S, Velly J, Rozé H, Blanchard E, Antoine M, Cappello M, Ruiz M, Sokolow Y, Vanden Eynden F, Van Nooten G, Barvais L, Berré J, Brimioulle S, De Backer D, Créteur J, Engelman E, Huybrechts I, Ickx B, Preiser T, Tuna T, Van Obberghe L, Vancutsem N, Vincent J, De Vuyst P, Etienne I, Féry F, Jacobs F, Knoop C, Vachiéry J, Van den Borne P, Wellemans I, Amand G, Collignon L, Giroux M, Angelescu D, Chavanon O, Hacini R, Martin C, Pirvu A, Porcu P, Albaladejo P, Allègre C, Bataillard A, Bedague D, Briot E, Casez‐Brasseur M, Colas D, Dessertaine G, Francony G, Hebrard A, Marino M, Protar D, Rehm D, Robin S, Rossi‐Blancher M, Augier C, Bedouch P, Boignard A, Bouvaist H, Briault A, Camara B, Chanoine S, Dubuc M, Quétant S, Maurizi J, Pavèse P, Pison C, Saint‐Raymond C, Wion N, Chérion C, Grima R, Jegaden O, Maury J, Tronc F, Flamens C, Paulus S, Philit F, Senechal A, Glérant J, Turquier S, Gamondes D, Chalabresse L, Thivolet‐Bejui F, Barnel C, Dubois C, Tiberghien A, Pimpec‐Barthes F, Bel A, Mordant P, Achouh P, Boussaud V, Méléard D, Bricourt M, Cholley B, Pezella V, Brioude G, D'Journo X, Doddoli C, Thomas P, Trousse D, Dizier S, Leone M, Papazian L, Bregeon F, Coltey B, Dufeu N, Dutau H, Garcia S, Gaubert J, Gomez C, Laroumagne S, Mouton G, Nieves A, Picard C, Rolain J, Sampol E, Secq V, Perigaud C, Roussel J, Senage T, Mugniot A, Danner I, Haloun A, Abbes S, Bry C, Blanc F, Lepoivre T, Botturi‐Cavaillès K, Loy J, Bernard M, Godard E, Royer P, Henrio K, Dartevelle P, Fabre D, Fadel E, Mercier O, Stephan F, Viard P, Cerrina J, Dorfmuller P, Feuillet S, Ghigna M, Hervén P, Le Roy Ladurie F, Le Pavec J, Thomas de Montpreville V, Lamrani L, Castier Y, Mordant P, Cerceau P, Augustin P, Jean‐Baptiste S, Boudinet S, Montravers P, Dauriat G, Jébrak G, Mal H, Marceau A, Métivier A, Thabut G, Lhuillier E, Dupin C, Bunel V, Falcoz P, Massard G, Santelmo N, Ajob G, Collange O, Helms O, Hentz J, Roche A, Bakouboula B, Degot T, Dory A, Hirschi S, Ohlmann‐Caillard S, Kessler L, Schuller A, Bennedif K, Vargas S, Bonnette P, Chapelier A, Puyo P, Sage E, Bresson J, Caille V, Cerf C, Devaquet J, Dumans‐Nizard V, Felten M, Fischler M, Si Larbi A, Leguen M, Ley L, Liu N, Trebbia G, De Miranda S, Douvry B, Gonin F, Grenet D, Hamid A, Neveu H, Parquin F, Picard C, Stern M, Bouillioud F, Cahen P, Colombat M, Dautricourt C, Delahousse M, D'Urso B, Gravisse J, Guth A, Hillaire S, Honderlick P, Lequintrec M, Longchampt E, Mellot F, Scherrer A, Temagoult L, Tricot L, Vasse M, Veyrie C, Zemoura L, Dahan M, Murris M, Benahoua H, Berjaud J, Le Borgne Krams A, Crognier L, Brouchet L, Mathe O, Didier A, Krueger T, Ris H, Gonzalez M, Aubert J, Nicod L, Marsland B, Berutto T, Rochat T, Soccal P, Jolliet P, Koutsokera A, Marcucci C, Manuel O, Bernasconi E, Chollet M, Gronchi F, Courbon C, Hillinger S, Inci I, Kestenholz P, Weder W, Schuepbach R, Zalunardo M, Benden C, Buergi U, Huber L, Isenring B, Schuurmans M, Gaspert A, Holzmann D, Müller N, Schmid C, Vrugt B, Rechsteiner T, Fritz A, Maier D, Deplanche K, Koubi D, Ernst F, Paprotka T, Schmitt M, Wahl B, Boissel J, Olivera‐Botello G, Trocmé C, Toussaint B, Bourgoin‐Voillard S, Séve M, Benmerad M, Siroux V, Slama R, Auffray C, Charron D, Lefaudeux D, Pellet J. Blood CD9 + B cell, a biomarker of bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant 2019; 19:3162-3175. [PMID: 31305014 DOI: 10.1111/ajt.15532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/12/2019] [Accepted: 07/07/2019] [Indexed: 01/25/2023]
Abstract
