1
|
Ruan DF, Fribourg M, Yuki Y, Park YH, Martin MP, Yu H, Kelly GC, Lee B, de Real RM, Lee R, Geanon D, Kim-Schulze S, Chun N, Cravedi P, Carrington M, Heeger PS, Horowitz A. High-dimensional analysis of NK cells in kidney transplantation uncovers subsets associated with antibody-independent graft dysfunction. JCI Insight 2024; 9:e185687. [PMID: 39388279 PMCID: PMC11601574 DOI: 10.1172/jci.insight.185687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Natural killer (NK) cells respond to diseased and allogeneic cells through NKG2A/HLA-E or killer cell immunoglobulin-like receptor (KIR)/HLA-ABC interactions. Correlations between HLA/KIR disparities and kidney transplant pathology suggest an antibody-independent pathogenic role for NK cells in transplantation, but the mechanisms remain unclear. Using CyTOF to characterize recipient peripheral NK cell phenotypes and function, we observed diverse NK cell subsets among participants who responded heterogeneously to allo-stimulators. NKG2A+KIR+ NK cells responded more vigorously than other subsets, and this heightened response persisted after kidney transplantation despite immunosuppression. In test and validation sets from 2 clinical trials, pretransplant donor-induced release of cytotoxicity mediator Ksp37 by NKG2A+ NK cells correlated with reduced long-term allograft function. Separate analyses showed that Ksp37 gene expression in allograft biopsies lacking histological rejection correlated with death-censored graft loss. Our findings support an antibody-independent role for NK cells in transplant injury and support further testing of pretransplant, donor-reactive, NK cell-produced Ksp37 as a risk-assessing, transplantation biomarker.
Collapse
Affiliation(s)
- Dan Fu Ruan
- Department of Immunology and Immunotherapy
- Department of Oncological Sciences
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Tisch Cancer Institute, and
| | - Miguel Fribourg
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Tisch Cancer Institute, and
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yuko Yuki
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Yeon-Hwa Park
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Maureen P. Martin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Haocheng Yu
- Department of Immunology and Immunotherapy
- Department of Oncological Sciences
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Tisch Cancer Institute, and
| | - Geoffrey C. Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ronaldo M. de Real
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rachel Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Geanon
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Seunghee Kim-Schulze
- Department of Immunology and Immunotherapy
- Department of Oncological Sciences
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicholas Chun
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Tisch Cancer Institute, and
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paolo Cravedi
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Tisch Cancer Institute, and
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Peter S. Heeger
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Amir Horowitz
- Department of Immunology and Immunotherapy
- Department of Oncological Sciences
- The Marc and Jennifer Lipschultz Precision Immunology Institute
- Tisch Cancer Institute, and
| |
Collapse
|
2
|
Franco-Acevedo A, Pathoulas CL, Murphy PA, Valenzuela NM. The Transplant Bellwether: Endothelial Cells in Antibody-Mediated Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1276-1285. [PMID: 37844279 PMCID: PMC10593495 DOI: 10.4049/jimmunol.2300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/22/2023] [Indexed: 10/18/2023]
Abstract
Ab-mediated rejection of organ transplants remains a stubborn, frequent problem affecting patient quality of life, graft function, and grant survival, and for which few efficacious therapies currently exist. Although the field has gained considerable knowledge over the last two decades on how anti-HLA Abs cause acute tissue injury and promote inflammation, there has been a gap in linking these effects with the chronic inflammation, vascular remodeling, and persistent alloimmunity that leads to deterioration of graft function over the long term. This review will discuss new data emerging over the last 5 y that provide clues into how ongoing Ab-endothelial cell interactions may shape vascular fate and propagate alloimmunity in organ transplants.
