1
|
Jiao WE, Xu S, Qiao YL, Kong YG, Sun L, Deng YQ, Yang R, Tao ZZ, Hua QQ, Chen SM. Notch2-dependent GATA3+ Treg cells alleviate allergic rhinitis by suppressing the Th2 cell response. Int Immunopharmacol 2022; 112:109261. [PMID: 36155282 DOI: 10.1016/j.intimp.2022.109261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the role and mechanism of Notch2-dependent GATA3+ Treg cells in allergic rhinitis (AR). Samples were collected from patients in the control and AR groups to detect differences in the numbers of GATA3+ Treg cells and their intracellular Notch2 levels. The effects of Notch2 on GATA3+ Treg cell differentiation and function in vitro were detected. AR mice were subjected to adoptive transfer of GATA3+ Treg cells to detect changes in the allergic inflammatory response and Th2 cells. Mice with Treg cell-specific knockout of Notch2 were constructed, and an AR model was established to detect the changes. The number of GATA3+ Treg cells and intracellular Notch2 expression in peripheral blood of the AR group were decreased compared with the controls (P < 0.05), and the number of GATA3+ Treg cells was significantly negatively correlated with the level of allergen-specific IgE (sIgE; P < 0.01). In vitro experiments showed that Notch2 promoted the differentiation and immunosuppressive function of GATA3+ Treg cells, and Notch2 directly promoted GATA3 transcription in Treg cells (P < 0.05). Animal experiments indicated that adoptive transfer of GATA3+ Treg cells reduced the allergic inflammatory response in AR mice (P < 0.05). The number of GATA3+ Treg cells was decreased in gene knockout mice (P < 0.05), and autoimmune inflammation was observed. After modeling, the allergic inflammatory response was further aggravated (P < 0.05). Overall, our findings indicate that Notch2 alleviates AR by specifically increasing GATA3+ Treg cell differentiation. Notch2 expressed in Treg cells is expected to be a new therapeutic target for AR.
Collapse
Affiliation(s)
- Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Liu Sun
- Department of Otolaryngology-Head and Neck Surgery, General Hospital of The Central Theater Command, Wuhan 430070, Hubei, PR China
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Qing-Quan Hua
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China; Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
2
|
Yan S, Chen L, Zhao Q, Liu YN, Hou R, Yu J, Zhang H. Developmental endothelial locus-1 (Del-1) antagonizes Interleukin-17-mediated allergic asthma. Immunol Cell Biol 2018; 96:526-535. [PMID: 29437247 DOI: 10.1111/imcb.12023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 01/13/2023]
Abstract
Interleukin (IL)-17 is a major contributor to the pathogenesis of allergic asthma. Developmental endothelial locus-1 (Del-1) is an endothelial cell-secreted protein known to inhibit IL-17 expression. However, little is known about the association between Del-1 and IL-17 in the pathogenesis of allergic asthma. Using bronchoalveolar lavage fluid (BALF) and peripheral blood samples collected from allergic asthmatic patients and controls, we explored the role of Del-1 in relation to IL-17 in allergic asthma. We found that the negative correlation between Del-1 and IL-17 was significant in BALF of allergic asthmatics. Del-1 treatment inhibited the expression of IL-17, the differentiation of IL-17-secreting leukocytes and associated cytokines. Contrarily, IL-17 levels were increased after treatment with anti-Del-1 mAb. Consistent with this, Del-1 treatment led to downregulation of IL-5, CCL5 and IL-4, thus reducing secretion of eosinophil cationic protein. Furthermore, Del-1 significantly downregulated the expression of ICAM-1 and may have the potential to reduce leukocyte transendothelial migration. Our data demonstrate that Del-1 can negatively regulate IL-17 and its proinflammatory function, thereby limiting airway inflammation in allergic asthmatics, and suggest Del-1 as a potential candidate for prevention and treatment of allergic asthma.
Collapse
Affiliation(s)
- Shu Yan
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Chen
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Zhao
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Nan Liu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Hou
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Yu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Somppi TL. Non-Thyroidal Illness Syndrome in Patients Exposed to Indoor Air Dampness Microbiota Treated Successfully with Triiodothyronine. Front Immunol 2017; 8:919. [PMID: 28824644 PMCID: PMC5545575 DOI: 10.3389/fimmu.2017.00919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023] Open
Abstract
Long-term exposure to dampness microbiota induces multi-organ morbidity. One of the symptoms related to this disorder is non-thyroidal illness syndrome (NTIS). A retrospective study was carried out in nine patients with a history of mold exposure, experiencing chronic fatigue, cognitive disorder, and different kinds of hypothyroid symptoms despite provision of levothyroxine (3,5,3',5'-tetraiodothyronine, LT4) monotherapy. Exposure to volatile organic compounds present in water-damaged buildings including metabolic products of toxigenic fungi and mold-derived inflammatory agents can lead to a deficiency or imbalance of many hormones, such as active T3 hormone. Since the 1970s, the synthetic prohormone, levothyroxine (LT4), has been the most commonly prescribed thyroid hormone in replacement monotherapy. It has been presumed that the peripheral conversion of T4 (3,5,3',5'-tetraiodothyronine) into T3 (3,5,3'-triiodothyronine) is sufficient to satisfy the overall tissue requirements. However, evidence is presented that this not the case for all patients, especially those exposed to indoor air molds. This retrospective study describes the successful treatment of nine patients in whom NTIS was treated with T3-based thyroid hormone. The treatment was based on careful interview, clinical monitoring, and laboratory analysis of serum free T3 (FT3), reverse T3 (rT3) and thyroid-stimulating hormone, free T4, cortisol, and dehydroepiandrosterone (DHEA) values. The ratio of FT3/rT3 was calculated. In addition, some patients received adrenal support with hydrocortisone and DHEA. All patients received nutritional supplementation and dietary instructions. During the therapy, all nine patients reported improvements in all of the symptom groups. Those who had residual symptoms during T3-based therapy remained exposed to indoor air molds in their work places. Four patients were unable to work and had been on disability leave for a long time during LT4 monotherapy. However, during the T3-based and supportive therapy, all patients returned to work in so-called "healthy" buildings. The importance of avoiding mycotoxin exposure via the diet is underlined as DIO2 genetic polymorphism and dysfunction of DIO2 play an important role in the development of symptoms that can be treated successfully with T3 therapy.