Bronchiolitis obliterans syndrome is the main limitation for long-term survival after lung transplantation. Some specific B cell populations are associated with long-term graft acceptance. We aimed to monitor the B cell profile during early development of bronchiolitis obliterans syndrome after lung transplantation. The B cell longitudinal profile was analyzed in peripheral blood mononuclear cells from patients with bronchiolitis obliterans syndrome and patients who remained stable over 3 years of follow-up. CD24hi CD38hi transitional B cells were increased in stable patients only, and reached a peak 24 months after transplantation, whereas they remained unchanged in patients who developed a bronchiolitis obliterans syndrome. These CD24hi CD38hi transitional B cells specifically secrete IL-10 and express CD9. Thus, patients with a total CD9+ B cell frequency below 6.6% displayed significantly higher incidence of bronchiolitis obliterans syndrome (AUC = 0.836, PPV = 0.75, NPV = 1). These data are the first to associate IL-10-secreting CD24hi CD38hi transitional B cells expressing CD9 with better allograft outcome in lung transplant recipients. CD9-expressing B cells appear as a contributor to a favorable environment essential for the maintenance of long-term stable graft function and as a new predictive biomarker of bronchiolitis obliterans syndrome-free survival.
Collapse
Affiliation(s)
- Carole Brosseau
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Institut du thorax, Inserm UMR 1087, CNRS, UMR 6291, Université de Nantes, Nantes, France.,Institut du thorax, CHU de Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Maxim Durand
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Eugénie Durand
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Aurore Foureau
- Institut du thorax, Inserm UMR 1087, CNRS, UMR 6291, Université de Nantes, Nantes, France.,Institut du thorax, CHU de Nantes, Nantes, France
| | - Philippe Lacoste
- Institut du thorax, Inserm UMR 1087, CNRS, UMR 6291, Université de Nantes, Nantes, France.,Institut du thorax, CHU de Nantes, Nantes, France
| | - Adrien Tissot
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Institut du thorax, Inserm UMR 1087, CNRS, UMR 6291, Université de Nantes, Nantes, France.,Institut du thorax, CHU de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| | - Antoine Roux
- Hôpital Foch, Suresnes, France.,Université Versailles Saint-Quentin-en-Yvelines, UPRES EA220, Versailles, France
| | | | | | - Sacha Mussot
- Centre Chirurgical Marie Lannelongue, Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardiopulmonaire, Le Plessis Robinson, France
| | | | - Olivier Brugière
- Hôpital Bichat, Service de Pneumologie et Transplantation Pulmonaire, Paris, France
| | | | | | - Johanna Claustre
- Clinique Universitaire Pneumologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Université Grenoble Alpes, Inserm U1055, Grenoble, France
| | - Antoine Magnan
- Institut du thorax, Inserm UMR 1087, CNRS, UMR 6291, Université de Nantes, Nantes, France.,Institut du thorax, CHU de Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Centre d'Investigation Clinique (CIC) Biothérapie, CHU Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li Y, Shu P, Tang L, Yang X, Fan J, Zhang X. FK506 combined with GM6001 prevents tracheal obliteration in a mouse model of heterotopic tracheal transplantation. Transpl Immunol 2019; 57:101244. [PMID: 31526865 DOI: 10.1016/j.trim.2019.101244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Obliterative bronchiolitis (OB) is the major complication limiting the long-term survival of allografts after lung transplantation. In this study, we investigated the effect of tacrolimus (FK506) combined with GM6001,a matrix metalloproteinase (MMP) inhibitor, on the formation of OB using a mouse heterotopic tracheal transplantation model. METHODS Syngeneic tracheal grafts were transplanted heterotopically from BALB/c mice to BALB/c mice. Allografts from C57BL/6 mice were transplanted to BALB/c mice. Isograft group, allograft group, allograft+FK506 