Collapse
Affiliation(s)
- Adriana Franco-Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | | | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
3
|
Bailly E, Macedo C, Ossart J, Louis K, Gu X, Ramaswami B, Bentlejewski C, Zeevi A, Randhawa P, Lefaucheur C, Metes D. Interleukin-21 promotes Type-1 activation and cytotoxicity of CD56 dimCD16 bright natural killer cells during kidney allograft antibody-mediated rejection showing a new link between adaptive and innate humoral allo-immunity. Kidney Int 2023; 104:707-723. [PMID: 37220805 PMCID: PMC10524858 DOI: 10.1016/j.kint.2023.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
The role of Natural killer (NK) cells during kidney allograft antibody-mediated rejection (ABMR) is increasingly recognized, but an in-depth characterization of mechanisms that contribute to such immune response is still under investigation. Here, we characterized phenotypic, functional, and transcriptomic profiles of peripheral blood circulating and allograft infiltrating CD56dimCD16bright NK cells during anti-HLA donor-specific antibody (DSA)+ ABMR. Cross-sectional analyses performed in 71 kidney transplant recipients identified a unique phenotypic circulating CD56dimCD16bright NK cell cluster expanded in DSA+ ABMR. This cluster co-expressed high levels of the interleukin-21 Receptor (IL-21R); Type-1 transcription factors T-bet and EOMES, CD160 and natural killer group 2D cytotoxic and activating co-stimulatory receptors. CD160+ IL-21R+ NK cells correlated with elevated plasma IL-21, Ki-67+ ICOS+ (CD278) IL-21-producing circulating T follicular helper cells, enhanced Type-1 pro-inflammatory cytokines, NK cell cytotoxicity, worse microvascular inflammation and graft loss. Single-cell transcriptomic analysis of circulating NK cells delineated an expanded cluster in DSA+ ABMR characterized by elevated pro-inflammatory/cytotoxic pathways, IL-21/STAT3 signaling, and leukocyte trans-endothelial migration pathways. Infiltration of CD160+ IL-21R+ NK cells with similar transcriptomic profile was detected in DSA+ ABMR allograft biopsies, potentially contributing to allograft injury. Thus, the IL-21/IL-21R axis, linking adaptive and innate humoral allo-immunity, or NK cells may represent appealing immunotherapy targets in DSA+ ABMR.
Collapse
Affiliation(s)
- Elodie Bailly
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Human Immunology, Pathophysiology, Immunotherapy, INSERM UMR-S976, Université Paris Cité, Paris, France.
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Ossart
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Louis
- Human Immunology, Pathophysiology, Immunotherapy, INSERM UMR-S976, Université Paris Cité, Paris, France
| | - Xinyan Gu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bala Ramaswami
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carol Bentlejewski
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adriana Zeevi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Parmjeet Randhawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carmen Lefaucheur
- Human Immunology, Pathophysiology, Immunotherapy, INSERM UMR-S976, Université Paris Cité, Paris, France
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Ruan DF, Fribourg M, Yuki Y, Park YH, Martin M, Kelly G, Lee B, Miguel de Real R, Lee R, Geanon D, Kim-Schulze S, McCarthy M, Chun N, Cravedi P, Carrington M, Heeger PS, Horowitz A. Understanding the heterogeneity of alloreactive natural killer cell function in kidney transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555962. [PMID: 37732256 PMCID: PMC10508724 DOI: 10.1101/2023.09.01.555962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Human Natural Killer (NK) cells are heterogeneous lymphocytes regulated by variegated arrays of germline-encoded activating and inhibitory receptors. They acquire the ability to detect polymorphic self-antigen via NKG2A/HLA-E or KIR/HLA-I ligand interactions through an education process. Correlations among HLA/KIR genes, kidney transplantation pathology and outcomes suggest that NK cells participate in allograft injury, but mechanisms linking NK HLA/KIR education to antibody-independent pathological functions remain unclear. We used CyTOF to characterize pre- and post-transplant peripheral blood NK cell phenotypes/functions before and after stimulation with allogeneic donor cells. Unsupervised clustering identified unique NK cell subpopulations present in varying proportions across patients, each of which responded heterogeneously to donor cells based on donor ligand expression patterns. Analyses of pre-transplant blood showed that educated, NKG2A/KIR-expressing NK cells responded greater than non-educated subsets to donor stimulators, and this heightened alloreactivity persisted > 6 months post-transplant despite immunosuppression. In distinct test and validation sets of patients participating in two clinical trials, pre-transplant donor-induced release of NK cell Ksp37, a cytotoxicity mediator, correlated with 2-year and 5-year eGFR. The findings explain previously reported associations between NK cell genotypes and transplant outcomes and suggest that pre-transplant NK cell analysis could function as a risk-assessment biomarker for transplant outcomes.
