1
|
Stone TW, Darlington LG, Badawy AAB, Williams RO. The Complex World of Kynurenic Acid: Reflections on Biological Issues and Therapeutic Strategy. Int J Mol Sci 2024; 25:9040. [PMID: 39201726 PMCID: PMC11354734 DOI: 10.3390/ijms25169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| | - L. Gail Darlington
- Worthing Hospital, University Hospitals Sussex NHS Foundation Trust, Worthing BN11 2DH, UK
| | - Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
2
|
Guarnieri T. Light Sensing beyond Vision: Focusing on a Possible Role for the FICZ/AhR Complex in Skin Optotransduction. Cells 2024; 13:1082. [PMID: 38994936 PMCID: PMC11240502 DOI: 10.3390/cells13131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Although our skin is not the primary visual organ in humans, it acts as a light sensor, playing a significant role in maintaining our health and overall well-being. Thanks to the presence of a complex and sophisticated optotransduction system, the skin interacts with the visible part of the electromagnetic spectrum and with ultraviolet (UV) radiation. Following a brief overview describing the main photosensitive molecules that detect specific electromagnetic radiation and their associated cell pathways, we analyze their impact on physiological functions such as melanogenesis, immune response, circadian rhythms, and mood regulation. In this paper, we focus on 6-formylindolo[3,2-b]carbazole (FICZ), a photo oxidation derivative of the essential amino acid tryptophan (Trp). This molecule is the best endogenous agonist of the Aryl hydrocarbon Receptor (AhR), an evolutionarily conserved transcription factor, traditionally recognized as a signal transducer of both exogenous and endogenous chemical signals. Increasing evidence indicates that AhR is also involved in light sensing within the skin, primarily due to its ligand FICZ, which acts as both a chromophore and a photosensitizer. The biochemical reactions triggered by their interaction impact diverse functions and convey crucial data to our body, thus adding a piece to the complex puzzle of pathways that allow us to decode and elaborate environmental stimuli.
Collapse
Affiliation(s)
- Tiziana Guarnieri
- Cell Physiology Laboratory, Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo "Mauro Picone", Via dei Taurini 19, 00185 Roma, Italy
| |
Collapse
|
3
|
Gerlini G, Susini P, Sestini S, Brandani P, Giannotti V, Borgognoni L. Langerhans Cells in Sentinel Lymph Nodes from Melanoma Patients. Cancers (Basel) 2024; 16:1890. [PMID: 38791968 PMCID: PMC11119378 DOI: 10.3390/cancers16101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Langerhans cells (LCs) are professional Dendritic Cells (DCs) involved in immunoregulatory functions. At the skin level, LCs are immature. In response to tissue injuries, they migrate to regional Lymph Nodes (LNs), reaching a full maturation state. Then, they become effective antigen-presenting cells (APCs) that induce anti-cancer responses. Notably, melanoma patients present several DC alterations in the Sentinel Lymph Node (SLN), where primary antitumoral immunity is generated. LCs are the most represented DCs subset in melanoma SLNs and are expected to play a key role in the anti-melanoma response. With this paper, we aim to review the current knowledge and future perspectives regarding LCs and melanoma. METHODS A systematic review was carried out according to the PRISMA statement using the PubMed (MEDLINE) library from January 2004 to January 2024, searching for original studies discussing LC in melanoma. RESULTS The final synthesis included 15 articles. Several papers revealed significant LCs-melanoma interactions. CONCLUSIONS Melanoma immune escape mechanisms include SLN LC alterations, favoring LN metastasis arrival/homing and melanoma proliferation. The SLN LCs of melanoma patients are defective but not irreversibly, and their function may be restored by appropriate stimuli. Thus, LCs represent a promising target for future immunotherapeutic strategies and cancer vaccines.
