1
|
Kalluri R. The biology and function of extracellular vesicles in immune response and immunity. Immunity 2024; 57:1752-1768. [PMID: 39142276 PMCID: PMC11401063 DOI: 10.1016/j.immuni.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 01/02/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Extracellular vesicles (EVs), such as ectosomes and exosomes, contain DNA, RNA, proteins and are encased in a phospholipid bilayer. EVs provide intralumenal cargo for delivery into the cytoplasm of recipient cells with an impact on the function of immune cells, in part because their biogenesis can also intersect with antigen processing and presentation. Motile EVs from activated immune cells may increase the frequency of immune synapses on recipient cells in a proximity-independent manner for local and long-distance modulation of systemic immunity in inflammation, autoimmunity, organ fibrosis, cancer, and infections. Natural and engineered EVs exhibit the ability to impact innate and adaptive immunity and are entering clinical trials. EVs are likely a component of an optimally functioning immune system, with the potential to serve as immunotherapeutics. Considering the evolving evidence, it is possible that EVs could be the original primordial organic units that preceded the creation of the first cell.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Feng MH, Lai YR, Deng YW, Li XY, Pan L, Tian Z, Tang GY, Wang YF. B Cells Infiltration Potentially Responded Better to Systemic Corticoids in Oral Lichen Planus and Oral Lichenoid Lesions. Inflammation 2024:10.1007/s10753-024-02112-4. [PMID: 39117788 DOI: 10.1007/s10753-024-02112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Oral lichen planus (OLP) and oral lichenoid lesion (OLL) are chronic inflammatory diseases involving the oral mucosa. B cells infiltration in OLP and OLL, however, little is known about these cells in OLP and OLL. To analyze the function and infiltrating features of B lymphocytes in OLP and OLL, and to preliminarily evaluate their correlation with clinical outcomes. Tissue samples were collected from OLP, OLL, and healthy mucosa. The phenotypes and amounts of B cells in tissues were analyzed by single-cell sequencing. Their proportion and infiltrating features in tissues were examined by immunohistochemistry and immunofluorescence. With the systemic medication of corticoids, the correlation between B cells infiltrating characteristics and the clinical outcomes were evaluated. A quantified proportion increase of B cells was shown in both OLP and OLL. B cells in OLP demonstrated heightened activation and enhanced regulation in immune response. A cohort of 100 patients with OLP/OLL and 13 healthy controls were examined to investigate the B cells infiltration pattern. B cells were distributed in the superficial layer of lamina propria in 92.9% and 41.9% of OLP and OLL, respectively(P < 0.01); focally distributed in 25.0% and 62.9% of OLP and OLL, respectively(P < 0.01). With the systemic medication of corticoids, the cases with B cell infiltration (B+) in OLP and OLL groups showed a statistically significant reduction in REU scores before and after treatment (P < 0.01). B cells are widely present in OLP and OLL, and B cell infiltration in OLP and OLL are related to the better therapeutic effect of oral corticoids.
Collapse
Grants
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
- 82270976, 82205200, 82020108010 The National Natural Science Foundation of China
Collapse
Affiliation(s)
- Ming-Hua Feng
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Stomatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Yi-Rao Lai
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yi-Wen Deng
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xi-Ye Li
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lei Pan
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhen Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guo-Yao Tang
- Shanghai Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu-Feng Wang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
3
|
Bansal S, Rahman M, Ravichandran R, Canez J, Fleming T, Mohanakumar T. Extracellular Vesicles in Transplantation: Friend or Foe. Transplantation 2024; 108:374-385. [PMID: 37482627 DOI: 10.1097/tp.0000000000004693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The long-term function of transplanted organs, even under immunosuppression, is hindered by rejection, especially chronic rejection. Chronic rejection occurs more frequently after lung transplantation, termed chronic lung allograft dysfunction (CLAD), than after transplantation of other solid organs. Pulmonary infection is a known risk factor for CLAD, as transplanted lungs are constantly exposed to the external environment; however, the mechanisms by which respiratory infections lead to CLAD are poorly understood. The role of extracellular vesicles (EVs) in transplantation remains largely unknown. Current evidence suggests that EVs released from transplanted organs can serve as friend and foe. EVs carry not only major histocompatibility complex antigens but also tissue-restricted self-antigens and various transcription factors, costimulatory molecules, and microRNAs capable of regulating alloimmune responses. EVs play an important role in antigen presentation by direct, indirect, and semidirect pathways in which CD8 and CD4 cells can be activated. During viral infections, exosomes (small EVs <200 nm in diameter) can express viral antigens and regulate immune responses. Circulating exosomes may also be a viable biomarker for other diseases and rejection after organ transplantation. Bioengineering the surface of exosomes has been proposed as a tool for targeted delivery of drugs and personalized medicine. This review focuses on recent studies demonstrating the role of EVs with a focus on exosomes and their dual role (immune activation or tolerance induction) after organ transplantation, more specifically, lung transplantation.
