1
|
Hoek RAS, Liu S, GeurtsvanKessel CH, Verschuuren EAM, Vonk JM, Hellemons ME, Kool M, Wijbenga N, Bogers S, Scherbeijn S, Rugebregt S, van Gemert JP, Steenhuis WN, Niesters HGM, van Baarle D, de Vries RD, Van Leer Buter C. Humoral and cellular immune responses after COVID-19 vaccination of lung transplant recipients and patients on the waiting list: a 6-month follow-up. Front Immunol 2024; 14:1254659. [PMID: 38239369 PMCID: PMC10794507 DOI: 10.3389/fimmu.2023.1254659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Background Data on cellular response and the decay of antibodies and T cells in time are scarce in lung transplant recipients (LTRs). Additionally, the development and durability of humoral and cellular immune responses have not been investigated in patients on the waitlist for lung transplantation (WLs). Here, we report our 6-month follow-up of humoral and cellular immune responses of LTRs and WLs, compared with controls. Methods Humoral responses to two doses of the mRNA-1273 vaccination were assessed by determining spike (S)-specific IgG antibodies and neutralizing antibodies. Cellular responses were investigated by interferon gamma (IFN-γ) release assay (IGRA) and IFN-γ ELISpot assay at 28 days and 6 months after the second vaccination. Results In LTRs, the level of antibodies and T-cell responses was significantly lower at 28 days after the second vaccination. Also, WLs had lower antibody titers and lower T-cell responses compared with controls. Six months after the second vaccination, all groups showed a decrease in antibody titers and T-cell responses. In WLs, the rate of decline of neutralizing antibodies and T-cell responses was significantly higher than in controls. Conclusion Our results show that humoral and cellular responses in LTRs, if they develop, decrease at rates comparable with controls. In contrast, the inferior cellular responses and the rapid decay of both humoral and cellular responses in the WL groups imply that WLs may not be protected adequately by two vaccinations and repeat boostering may be necessary to induce protection that lasts beyond the months immediately post-transplantation.
Collapse
Affiliation(s)
- Rogier A. S. Hoek
- Department of Pulmonary Medicine, Erasmus Medical Center (MC) Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Siqi Liu
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | - Erik A. M. Verschuuren
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Judith M. Vonk
- Department of Epidemiology and Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease (COPD) (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Merel E. Hellemons
- Department of Pulmonary Medicine, Erasmus Medical Center (MC) Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus Medical Center (MC) Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nynke Wijbenga
- Department of Pulmonary Medicine, Erasmus Medical Center (MC) Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sandra Scherbeijn
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sharona Rugebregt
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Johanna P. van Gemert
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Willie N. Steenhuis
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hubert G. M. Niesters
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Coretta Van Leer Buter
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Yu B, Tamargo C, Brennan DC, Kant S. Measures to Increase Immunogenicity of SARS-CoV-2 Vaccines in Solid Organ Transplant Recipients: A Narrative Review. Vaccines (Basel) 2023; 11:1755. [PMID: 38140160 PMCID: PMC10748337 DOI: 10.3390/vaccines11121755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Purpose of review: To review the data on the immunogenicity of COVID-19 vaccines, administered by different strategies, in solid organ transplant recipients (SOTRs). Recent findings: COVID-19 booster vaccines were given to SOTRs as a widespread practice in many transplant centers, mostly as the third and/or fourth dose in an extended vaccine series, with a significantly improved humoral response compared with the initial two-dose scheme. However, one-third of SOTRs remained unresponsive, despite these boosters. Next steps: Vaccination with standard dosing remains the most feasible strategy for attaining protection against COVID-19. Additional booster doses and temporarily holding or reducing mycophenolate mofetil/mycophenolic acid may provide immunogenicity to vaccines, according to recent studies demonstrating some efficacy with these measures. Preexposure prophylaxis with monoclonal antibodies showed benefit in immunocompromised patients but is no longer recommended by the National Institutes of Health (NIH) due to diminished efficacy against Omicron and recent variants. Screening for the presence and titers of SARS-CoV-2-specific antibodies in SOTRs is not recommended in most clinical settings. T cell-based techniques are needed to evaluate vaccine efficacy and risk of infection. As SARS-CoV-2 continues to evolve, new vaccines based on conservative protein component/complexes of the COVID virus, in addition to its spike protein, are warranted to offer prolonged protection.