Collapse
Affiliation(s)
- Gianni Gerlini
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| | - Pietro Susini
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| | - Serena Sestini
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| | - Paola Brandani
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| | - Vanni Giannotti
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| | - Lorenzo Borgognoni
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| |
Collapse
|
4
|
Fakhimahmadi A, Hasanaj I, Hofstetter G, Pogner C, Gorfer M, Wiederstein M, Szepannek N, Bianchini R, Dvorak Z, Jensen SA, Berger M, Jensen-Jarolim E, Hufnagl K, Roth-Walter F. Nutritional Provision of Iron Complexes by the Major Allergen Alt a 1 to Human Immune Cells Decreases Its Presentation. Int J Mol Sci 2023; 24:11934. [PMID: 37569310 PMCID: PMC10418924 DOI: 10.3390/ijms241511934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Alternaria alternata is a common fungus strongly related with severe allergic asthma, with 80% of affected individuals being sensitized solely to its major allergen Alt a 1. Here, we assessed the function of Alt a 1 as an innate defense protein binding to micronutrients, such as iron-quercetin complexes (FeQ2), and its impact on antigen presentation in vitro. Binding of Alt a 1 to FeQ2 was determined in docking calculations. Recombinant Alt a 1 was generated, and binding ability, as well as secondary and quaternary structure, assessed by UV-VIS, CD, and DLS spectroscopy. Proteolytic functions were determined by casein and gelatine zymography. Uptake of empty apo- or ligand-filled holoAlt a 1 were assessed in human monocytic THP1 cells under the presence of dynamin and clathrin-inhibitors, activation of the Arylhydrocarbon receptor (AhR) using the human reporter cellline AZ-AHR. Human PBMCs were stimulated and assessed for phenotypic changes in monocytes by flow cytometry. Alt a 1 bound strongly to FeQ2 as a tetramer with calculated Kd values reaching pico-molar levels and surpassing affinities to quercetin alone by a factor of 5000 for the tetramer. apoAlt a 1 but not holoAlta 1 showed low enzymatic activity against casein as a hexamer and gelatin as a trimer. Uptake of apo- and holo-Alt a 1 occurred partly clathrin-dependent, with apoAlt a 1 decreasing labile iron in THP1 cells and holoAlt a 1 facilitating quercetin-dependent AhR activation. In human PBMCs uptake of holoAlt a 1 but not apoAlt a 1 significantly decreased the surface expression of the costimulatory CD86, but also of HLADR, thereby reducing effective antigen presentation. We show here for the first time that the presence of nutritional iron complexes, such as FeQ2, significantly alters the function of Alt a 1 and dampens the human immune response, thereby supporting the notion that Alt a 1 only becomes immunogenic under nutritional deprivation.
Collapse
Affiliation(s)
- Aila Fakhimahmadi
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ilir Hasanaj
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Gerlinde Hofstetter
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clara Pogner
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria; (C.P.); (M.G.)
| | - Markus Gorfer
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria; (C.P.); (M.G.)
| | - Markus Wiederstein
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria;
| | - Nathalie Szepannek
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, 779 00 Olomouc, Czech Republic;
| | - Sebastian A. Jensen
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Markus Berger
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Sadeghi Shermeh A, Royzman D, Kuhnt C, Draßner C, Stich L, Steinkasserer A, Knippertz I, Wild AB. Differential Modulation of Dendritic Cell Biology by Endogenous and Exogenous Aryl Hydrocarbon Receptor Ligands. Int J Mol Sci 2023; 24:ijms24097801. [PMID: 37175508 PMCID: PMC10177790 DOI: 10.3390/ijms24097801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a decisive regulatory ligand-dependent transcription factor. It binds highly diverse ligands, which can be categorized as either endogenous or exogenous. Ligand binding activates AhR, which can adjust inflammatory responses by modulating immune cells such as dendritic cells (DCs). However, how different AhR ligand classes impact the phenotype and function of human monocyte-derived DCs (hMoDCs) has not been extensively studied in a comparative manner. We, therefore, tested the effect of the representative compounds Benzo(a)pyrene (BP), 6-formylindolo[3,2-b]carbazole (FICZ), and Indoxyl 3-sulfate (I3S) on DC biology. Thereby, we reveal that BP significantly induces a tolerogenic response in lipopolysaccharide-matured DCs, which is not apparent to the same extent when using FICZ or I3S. While all three ligand classes activate AhR-dependent pathways, BP especially induces the expression of negative immune regulators, and subsequently strongly subverts the T cell stimulatory capacity of DCs. Using the CRISPR/Cas9 strategy we also prove that the regulatory effect of BP is strictly AhR-dependent. These findings imply that AhR ligands contribute differently to DC responses and incite further studies to uncover the mechanisms and molecules which are involved in the induction of different phenotypes and functions in DCs upon AhR activation.