group, allograft +GM6001 group and allograft+FK506 + GM6001 group was given respectively intraperitoneal injection of saline, saline, FK506, GM6001 and FK506 + GM6001 once a day. At 28 day after transplantation, OB incidence was determined by hematoxylin-eosin staining and the expressions of MMPs and cytokines were assessed using enzyme linked immunosorbent assay, immunohistochemical assays and western blot assay. RESULTS The tracheal occlusion rates of isograft group, allograft group, allograft+FK506 group, allograft+GM6001 group and allograft+FK506 + GM6001 group were 0, 74.1 ± 9.79%, 34.4 ± 6.04%, 40.3 ± 8.77% and 26.5 ± 5.73% respectively. There were significant differences between the latter two groups (P < .001). The serum MMP-8 and MMP-9 levels of allograft group were significantly higher than those of isograft group (P < .05) and had no significant decrease when treated by FK506. The serum MMP-8 and MMP-9 levels of allograft+FK506 + GM6001 group were significantly lower than those of allograft+FK506 group (P < .05). MMP-8 and MMP-9 protein expression in the grafts of allograft+FK506 + GM6001 group were lower than those of allograft+FK506 group verified by immunohistochemical staining and western blotting. CONCLUSION FK506 combined with GM6001 could alleviate tracheal obliteration in mouse heterotopic tracheal transplantation model, due to its inhibitory effect on MMPs.
Collapse
Affiliation(s)
- Yiqian Li
- Department of pharmacy, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ping Shu
- Department of pharmacy, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Liang Tang
- Department of central Laboratory, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Xiaojun Yang
- Department of central Laboratory, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Junwei Fan
- Department of general Surgery, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaoqing Zhang
- Department of pharmacy, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| |
Collapse
|
25
|
Tissot A, Danger R, Claustre J, Magnan A, Brouard S. Early Identification of Chronic Lung Allograft Dysfunction: The Need of Biomarkers. Front Immunol 2019; 10:1681. [PMID: 31379869 PMCID: PMC6650588 DOI: 10.3389/fimmu.2019.01681] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/04/2019] [Indexed: 01/12/2023] Open
Abstract
A growing number of patients with end-stage lung disease have benefited from lung transplantation (LT). Improvements in organ procurement, surgical techniques and intensive care management have greatly increased short-term graft survival. However, long-term outcomes remain limited, mainly due to the onset of chronic lung allograft dysfunction (CLAD), whose diagnosis is based on permanent loss of lung function after the development of irreversible lung lesions. CLAD is associated with high mortality and morbidity, and its exact physiopathology is still only partially understood. Many researchers and clinicians have searched for CLAD biomarkers to improve diagnosis, to refine the phenotypes associated with differential prognosis and to identify early biological processes that lead to CLAD to enable an early intervention that could modify the inevitable degradation of respiratory function. Donor-specific antibodies are currently the only biomarkers used in routine clinical practice, and their significance for accurately predicting CLAD is still debated. We describe here significant studies that have highlighted potential candidates for reliable and non-invasive biomarkers of CLAD in the fields of imaging and functional monitoring, humoral immunity, cell-mediated immunity, allograft injury, airway remodeling and gene expression. Such biomarkers would improve CLAD prediction and allow differential LT management regarding CLAD risk.