Collapse
Affiliation(s)
- Dan Fu Ruan
- Department of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Fribourg
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuko Yuki
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yeon-Hwa Park
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maureen Martin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Geoffrey Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronaldo Miguel de Real
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Geanon
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Department of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa McCarthy
- Dean’s Flow Cytometry CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas Chun
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paolo Cravedi
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute Frederick, MD, USA
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Peter S. Heeger
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- These authors contributed equally
| | - Amir Horowitz
- Department of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- These authors contributed equally
| |
Collapse
|
5
|
Mak ML, Reid KT, Crome SQ. Protective and pathogenic functions of innate lymphoid cells in transplantation. Clin Exp Immunol 2023; 213:23-39. [PMID: 37119279 PMCID: PMC10324558 DOI: 10.1093/cei/uxad050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/01/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a family of lymphocytes with essential roles in tissue homeostasis and immunity. Along with other tissue-resident immune populations, distinct subsets of ILCs have important roles in either promoting or inhibiting immune tolerance in a variety of contexts, including cancer and autoimmunity. In solid organ and hematopoietic stem cell transplantation, both donor and recipient-derived ILCs could contribute to immune tolerance or rejection, yet understanding of protective or pathogenic functions are only beginning to emerge. In addition to roles in directing or regulating immune responses, ILCs interface with parenchymal cells to support tissue homeostasis and even regeneration. Whether specific ILCs are tissue-protective or enhance ischemia reperfusion injury or fibrosis is of particular interest to the field of transplantation, beyond any roles in limiting or promoting allograft rejection or graft-versus host disease. Within this review, we discuss the current understanding of ILCs functions in promoting immune tolerance and tissue repair at homeostasis and in the context of transplantation and highlight where targeting or harnessing ILCs could have applications in novel transplant therapies.
Collapse
Affiliation(s)
- Martin L Mak
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Kyle T Reid
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| |
Collapse
|
6
|
Riddell P, Juvet SC. Natural killer cells, CMV infection, and antibody-mediated rejection. J Heart Lung Transplant 2023; 42:315-316. [PMID: 36804059 DOI: 10.1016/j.healun.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Affiliation(s)
- P Riddell
- Irish Lung Transplant Program, Mater Misericordiae University Hospital, Dublin, Ireland.
| | - S C Juvet
- Toronto Lung Transplant Program, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
7
|
Muacevic A, Adler JR. Classic and Current Opinions in Human Organ and Tissue Transplantation. Cureus 2022; 14:e30982. [PMID: 36337306 PMCID: PMC9624478 DOI: 10.7759/cureus.30982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Graft tolerance is a pathophysiological condition heavily reliant on the dynamic interaction of the innate and adaptive immune systems. Genetic polymorphism determines immune responses to tissue/organ transplantation, and intricate humoral and cell-mediated mechanisms control these responses. In transplantation, the clinician's goal is to achieve a delicate equilibrium between the allogeneic immune response, undesired effects of the immunosuppressive drugs, and the existing morbidities that are potentially life-threatening. Transplant immunopathology involves sensitization, effector, and apoptosis phases which recruit and engages immunological cells like natural killer cells, lymphocytes, neutrophils, and monocytes. Similarly, these cells are involved in the transfer of normal or genetically engineered T cells. Advances in tissue transplantation would involve a profound knowledge of the molecular mechanisms that underpin the respective immunopathology involved and the design of precision medicines that are safe and effective.