Collapse
Affiliation(s)
- Atefeh Sadeghi Shermeh
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christina Draßner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Andreas B Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
6
|
Regner A, Szepannek N, Wiederstein M, Fakhimahmadi A, Paciosis LF, Blokhuis BR, Redegeld FA, Hofstetter G, Dvorak Z, Jensen-Jarolim E, Hufnagl K, Roth-Walter F. Binding to Iron Quercetin Complexes Increases the Antioxidant Capacity of the Major Birch Pollen Allergen Bet v 1 and Reduces Its Allergenicity. Antioxidants (Basel) 2022; 12:42. [PMID: 36670905 PMCID: PMC9854910 DOI: 10.3390/antiox12010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Bet v 1 is the major allergen in birch pollen to which up to 95% of patients sensitized to birch respond. As a member of the pathogenesis-related PR 10 family, its natural function is implicated in plant defense, with a member of the PR10 family being reported to be upregulated under iron deficiency. As such, we assessed the function of Bet v 1 to sequester iron and its immunomodulatory properties on human immune cells. Binding of Bet v 1 to iron quercetin complexes FeQ2 was determined in docking calculations and by spectroscopy. Serum IgE-binding to Bet v 1 with (holoBet v1) and without ligands (apoBet v 1) were assessed by ELISA, blocking experiments and Western Blot. Crosslinking-capacity of apo/holoBet v 1 were assessed on human mast cells and Arylhydrocarbon receptor (AhR) activation with the human reporter cellline AZ-AHR. Human PBMCs were stimulated and assessed for labile iron and phenotypic changes by flow cytometry. Bet v 1 bound to FeQ2 strongly with calculated Kd values of 1 nm surpassing affinities to quercetin alone nearly by a factor of 1000. Binding to FeQ2 masked IgE epitopes and decreased IgE binding up to 80% and impaired degranulation of sensitized human mast cells. Bet v 1 facilitated the shuttling of quercetin, which activated the anti-inflammatory AhR pathway and increased the labile iron pool of human monocytic cells. The increase of labile iron was associated with an anti-inflammatory phenotype in CD14+monocytes and downregulation of HLADR. To summarize, we reveal for the first time that FeQ2 binding reduces the allergenicity of Bet v 1 due to ligand masking, but also actively contributes anti-inflammatory stimuli to human monocytes, thereby fostering tolerance. Nourishing immune cells with complex iron may thus represent a promising antigen-independent immunotherapeutic approach to improve efficacy in allergen immunotherapy.