Collapse
Affiliation(s)
- Adrien Tissot
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Service de Pneumologie, Institut du Thorax, CHU Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Johanna Claustre
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Service Hospitalo-Universitaire de Pneumologie - Physiologie, CHU Grenoble Alpes, Grenoble, France
| | - Antoine Magnan
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Service de Pneumologie, Institut du Thorax, CHU Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,UMR S 1087 CNRS UMR 6291, Institut du Thorax, CHU Nantes, Université de Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
26
|
COLT : 10 ans de recherche en transplantation pulmonaire, résultats et perspectives. Rev Mal Respir 2018; 35:699-705. [DOI: 10.1016/j.rmr.2018.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
|
27
|
Durand M, Lacoste P, Danger R, Jacquemont L, Brosseau C, Durand E, Tilly G, Loy J, Foureau A, Royer PJ, Tissot A, Roux A, Reynaud-Gaubert M, Kessler R, Mussot S, Dromer C, Brugière O, Mornex JF, Guillemain R, Claustre J, Degauque N, Magnan A, Brouard S. High circulating CD4 +CD25 hiFOXP3 + T-cell sub-population early after lung transplantation is associated with development of bronchiolitis obliterans syndrome. J Heart Lung Transplant 2018; 37:770-781. [PMID: 29571601 DOI: 10.1016/j.healun.2018.01.1306] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/07/2017] [Accepted: 01/24/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Chronic bronchiolitis obliterans syndrome (BOS) remains a major limitation for long-term survival after lung transplantation. The immune mechanisms involved and predictive biomarkers have yet to be identified. The purpose of this study was to determine whether peripheral blood T-lymphocyte profile could predict BOS in lung transplant recipients. METHODS An in-depth profiling of CD4+ and CD8+ T cells was prospectively performed on blood cells from stable (STA) and BOS patients with a longitudinal follow-up. Samples were analyzed at 1 and 6 months after transplantation, at the time of BOS diagnosis, and at an intermediate time-point at 6 to 12 months before BOS diagnosis. RESULTS Although no significant difference was found for T-cell compartments at BOS diagnosis or several months beforehand, we identified an increase in the CD4+CD25hiFoxP3+ T-cell sub-population in BOS patients at 1 and 6 months after transplantation (3.39 ± 0.40% vs 1.67 ± 0.22% in STA, p < 0.001). A CD4+CD25hiFoxP3+ T-cell threshold of 2.4% discriminated BOS and stable patients at 1 month post-transplantation. This was validated on a second set of patients at 6 months post-transplantation. Patients with a proportion of CD4+CD25hiFoxP3+ T cells up to 2.4% in the 6 months after transplantation had a 2-fold higher risk of developing BOS. CONCLUSIONS This study is the first to report an increased proportion of circulating CD4+CD25hiFoxP3+ T cells early post-transplantation in lung recipients who proceed to develop BOS within 3 years, which supports its use as a BOS predictive biomarker.
Collapse
Affiliation(s)
- Maxim Durand
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | - Philippe Lacoste
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Lola Jacquemont
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Carole Brosseau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Eugénie Durand
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Gaelle Tilly
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Jennifer Loy
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Aurore Foureau
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Pierre-Joseph Royer
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Adrien Tissot
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France; Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Antoine Roux
- Hôpital Foch, Suresnes, Université de Versailles, Saint-Quentin-en-Yvelines, France
| | | | | | - Sacha Mussot
- Centre Chirurgical Marie Lannelongue, Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardiopulmonaire, Le Plessis Robinson, France
| | | | - Olivier Brugière
- Hôpital Bichat, Service de Pneumologie et Transplantation Pulmonaire, Paris, France
| | | | | | - Johanna Claustre
- Clinique Universitaire de Pneumologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Université Grenoble Alpes, Inserm U1055, Grenoble, France
| | - Nicolas Degauque
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France
| | - Antoine Magnan
- Institut du thorax, Inserm UMR 1087, CNRS UMR 6291, Université de Nantes, Nantes, France; Institut du thorax, CHU de Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie, CHU Nantes, Nantes, France; Centre d'Investigation Clinique Biothérapie, CHU Nantes, Nantes, France.