Collapse
Affiliation(s)
- Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | | | | | | | | | | |
Collapse
|
4
|
Ding M, Gao T, Song Y, Yi L, Li W, Deng C, Zhou W, Xie M, Zhang L. Nanoparticle-based T cell immunoimaging and immunomodulatory for diagnosing and treating transplant rejection. Heliyon 2024; 10:e24203. [PMID: 38312645 PMCID: PMC10835187 DOI: 10.1016/j.heliyon.2024.e24203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
T cells serve a pivotal role in the rejection of transplants, both by directly attacking the graft and by recruiting other immune cells, which intensifies the rejection process. Therefore, monitoring T cells becomes crucial for early detection of transplant rejection, while targeted drug delivery specifically to T cells can significantly enhance the effectiveness of rejection therapy. However, regulating the activity of T cells within transplanted organs is challenging, and the prolonged use of immunosuppressive drugs is associated with notable side effects and complications. Functionalized nanoparticles offer a potential solution by targeting T cells within transplants or lymph nodes, thereby reducing the off-target effects and improving the long-term survival of the graft. In this review, we will provide an overview of recent advancements in T cell-targeted imaging molecular probes for diagnosing transplant rejection and the progress of T cell-regulating nanomedicines for treating transplant rejection. Additionally, we will discuss future directions and the challenges in clinical translation.
Collapse
Affiliation(s)
- Mengdan Ding
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
5
|
Matsumoto H, Suzuki H, Yamanaka T, Kaiho T, Hata A, Inage T, Ito T, Kamata T, Tanaka K, Sakairi Y, Motohashi S, Yoshino I. Anti-CD20 Antibody and Calcineurin Inhibitor Combination Therapy Effectively Suppresses Antibody-Mediated Rejection in Murine Orthotopic Lung Transplantation. Life (Basel) 2023; 13:2042. [PMID: 37895424 PMCID: PMC10608275 DOI: 10.3390/life13102042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Antibody-mediated rejection (AMR) is a risk factor for chronic lung allograft dysfunction, which impedes long-term survival after lung transplantation. There are no reports evaluating the efficacy of the single use of anti-CD20 antibodies (aCD20s) in addition to calcineurin inhibitors in preventing AMR. Thus, this study aimed to evaluate the efficacy of aCD20 treatment in a murine orthotopic lung transplantation model. Murine left lung transplantation was performed using a major alloantigen strain mismatch model (BALBc (H-2d) → C57BL/6 (BL/6) (H-2b)). There were four groups: isograft (BL/6→BL/6) (Iso control), no-medication (Allo control), cyclosporine A (CyA) treated, and CyA plus murine aCD20 (CyA+aCD20) treated groups. Severe neutrophil capillaritis, arteritis, and positive lung C4d staining were observed in the allograft model and CyA-only-treated groups. These findings were significantly improved in the CyA+aCD20 group compared with those in the Allo control and CyA groups. The B cell population in the spleen, lymph node, and graft lung as well as the levels of serum donor-specific IgM and interferon γ were significantly lower in the CyA+aCD20 group than in the CyA group. Calcineurin inhibitor-mediated immunosuppression combined with aCD20 therapy effectively suppressed AMR in lung transplantation by reducing donor-specific antibodies and complement activation.