Collapse
|
4
|
Perret JL, Bowatte G, Lodge CJ, Knibbs LD, Gurrin LC, Kandane-Rathnayake R, Johns DP, Lowe AJ, Burgess JA, Thompson BR, Thomas PS, Wood-Baker R, Morrison S, Giles GG, Marks G, Markos J, Tang MLK, Abramson MJ, Walters EH, Matheson MC, Dharmage SC. The Dose-Response Association between Nitrogen Dioxide Exposure and Serum Interleukin-6 Concentrations. Int J Mol Sci 2017; 18:ijms18051015. [PMID: 28481326 PMCID: PMC5454928 DOI: 10.3390/ijms18051015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/04/2022] Open
Abstract
Systemic inflammation is an integral part of chronic obstructive pulmonary disease (COPD), and air pollution is associated with cardiorespiratory mortality, yet the interrelationships are not fully defined. We examined associations between nitrogen dioxide (NO2) exposure (as a marker of traffic-related air pollution) and pro-inflammatory cytokines, and investigated effect modification and mediation by post-bronchodilator airflow obstruction (post-BD-AO) and cardiovascular risk. Data from middle-aged participants in the Tasmanian Longitudinal Health Study (TAHS, n = 1389) were analyzed by multivariable logistic regression, using serum interleukin (IL)-6, IL-8 and tumor necrosis factor-α (TNF-α) as the outcome. Mean annual NO2 exposure was estimated at residential addresses using a validated satellite-based land-use regression model. Post-BD-AO was defined by post-BD forced expiratory ratio (FEV1/FVC) < lower limit of normal, and cardiovascular risk by a history of either cerebrovascular or ischaemic heart disease. We found a positive association with increasing serum IL-6 concentration (geometric mean 1.20 (95% CI: 1.1 to 1.3, p = 0.001) per quartile increase in NO2). This was predominantly a direct relationship, with little evidence for either effect modification or mediation via post-BD-AO, or for the small subgroup who reported cardiovascular events. However, there was some evidence consistent with serum IL-6 being on the causal pathway between NO2 and cardiovascular risk. These findings raise the possibility that the interplay between air pollution and systemic inflammation may differ between post-BD airflow obstruction and cardiovascular diseases.
Collapse
Affiliation(s)
- Jennifer L Perret
- Allergy and Lung Health Unit, Center for Epidemiology and Biostatistics, the University of Melbourne, Melbourne, Victoria 3010, Australia.
- Institute for Breathing and Sleep (IBAS), Heidelberg, Melbourne, Victoria 3084, Australia.
| | - Gayan Bowatte
- Allergy and Lung Health Unit, Center for Epidemiology and Biostatistics, the University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Center for Epidemiology and Biostatistics, the University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Luke D Knibbs
- School of Public Health, the University of Queensland, Herston, Queensland 4006, Australia.
| | - Lyle C Gurrin
- Allergy and Lung Health Unit, Center for Epidemiology and Biostatistics, the University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Rangi Kandane-Rathnayake
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria 3004, Australia.
| | - David P Johns
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
- "Breathe Well" Center of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia.
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Center for Epidemiology and Biostatistics, the University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - John A Burgess
- Allergy and Lung Health Unit, Center for Epidemiology and Biostatistics, the University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Bruce R Thompson
- Allergy, Immunology and Respiratory Medicine, the Alfred Hospital, Melbourne, Victoria 3004, Australia.
| | - Paul S Thomas
- Prince of Wales' Hospital Clinical School and School of Medicine Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Richard Wood-Baker
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Stephen Morrison
- Department of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Graham G Giles
- Cancer Epidemiological Center, Cancer Council Victoria, Melbourne, Victoria 3053, Australia.
| | - Guy Marks
- South West Sydney Clinical School, the University of NSW, Liverpool, NSW 2170, Australia.
| | - James Markos
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia.
| | - Mimi L K Tang
- Department of Allergy and Immunology, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Allergy and Immune Disorders, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia.
- Department of Paediatrics, the University of Melbourne, Victoria 3010, Australia.
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia.
| | - E Haydn Walters
- Allergy and Lung Health Unit, Center for Epidemiology and Biostatistics, the University of Melbourne, Melbourne, Victoria 3010, Australia.
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
- "Breathe Well" Center of Research Excellence for Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia.
| | - Melanie C Matheson
- Allergy and Lung Health Unit, Center for Epidemiology and Biostatistics, the University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Center for Epidemiology and Biostatistics, the University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|