| | | |
Collapse
|
28
|
Danger R, Royer PJ, Reboulleau D, Durand E, Loy J, Tissot A, Lacoste P, Roux A, Reynaud-Gaubert M, Gomez C, Kessler R, Mussot S, Dromer C, Brugière O, Mornex JF, Guillemain R, Dahan M, Knoop C, Botturi K, Foureau A, Pison C, Koutsokera A, Nicod LP, Brouard S, Magnan A. Blood Gene Expression Predicts Bronchiolitis Obliterans Syndrome. Front Immunol 2018; 8:1841. [PMID: 29375549 PMCID: PMC5768645 DOI: 10.3389/fimmu.2017.01841] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS), the main manifestation of chronic lung allograft dysfunction, leads to poor long-term survival after lung transplantation. Identifying predictors of BOS is essential to prevent the progression of dysfunction before irreversible damage occurs. By using a large set of 107 samples from lung recipients, we performed microarray gene expression profiling of whole blood to identify early biomarkers of BOS, including samples from 49 patients with stable function for at least 3 years, 32 samples collected at least 6 months before BOS diagnosis (prediction group), and 26 samples at or after BOS diagnosis (diagnosis group). An independent set from 25 lung recipients was used for validation by quantitative PCR (13 stables, 11 in the prediction group, and 8 in the diagnosis group). We identified 50 transcripts differentially expressed between stable and BOS recipients. Three genes, namely POU class 2 associating factor 1 (POU2AF1), T-cell leukemia/lymphoma protein 1A (TCL1A), and B cell lymphocyte kinase, were validated as predictive biomarkers of BOS more than 6 months before diagnosis, with areas under the curve of 0.83, 0.77, and 0.78 respectively. These genes allow stratification based on BOS risk (log-rank test p < 0.01) and are not associated with time posttransplantation. This is the first published large-scale gene expression analysis of blood after lung transplantation. The three-gene blood signature could provide clinicians with new tools to improve follow-up and adapt treatment of patients likely to develop BOS.
Collapse
Affiliation(s)
- Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Pierre-Joseph Royer
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Damien Reboulleau
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Eugénie Durand
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Jennifer Loy
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Adrien Tissot
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Philippe Lacoste
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Antoine Roux
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department, Foch Hospital, Suresnes, France.,Universite Versailles Saint-Quentin-en-Yvelines, UPRES EA220, Suresnes, France
| | - Martine Reynaud-Gaubert
- Service de Pneumologie et Transplantation Pulmonaire, CHU Nord de Marseille, Aix-Marseille Université, Marseille, France
| | - Carine Gomez
- Service de Pneumologie et Transplantation Pulmonaire, CHU Nord de Marseille, Aix-Marseille Université, Marseille, France
| | - Romain Kessler
- Groupe de Transplantation Pulmonaire des Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Sacha Mussot
- Hôpital Marie Lannelongue, Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardiopulmonaire, Le Plessis Robinson, France
| | | | - Olivier Brugière
- Hôpital Bichat, Service de Pneumologie et Transplantation Pulmonaire, Paris, France
| | | | | | | | | | - Karine Botturi
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Aurore Foureau
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | - Christophe Pison
- Clinique Universitaire Pneumologie, Pôle Thorax et Vaisseaux, CHU de Grenoble, Université de Grenoble, INSERM U1055, Grenoble, France
| | - Angela Koutsokera
- Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Laurent P Nicod
- Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Antoine Magnan
- UMR S 1087 CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, CHU Nantes, Nantes, France
| | | |
Collapse
|
29
|
Royer PJ, Henrio K, Pain M, Loy J, Roux A, Tissot A, Lacoste P, Pison C, Brouard S, Magnan A. TLR3 promotes MMP-9 production in primary human airway epithelial cells through Wnt/β-catenin signaling. Respir Res 2017; 18:208. [PMID: 29237464 PMCID: PMC5729411 DOI: 10.1186/s12931-017-0690-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/28/2017] [Indexed: 12/27/2022] Open
Abstract
Background Airway epithelial cells (AEC) act as the first line of defence in case of lung infections. They constitute a physical barrier against pathogens and they participate in the initiation of the immune response. Yet, the modalities of pathogen recognition by AEC and the consequences on the epithelial barrier remain poorly documented. Method We investigated the response of primary human AEC to viral (polyinosinic-polycytidylic acid, poly(I:C)) and bacterial (lipopolysaccharide, LPS) stimulations in combination with the lung remodeling factor Transforming Growth Factor-β (TGF-β). Results We showed a strong production of pro-inflammatory cytokines (Interleukin (IL)-6, Tumor Necrosis Factor α, TNFα) or chemokines (CCL2, CCL3, CCL4, CXCL10, CXCL11) by AEC stimulated with poly(I:C). Cytokine and chemokine production, except CXCL10, was Toll Like Receptor (TLR)-3 dependent and although they express TLR4, we found no cytokine production after LPS stimulation. Poly(I:C), but not LPS, synergised with TGF-β for the production of matrix metalloproteinase-9 (MMP-9) and fibronectin. Mechanistic analyses suggest the secretion of Wnt ligands by AEC along with a degradation of the cellular junctions after poly(I:C) exposure, leading to the release of β-catenin from the cell membrane and stimulation of the Wnt/β-catenin pathway. Conclusion Our results highlight the cross talk between TGF-β and TLR signaling in bronchial epithelium and its impact on the remodeling process. Electronic supplementary material The online version of this article (10.1186/s12931-017-0690-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P-J Royer
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France.