Collapse
Affiliation(s)
- Hiroki Matsumoto
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
- Department of Thoracic Surgery, Kimitsu Chuo Hospital, 1010 Sakurai, Kisarazu 292-8535, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Takahiro Yamanaka
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Taisuke Kaiho
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Atsushi Hata
- Department of General Thoracic Surgery, Chiba Cancer Center, Chiba 260-8717, Japan; (A.H.); (T.I.)
| | - Terunaga Inage
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Takamasa Ito
- Department of General Thoracic Surgery, Chiba Cancer Center, Chiba 260-8717, Japan; (A.H.); (T.I.)
| | - Toshiko Kamata
- Department of Thoracic Surgery, International University of Health and Welfare Atami Hospital, Shizuoka 413-0012, Japan;
| | - Kazuhisa Tanaka
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (H.M.); (T.Y.); (T.K.); (T.I.); (K.T.); (Y.S.); (I.Y.)
- Department of General Thoracic Surgery, International University of Health and Welfare Narita Hospital, Chiba 286-8520, Japan
| |
Collapse
|
6
|
Extracellular Vesicles: The Future of Diagnosis in Solid Organ Transplantation? Int J Mol Sci 2023; 24:ijms24065102. [PMID: 36982182 PMCID: PMC10048932 DOI: 10.3390/ijms24065102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
Solid organ transplantation (SOT) is a life-saving treatment for end-stage organ failure, but it comes with several challenges, the most important of which is the existing gap between the need for transplants and organ availability. One of the main concerns in this regard is the lack of accurate non-invasive biomarkers to monitor the status of a transplanted organ. Extracellular vesicles (EVs) have recently emerged as a promising source of biomarkers for various diseases. In the context of SOT, EVs have been shown to be involved in the communication between donor and recipient cells and may carry valuable information about the function of an allograft. This has led to an increasing interest in exploring the use of EVs for the preoperative assessment of organs, early postoperative monitoring of graft function, or the diagnosis of rejection, infection, ischemia-reperfusion injury, or drug toxicity. In this review, we summarize recent evidence on the use of EVs as biomarkers for these conditions and discuss their applicability in the clinical setting.
Collapse
|
7
|
Rutman AK, Negi S, Saberi N, Khan K, Tchervenkov J, Paraskevas S. Extracellular Vesicles From Kidney Allografts Express miR-218-5p and Alter Th17/Treg Ratios. Front Immunol 2022; 13:784374. [PMID: 35281056 PMCID: PMC8906931 DOI: 10.3389/fimmu.2022.784374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/03/2022] [Indexed: 01/18/2023] Open
Abstract
Delayed graft function (DGF) in kidney transplantation is associated with ischemic injury and carries long term functional and immunological risks. Extracellular vesicles (EV) released from allografts may signal a degree of ischemic stress, and are thought to play an important role in the development of anti-donor immunity. Here, we show that kidney perfusate-derived extracellular vesicles (KP-EV) express donor-specific human leukocyte antigen. KP-EV from kidneys that experience DGF increase the T-helper 17 (Th17) to T-regulatory (Treg) ratio in third party peripheral blood mononuclear cells to a greater degree than those from kidneys with immediate function. We report miR-218-5p upregulation in KP-EV of kidney transplant recipients with DGF. Levels of miR-218-5p in KP-EV inversely correlated with recipient eGFR at multiple time points following transplantation. Additionally, the degree of increase in Th17/Treg ratio by KP-EV positively correlated with miR-218-5p expression in KP-EV samples. Taken together, these data provide evidence that KP-EV may contribute to modulating immune responses in transplant recipients. This could lead to novel intervention strategies to inhibit DGF in order to improve graft function and survival.