Collapse
Affiliation(s)
- Andreas Regner
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
| | - Nathalie Szepannek
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
| | - Markus Wiederstein
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Aila Fakhimahmadi
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Luis F. Paciosis
- Center for Plant Biotechnology and Genomics, Biotechnology Department, ETSIAAB, CBGP (UPM-INIA), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Bart R. Blokhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Frank A. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gerlinde Hofstetter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, 78371 Olomouc, Czech Republic
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
The Roles of Skin Langerhans Cells in Immune Tolerance and Cancer Immunity. Vaccines (Basel) 2022; 10:vaccines10091380. [PMID: 36146458 PMCID: PMC9503294 DOI: 10.3390/vaccines10091380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Langerhans cells (LC) are a unique population of tissue-resident macrophages with dendritic cell (DC) functionality that form a network of cells across the epidermis of the skin. Their location at the skin barrier suggests an important role for LC as immune sentinels at the skin surface. The classification of LC as DC over the past few decades has driven the scientific community to extensively study how LC function as DC-like cells that prime T cell immunity. However, LC are a unique type of tissue-resident macrophages, and recent evidence also supports an immunoregulatory role of LC at steady state and during specific inflammatory conditions, highlighting the impact of cutaneous environment in shaping LC functionality. In this mini review, we discuss the recent literature on the immune tolerance function of LC in homeostasis and disease conditions, including malignant transformation and progression; as well as LC functional plasticity for adaption to microenvironmental cues and the potential connection between LC population heterogeneity and functional diversity. Future investigation into the molecular mechanisms that LC use to integrate different microenvironment cues and adapt immunological responses for controlling LC functional plasticity is needed for future breakthroughs in tumor immunology, vaccine development, and treatments for inflammatory skin diseases.
Collapse
|
8
|
Huang J, Wang Y, Zhou Y. Beneficial roles of the AhR ligand FICZ on the regenerative potentials of BMSCs and primed cartilage templates. RSC Adv 2022; 12:11505-11516. [PMID: 35425032 PMCID: PMC9007154 DOI: 10.1039/d2ra00622g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are commonly used seed cells, and BMSC-derived primed cartilage templates have been shown to achieve bone regeneration in bone tissue engineering. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in various cellular processes such as osteogenesis and immune regulation. This study investigated the effects of the AhR endogenous ligand 6-formyl (3,2-b) carbazole (FICZ) on the behavior of BMSCs and cartilage templates as well as the possible underlying molecular mechanisms. AhR expressions in rat bone marrow and isolated BMSCs were detected via immunohistochemistry (IHC) and immunofluorescent staining. Alkaline phosphatase staining and alizarin red staining showed that FICZ treatment enhanced the osteogenic potential of BMSCs without influencing their proliferation. FICZ was shown to alleviate the LPS-induced inflammatory cytokines IL-1β, 6 and TNF-α via the quantitative polymerase chain reaction (qPCR). In the chondrogenic process from BMSCs to primed cartilage templates, the expressions of AhR and its target gene cytochrome P450 subfamily B member 1 (CYP1B1) were inhibited. However, IHC staining demonstrated that AhR was still involved in the subcutaneous ossification of cartilage templates. Then, the effects of FICZ on cartilage templates were investigated. The osteogenic markers were upregulated by FICZ administration. The RAW 264.7 treated by condition medium of FICZ-treated cartilage templates exhibited an anti-inflammatory phenotype. Finally, high-throughput sequencing was applied to analyze the differentially expressed genes (DEGs) in the FICZ-treated cartilage templates. The upregulation of cytochrome P450 subfamily A member 1 (CYP1A1) and sphingomyelin phosphodiesterase 3 (Smpd3) were verified by qPCR, which might be the downstream targets of AhR in the cartilage templates promoting osteogenesis and macrophage polarization. These data implied a beneficial role of FICZ in the regenerative potentials of both BMSCs and primed cartilage templates. The FICZ/AhR axis might be a practical target to achieve optimal bone regeneration.