| | - K Henrio
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - M Pain
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - J Loy
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - A Roux
- Hopital Foch, Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Department,Suresnes, France, Université Versailles Saint-Quentin-en-Yvelines, UPRESS EA220, Montigny le Bretonneux, Grenoble, France
| | - A Tissot
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - P Lacoste
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | - C Pison
- Clinique Universitaire de Pneumologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Grenoble, France.,Université Grenoble Alpes, Grenoble, France.,Laboratoire de Bioénergétique Fondamentale et Appliquée, Inserm, 1055, Grenoble, France
| | - S Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,CIC Biotherapy, CHU Nantes, Nantes, France
| | - A Magnan
- UMR_S 1087 CNRS UMR_6291, l'Institut du Thorax, Université de Nantes, CHU de Nantes, Centre National de Référence Mucoviscidose Nantes-Roscoff, Nantes, France
| | | |
Collapse
|
30
|
Abstract
Chronic lung allograft dysfunction (CLAD) is the major limitation to posttransplant survival. This review highlights the evolving definition of CLAD, risk factors, treatment, and expected outcomes after the development of CLAD.
Collapse
|
31
|
Airway microbiota signals anabolic and catabolic remodeling in the transplanted lung. J Allergy Clin Immunol 2017; 141:718-729.e7. [PMID: 28729000 PMCID: PMC5792246 DOI: 10.1016/j.jaci.2017.06.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/10/2017] [Accepted: 06/13/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Homeostatic turnover of the extracellular matrix conditions the structure and function of the healthy lung. In lung transplantation, long-term management remains limited by chronic lung allograft dysfunction, an umbrella term used for a heterogeneous entity ultimately associated with pathological airway and/or parenchyma remodeling. OBJECTIVE This study assessed whether the local cross-talk between the pulmonary microbiota and host cells is a key determinant in the control of lower airway remodeling posttransplantation. METHODS Microbiota DNA and host total RNA were isolated from 189 bronchoalveolar lavages obtained from 116 patients post lung transplantation. Expression of a set of 11 genes encoding either matrix components or factors involved in matrix synthesis or degradation (anabolic and catabolic remodeling, respectively) was quantified by real-time quantitative PCR. Microbiota composition was characterized using 16S ribosomal RNA gene sequencing and culture. RESULTS We identified 4 host gene expression profiles, among which catabolic remodeling, associated with high expression of metallopeptidase-7, -9, and -12, diverged from anabolic remodeling linked to maximal thrombospondin and platelet-derived growth factor D expression. While catabolic remodeling aligned with a microbiota dominated by proinflammatory bacteria (eg, Staphylococcus, Pseudomonas, and Corynebacterium), anabolic remodeling was linked to typical members of the healthy steady state (eg, Prevotella, Streptococcus, and Veillonella). Mechanistic assays provided direct evidence that these bacteria can impact host macrophage-fibroblast activation and matrix deposition. CONCLUSIONS Host-microbes interplay potentially determines remodeling activities in the transplanted lung, highlighting new therapeutic opportunities to ultimately improve long-term lung transplant outcome.
Collapse
|