Collapse
|
8
|
Tsuda H, Dvorina N, Keslar KS, Nevarez-Mejia J, Valenzuela NM, Reed EF, Fairchild RL, Baldwin WM. Molecular Signature of Antibody-Mediated Chronic Vasculopathy in Heart Allografts in a Novel Mouse Model. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1053-1065. [PMID: 35490714 PMCID: PMC9253905 DOI: 10.1016/j.ajpath.2022.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 04/23/2023]
Abstract
Cardiac allograft vasculopathy (CAV) limits the long-term success of heart transplants. Generation of donor-specific antibodies (DSAs) is associated with increased incidence of CAV clinically, but mechanisms underlying development of this pathology remain poorly understood. Major histocompatibility complex-mismatched A/J cardiac allografts in B6.CCR5-/- recipients have been reported to undergo acute rejection with little T-cell infiltration, but intense deposition of C4d in large vessels and capillaries of the graft accompanied by high titers of DSA. This model was modified to investigate mechanisms of antibody-mediated CAV by transplanting A/J hearts to B6.CCR5-/- CD8-/- mice that were treated with low doses of anti-CD4 monoclonal antibody to decrease T-cell-mediated graft injury and promote antibody-mediated injury. Although the mild inhibition of CD4 T cells extended allograft survival, the grafts developed CAV with intense C4d deposition and macrophage infiltration by 14 days after transplantation. Development of CAV correlated with recipient DSA titers. Transcriptomic analysis of microdissected allograft arteries identified the Notch ligand Dll4 as the most elevated transcript in CAV, associated with high versus low titers of DSA. More importantly, these analyses revealed a differential expression of transcripts in the CAV lesions compared with the matched apical tissue that lacks large arteries. In conclusion, these findings report a novel model of antibody-mediated CAV with the potential to facilitate further understanding of the molecular mechanisms promoting development of CAV.
Collapse
Affiliation(s)
- Hidetoshi Tsuda
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Karen S Keslar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jessica Nevarez-Mejia
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Nicole M Valenzuela
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Elaine F Reed
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
9
|
Dębska-Zielkowska J, Moszkowska G, Zieliński M, Zielińska H, Dukat-Mazurek A, Trzonkowski P, Stefańska K. KIR Receptors as Key Regulators of NK Cells Activity in Health and Disease. Cells 2021; 10:1777. [PMID: 34359951 PMCID: PMC8303609 DOI: 10.3390/cells10071777] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are part of the cellular immune response. They target mainly cancer and virally infected cells. To a high extent cytotoxic activity of NK cells is regulated inter alia by signals from killer immunoglobulin-like receptors (KIR). The major histocompatibility complex (MHC) class I molecules are important ligands for KIR receptors. Binding of ligands (such as MHC I) to the KIR receptors has the important role in solid organ or hematopoietic cell transplantation. Of note, the understanding of the relationship between KIR and MHC receptors may contribute to the improvement of transplant results. Donor-recipient matching, which also includes the KIR typing, may improve monitoring, individualize the treatment and allow for predicting possible effects after transplantation, such as the graft-versus-leukemia effect (GvL) or viral re-infection. There are also less evident implications of KIR/MHC matching, such as with pregnancy and cancer. In this review, we present the most relevant literature reports on the importance of the KIR/MHC relationship on NK cell activity and hematopoietic stem cell transplantation (HSCT)/solid organ transplantation (SOT) effects, the risk of allograft rejection, protection against post-transplant cytomegalovirus (CMV) infection, pregnancy complications, cancer and adoptive therapy with NK cells.
Collapse
Affiliation(s)
- Joanna Dębska-Zielkowska
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Grażyna Moszkowska
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Hanna Zielińska
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Anna Dukat-Mazurek
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Katarzyna Stefańska
- Department of Obstetrics, Medical University of Gdańsk, 80-214 Gdansk, Poland;
| |
Collapse
|