Collapse
Affiliation(s)
- Jing Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University 237 Luoyu Road Wuhan 430079 China +86 27 87873260 +86 27 87686318
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University 237 Luoyu Road Wuhan 430079 China +86 27 87873260 +86 27 87686318
- Department of Prosthodontics, Hospital of Stomatology, Wuhan University Wuhan 430079 China
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University 237 Luoyu Road Wuhan 430079 China +86 27 87873260 +86 27 87686318
- Department of Prosthodontics, Hospital of Stomatology, Wuhan University Wuhan 430079 China
| |
Collapse
|
9
|
Tolerogenic IDO1 +CD83 - Langerhans Cells in Sentinel Lymph Nodes of Patients with Melanoma. Int J Mol Sci 2022; 23:ijms23073441. [PMID: 35408802 PMCID: PMC8998685 DOI: 10.3390/ijms23073441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Langerhans cells (LCs) are crucial regulators of anti-cancer immune responses. Cancer, however, can alter DCs functions leading to tolerance. The enzyme indoleamine 2,3-dioxygenase (IDO1) plays a crucial role in this process. In sentinel lymph nodes (SLNs) of patients with melanoma, LCs show phenotypical and functional alterations favoring tolerance. Herein we aimed to investigate IDO1 expression in SLN LCs from patients with melanoma. We showed by immunofluorescence analysis that a portion of Langerin+ LCs, located in the SLN T cell-rich area, displayed the typical dendritic morphology and expressed IDO1. There was no significant difference in the expression of IDO between SLN with or without metastases. Double IDO1/CD83 staining identified four LCs subsets: real mature IDO1−CD83+ LCs; real immature IDO1−CD83− LCs; tolerogenic mature IDO1+CD83+ LCs; tolerogenic immature IDO1+CD83− LCs. The latter subset was significantly increased in metastatic SLNs as compared to negative ones (p < 0.05), and in SLN LCs of patients with mitotic rate (MR) > 1 in primary melanoma, as compared to MR ≤ 1 (p < 0.05). Finally, immature SLN LCs, after in vitro stimulation by inflammatory cytokines, acquired a maturation profile by CD83 up-regulation. These results provide new input for immunotherapeutic approaches targeting in vivo LC of patients with melanoma.
Collapse
|
10
|
Hwang J, Newton EM, Hsiao J, Shi VY. Aryl Hydrocarbon Receptor/nuclear factor E2-related factor 2 (AHR/NRF2) Signaling: A Novel Therapeutic Target for Atopic Dermatitis. Exp Dermatol 2022; 31:485-497. [PMID: 35174548 DOI: 10.1111/exd.14541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Abstract
Aryl hydrocarbon receptor (AHR)/nuclear factor-erythroid 2-related factor 2 (NRF2) modulation are emerging as novel targets in the treatment of atopic dermatitis and other inflammatory skin disorders. Agonist activation of this pathway has downstream effects on epidermal barrier function, immunomodulation, oxidative stress reduction, and cutaneous microbiome modulation. Tapinarof, a dual agonist of the AHR/NRF2 signaling pathway, has shown promise in phase 2 trials for atopic dermatitis. In this review, we summarize current knowledge of the AHR/NRF2 pathway and implications in skin disease process. We also review the therapeutic potential of current AHR agonists and propose future directions to address knowledge gaps.
Collapse
Affiliation(s)
- Jonwei Hwang
- University of Illinois College of Medicine, 808 S. Wood St. - 380 CME, Chicago, IL, 60612-7307, USA
| | - Edita M Newton
- University of Arkansas for Medical Sciences, Department of Dermatology, 4301 West Markham, Slot 576, Little Rock, Arkansas, 72205, USA
| | - Jennifer Hsiao
- University of Southern California, Department of Dermatology, Ezralow Tower, 1441 Eastlake Avenue, Suite 5301, Los Angeles, CA, 90033, USA
| | - Vivian Y Shi
- University of Arkansas for Medical Sciences, Department of Dermatology, 4301 West Markham, Slot 576, Little Rock, Arkansas, 72205, USA
| |
Collapse
|
11
|