Collapse
Affiliation(s)
- Bo Yu
- Department of Medicine, University of Maryland Medical Center, Midtown Campus, Baltimore, MD 21201, USA;
| | - Christina Tamargo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Daniel C. Brennan
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Comprehensive Transplant Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sam Kant
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Comprehensive Transplant Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Casenaz A, Grosjean S, Aho-Glélé LS, Bour JB, Auvray C, Manoha C. Humoral and cellular immune response after severe acute respiratory syndrome coronavirus 2 messenger ribonucleic acid vaccination in heart transplant recipients: An observational study in France. Front Med (Lausanne) 2022; 9:1027708. [PMID: 36388890 PMCID: PMC9643719 DOI: 10.3389/fmed.2022.1027708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Heart transplant (HT) recipients have a high risk of developing severe COVID-19. Immunoglobulin G antibodies are considered to provide protective immunity and T-cell activity is thought to confer protection from severe disease. However, data on T-cell response to mRNA vaccination in a context of HT remains limited. METHODS In 96 HT patients, a IFN-γ release assay and an anti-Spike antibody test were used to evaluate the ability of SARS-CoV-2 mRNA vaccines to generate cellular and humoral immune response. Blood samples were collected few weeks to 7 months after vaccination. Multiple fractional polynomial and LASSO regression models were used to define predictors of T-cell response. RESULTS Three to five months after vaccination, three doses of vaccine induced a positive SARS-CoV-2 T-cell response in 47% of recipients and a positive humoral response in 83% of recipients, 11.1% of patients remained negative for both T and B cell responses. Three doses were necessary to reach high IgG response levels (>590 BAU/mL), which were obtained in a third of patients. Immunity was greatly amplified in the group who had three vaccine doses plus COVID-19 infection. CONCLUSION Our study revealed that T and B immunity decreases over time, leading us to suggest the interest of a booster vaccination at 5 months after the third dose. Moreover, a close follow-up of immune response following vaccination is needed to ensure ongoing immune protection. We also found that significant predictors of higher cellular response were infection and active smoking, regardless of immunosuppressive treatment with mycophenolate mofetil (MMF).
Collapse
Affiliation(s)
- Alice Casenaz
- Virology Laboratory, Department of Microbiology, Dijon Bourgogne University Hospital, Dijon, France
| | - Sandrine Grosjean
- Department of Anaesthesiology and Critical Care Medicine, Dijon Bourgogne University Hospital, Dijon, France
| | - Ludwig-Serge Aho-Glélé
- Epidemiology and Infection Control Unit, Dijon Bourgogne University Hospital, Dijon, France
| | - Jean-Baptiste Bour
- Virology Laboratory, Department of Microbiology, Dijon Bourgogne University Hospital, Dijon, France
| | - Christelle Auvray
- Virology Laboratory, Department of Microbiology, Dijon Bourgogne University Hospital, Dijon, France
| | - Catherine Manoha
- Virology Laboratory, Department of Microbiology, Dijon Bourgogne University Hospital, Dijon, France
| |
Collapse
|
4
|
Hernandez-Suarez C, Murillo-Zamora E. Waning immunity to SARS-CoV-2 following vaccination or infection. Front Med (Lausanne) 2022; 9:972083. [PMID: 36313998 PMCID: PMC9606629 DOI: 10.3389/fmed.2022.972083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
We use survival analysis to analyze the decay in the protection induced by eight SARS-CoV-2 vaccines using data from 33,418 fully anonymized patients from the IMSS public health system in Mexico, including only previously vaccinated, confirmed SARS-CoV-2 positive with a PCR test. We analyze the waning effect in those with complete vs. incomplete dose fitting a Weibull distribution. We compare these results with an estimate of the waning effect due to active infection. In two-dose vaccines, we found that the average protection time of a complete dose increases 2.6 times compared to that of an incomplete dose. All analyzed vaccines provided a protection that lasted longer than the protection due to active infection, except in those patients that did not fulfilled the complete dose. The average protection of a full dose is 2.2 times larger than that provided by active infection. The average protection of active infection is about the same as the average protection of an incomplete dose. All evaluated vaccines had lost most of their protective effect between 8 and 11 months of application of first shot. Our results highly correlate with NT50 and other estimates of vaccine efficacy. We found that on average, vaccination increases Age50, the age at which there is a 50% probability of severe disease if infected, in 15 years. We also found that Age50 increases with mean protection time.
Collapse
Affiliation(s)
- Carlos Hernandez-Suarez
- Instituto de Ciencias Tecnología e Innovación, Universidad Francisco Gavidia, San Salvador, El Salvador
| | - Efrèn Murillo-Zamora
- Unidad de Medicina Familiar No. 19, Departamento de Epidemiología, Instituto Mexicano del Seguro Social, Colima, Mexico
| |
Collapse
|