Collapse
Affiliation(s)
- Alissa K Rutman
- Department of Surgery, McGill University, Montréal, QC, Canada.,Transplantation Immunology Laboratory, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Sarita Negi
- Department of Surgery, McGill University, Montréal, QC, Canada.,Transplantation Immunology Laboratory, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Nasim Saberi
- Department of Surgery, McGill University, Montréal, QC, Canada
| | - Kashif Khan
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Jean Tchervenkov
- Department of Surgery, McGill University, Montréal, QC, Canada.,Transplantation Immunology Laboratory, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Steven Paraskevas
- Department of Surgery, McGill University, Montréal, QC, Canada.,Transplantation Immunology Laboratory, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
8
|
Baan CC, Boer K. Extracellular Vesicles: Promising Candidates in Transplant Function Monitoring. Transplantation 2022; 106:698-699. [PMID: 33979316 DOI: 10.1097/tp.0000000000003821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | |
Collapse
|
9
|
Sailliet N, Ullah M, Dupuy A, Silva AKA, Gazeau F, Le Mai H, Brouard S. Extracellular Vesicles in Transplantation. Front Immunol 2022; 13:800018. [PMID: 35185891 PMCID: PMC8851566 DOI: 10.3389/fimmu.2022.800018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been extensively studied in the last two decades. It is now well documented that they can actively participate in the activation or regulation of immune system functions through different mechanisms, the most studied of which include protein–protein interactions and miRNA transfers. The functional diversity of EV-secreting cells makes EVs potential targets for immunotherapies through immune cell-derived EV functions. They are also a potential source of biomarkers of graft rejection through donor cells or graft environment-derived EV content modification. This review focuses on preclinical studies that describe the role of EVs from different cell types in immune suppression and graft tolerance and on the search for biomarkers of rejection.
Collapse
Affiliation(s)
- Nicolas Sailliet
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Matti Ullah
- MSC-med, INSERM U7057, Universite de Paris, Paris, France
| | - Amandine Dupuy
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | | | | | - Hoa Le Mai
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sophie Brouard
- Nantes Université, INSERM, Centeer for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.,Labex IGO, Nantes, France
| |
Collapse
|
10
|
Petrus-Reurer S, Romano M, Howlett S, Jones JL, Lombardi G, Saeb-Parsy K. Immunological considerations and challenges for regenerative cellular therapies. Commun Biol 2021; 4:798. [PMID: 34172826 PMCID: PMC8233383 DOI: 10.1038/s42003-021-02237-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The central goal of regenerative medicine is to replace damaged or diseased tissue with cells that integrate and function optimally. The capacity of pluripotent stem cells to produce unlimited numbers of differentiated cells is of considerable therapeutic interest, with several clinical trials underway. However, the host immune response represents an important barrier to clinical translation. Here we describe the role of the host innate and adaptive immune responses as triggers of allogeneic graft rejection. We discuss how the immune response is determined by the cellular therapy. Additionally, we describe the range of available in vitro and in vivo experimental approaches to examine the immunogenicity of cellular therapies, and finally we review potential strategies to ameliorate immune rejection. In conclusion, we advocate establishment of platforms that bring together the multidisciplinary expertise and infrastructure necessary to comprehensively investigate the immunogenicity of cellular therapies to ensure their clinical safety and efficacy.
Collapse
Affiliation(s)
- Sandra Petrus-Reurer
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Sarah Howlett
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Louise Jones
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
| |
Collapse
|
11
|
Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol 2021; 22:560-570. [PMID: 33753940 PMCID: PMC9389600 DOI: 10.1038/s41590-021-00899-0] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles have emerged as prominent regulators of the immune response during tumor progression. EVs contain a diverse repertoire of molecular cargo that plays a critical role in immunomodulation. Here, we identify the role of EVs as mediators of communication between cancer and immune cells. This expanded role of EVs may shed light on the mechanisms behind tumor progression and provide translational diagnostic and prognostic tools for immunologists.
Collapse
|