Afify SM, Regner A, Pacios LF, Blokhuis BR, Jensen SA, Redegeld FA, Pali-Schöll I, Hufnagl K, Bianchini R, Guethoff S, Kramer MF, Fiocchi A, Dvorak Z, Jensen-Jarolim E, Roth-Walter F. Micronutritional supplementation with a holoBLG-based FSMP (food for special medical purposes)-lozenge alleviates allergic symptoms in BALB/c mice: Imitating the protective farm effect. Clin Exp Allergy 2021; 52:426-441. [PMID: 34773648 DOI: 10.1111/cea.14050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Previously, the protective farm effect was imitated using the whey protein beta-lactoglobulin (BLG) that is spiked with iron-flavonoid complexes. Here, we formulated for clinical translation a lozenge as food for special medical purposes (FSMP) using catechin-iron complexes as ligands for BLG. The lozenge was tested in vitro and in a therapeutical BALB/c mice model. METHODS Binding of iron-catechin into BLG was confirmed by spectroscopy and docking calculations. Serum IgE binding of children allergic or tolerating milk was assessed to loaded (holo-) versus empty (apo-) BLG and for human mast cell degranulation. BLG and Bet v 1 double-sensitized mice were orally treated with the holoBLG or placebo lozenge, and immunologically analysed after systemic allergen challenge. Human PBMCs of pollen allergic subjects were flow cytometrically assessed after stimulation with apoBLG or holoBLG using catechin-iron complexes as ligands. RESULTS One major IgE and T cell epitope were masked by catechin-iron complexes, which impaired IgE binding of milk-allergic children and degranulation of mast cells. In mice, only supplementation with the holoBLG lozenge reduced clinical reactivity to BLG and Bet v 1, promoted Tregs, and suppressed antigen presentation. In allergic subjects, stimulation of PBMCs with holoBLG led to a significant increase of intracellular iron in circulating CD14+ cells with significantly lower expression of HLADR and CD86 compared to their stimulation with apoBLG. CONCLUSION The FSMP lozenge targeted antigen presenting cells and dampened immune activation in human immune cells and allergic mice in an antigen-non-specific manner, thereby conferring immune resilience against allergic symptoms.
Collapse
Affiliation(s)
- Sheriene Moussa Afify
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory Medicine and Immunology Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Andreas Regner
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria
| | - Luis F Pacios
- Biotechnology Department, ETSIAAB, Center for Plant Biotechnology and Genomics, CBGP (UPM-INIA), Technical University of Madrid, Madrid, Spain
| | - Bart R Blokhuis
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sebastian A Jensen
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Frank A Redegeld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Isabella Pali-Schöll
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria
| | - Sonja Guethoff
- Bencard Allergie GmbH, Munich, Germany.,Allergy Therapeutics, Worthing, UK
| | - Matthias F Kramer
- Bencard Allergie GmbH, Munich, Germany.,Allergy Therapeutics, Worthing, UK
| | | | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Biomedical International R+D GmbH, Vienna, Austria
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Wang F, Liang S, Hu J, Xu Y. Aryl hydrocarbon receptor connects dysregulated immune cells to atherosclerosis. Immunol Lett 2020; 228:55-63. [PMID: 33053378 DOI: 10.1016/j.imlet.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022]
Abstract
As a chronic inflammatory disease with autoimmune components, atherosclerosis is the major cause of cardiovascular morbidity and mortality. Recent studies have revealed that the development of atherosclerosis is strongly linked to the functional activities of aryl hydrocarbon receptor (AHR), a chemical sensor that is also important for the development, maintenance, and function of a variety of immune cells. In this review, we focus on the impact of AHR signaling on the different cell types that are closely related to the atherogenesis, including T cells, B cells, dendritic cells, macrophages, foam cells, and hematopoietic stem cells in the arterial walls, and summarize the latest development on the interplay between this environmental sensor and immune cells in the context of atherosclerosis. Hopefully, elucidation of the role of AHR in atherosclerosis will facilitate the understanding of case variation in disease prevalence and may aid in the development of novel therapies.
Collapse
Affiliation(s)
- Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Shuangchao Liang
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Jiqiong Hu
- Department of Vascular Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
13
|
Liu X, Zhang X, Zhang J, Luo Y, Xu B, Ling S, Zhang Y, Li W, Yao X. Activation of aryl hydrocarbon receptor in Langerhans cells by a microbial metabolite of tryptophan negatively regulates skin inflammation. J Dermatol Sci 2020; 100:192-200. [PMID: 33082071 DOI: 10.1016/j.jdermsci.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/20/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Skin commensal bacteria play important roles in skin homeostasis. Langerhans cells (LCs) are epidermis-resident dendritic cells that sense environmental stimuli and are critical in the induction of immune tolerance to allergen and bacterial skin flora. However, response of LCs to the metabolites of the skin microbiota is not clear. OBJECTIVE To explore the effects of the skin microbial metabolites on LCs activation. METHODS LCs derived from CD34+ hematopoietic stem cells in the cord blood were treated with a microbial metabolite of tryptophan, indole-3-aldehyde (IAId). Activation aryl hydrocarbon receptor (AhR) signaling, production of IL-10, and expression of receptor activator of NF-κB (RANK) / receptor activator of NF-κB ligand (RANKL) in LCs or keratinocytes were analyzed using quantitative PCR, western blotting and flow cytometry. LCs maturation induced by IAId and CD4+ T cell response induced by IAId-conditioned LCs were also investigated. RESULTS IAId induced the production of indoleamine 2,3-dioxygenase (IDO) and IL-10 in LCs through the activation of AhR. IAId promoted the expression of RANK and RANKL on LCs and keratinocytes in an AhR-dependent manner respectively, which might result in activation of NF-κB signaling and production of IL-10. Moreover, a mature phenotype of LCs was induced by IAId, and IAId-activated LCs inhibited CD4+ T cell proliferation and induced IL-10 secretion. CONCLUSIONS Our study revealed a negatively regulatory function of a tryptophan metabolite on LCs through the activation of AhR, and the microbial metabolites could be utilized in future treatment for inflammatory skin diseases.
Collapse
Affiliation(s)
- Xiaochun Liu
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Xiaoning Zhang
- Department of Dermatology, The First Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Jingxi Zhang
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Yang Luo
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Beilei Xu
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Shiqi Ling
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Yu Zhang
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Xu Yao
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China; Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China.
| |
Collapse
|
14
|
Abstract
Phototherapeutic modalities induce apoptosis of keratinocytes and immune cells, impact cytokine production, downregulate the IL-23/Th17 axis, and induce regulatory T cells. As in anti-IL-17 or anti-IL-23 antibody treatment, the dual action of phototherapy on skin and the immune system is likely responsible for sustained resolution of lesions in diseases such as psoriasis. In cutaneous T cell lymphoma, phototherapy may function by causing tumor cell apoptosis and eliminating the neoplastic and inflammatory infiltrate. Further research on phototherapeutic mechanisms will help advance, optimize, and refine dermatologic treatments and may open up novel avenues for treatment strategies in dermatology and beyond.
Collapse
Affiliation(s)
- Zizi Yu
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Peter Wolf
- Department of Dermatology, Research Unit for Photodermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
15
|
Roth-Walter F, Afify SM, Pacios LF, Blokhuis BR, Redegeld F, Regner A, Petje LM, Fiocchi A, Untersmayr E, Dvorak Z, Hufnagl K, Pali-Schöll I, Jensen-Jarolim E. Cow's milk protein β-lactoglobulin confers resilience against allergy by targeting complexed iron into immune cells. J Allergy Clin Immunol 2020; 147:321-334.e4. [PMID: 32485264 DOI: 10.1016/j.jaci.2020.05.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Beta-lactoglobulin (BLG) is a bovine lipocalin in milk with an innate defense function. The circumstances under which BLG is associated with tolerance of or allergy to milk are not understood. OBJECTIVE Our aims were to assess the capacity of ligand-free apoBLG versus loaded BLG (holoBLG) to protect mice against allergy by using an iron-quercetin complex as an exemplary ligand and to study the molecular mechanisms of this protection. METHODS Binding of iron-quercetin to BLG was modeled and confirmed by spectroscopy and docking calculations. Serum IgE binding to apoBLG and holoBLG in children allergic to milk and children tolerant of milk was assessed. Mice were intranasally treated with apoBLG versus holoBLG and analyzed immunologically after systemic challenge. Aryl hydrocarbon receptor (AhR) activation was evaluated with reporter cells and Cyp1A1 expression. Treated human PBMCs and human mast cells were assessed by fluorescence-activated cell sorting and degranulation, respectively. RESULTS Modeling predicted masking of major IgE and T-cell epitopes of BLG by ligand binding. In line with this modeling, IgE binding in children allergic to milk was reduced toward holoBLG, which also impaired degranulation of mast cells. In mice, only treatments with holoBLG prevented allergic sensitization and anaphylaxis, while sustaining regulatory T cells. BLG facilitated quercetin-dependent AhR activation and, downstream of AhR, lung Cyp1A1 expression. HoloBLG shuttled iron into monocytic cells and impaired their antigen presentation. CONCLUSION The cargo of holoBLG is decisive in preventing allergy in vivo. BLG without cargo acted as an allergen in vivo and further primed human mast cells for degranulation in an antigen-independent fashion. Our data provide a mechanistic explanation why the same proteins can act either as tolerogens or as allergens.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Sheriene Moussa Afify
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Laboratory Medicine and Immunology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Luis F Pacios
- Biotechnology Department, ETSIAAB, Center for Plant Biotechnology and Genomics, CBGP (UPM-INIA), Technical University of Madrid, Madrid, Spain
| | - Bart R Blokhuis
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Frank Redegeld
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Andreas Regner
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Lisa-Marie Petje
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | | | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Karin Hufnagl
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Selective AhR knockout in langerin-expressing cells abates Langerhans cells and polarizes Th2/Tr1 in epicutaneous protein sensitization. Proc Natl Acad Sci U S A 2020; 117:12980-12990. [PMID: 32461368 DOI: 10.1073/pnas.1917479117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) represents an environmental sensor regulating immune responses. In the skin, AhR is expressed in several cell types, including keratinocytes, epidermal Langerhans cells (LC), and dermal dendritic cells (DC). The mechanisms how AhR activates or inhibits cutaneous immune responses remain controversial, owing to differences in the cell-specific functions of AhR and the different activating ligands. Therefore, we sought to investigate the role of AhR in LC and langerin+ and negative DC in the skin. To this aim, we generated Langerin-specific and CD11c-specific knockout (-/-) mice lacking AhR, respectively, in LC and Langerin+ dermal DC and in all CD11c+ cells. These were then tested in an epicutaneous protein (ovalbumin, Ova) sensitization model. Immunofluorescence microscopy and flow cytometry revealed that Langerin-AhR-/- but not CD11c-AhR-/- mice harbored a decreased number of LC with fewer and stunted dendrites in the epidermis as well as a decreased number of LC in skin-draining lymph nodes (LN). Moreover, in the absence of AhR, we detected an enhanced T helper type-2 (Th2) [increased interleukin 5 (IL-5) and interleukin 13 (IL-13)] and T regulatory type-1 (Tr1) (IL-10) response when LN cells were challenged with Ova in vitro, though the number of regulatory T cells (Treg) in the LN remained comparable. Langerin-AhR-/- mice also exhibited increased blood levels of Ova-specific immunoglobulin E (IgE). In conclusion, deletion of AhR in langerin-expressing cells diminishes the number and activation of LC, while enhancing Th2 and Tr1 responses upon epicutaneous protein sensitization.
Collapse
|
17
|
Sugita K, Akdis CA. Recent developments and advances in atopic dermatitis and food allergy. Allergol Int 2020; 69:204-214. [PMID: 31648922 DOI: 10.1016/j.alit.2019.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
This review highlights recent advances in atopic dermatitis (AD) and food allergy (FA), particularly on molecular mechanisms and disease endotypes, recent developments in global strategies for the management of patients, pipeline for future treatments, primary and secondary prevention and psychosocial aspects. During the recent years, there has been major advances in personalized/precision medicine linked to better understanding of disease pathophysiology and precision treatment options of AD. A greater understanding of the molecular and cellular mechanisms of AD through substantial progress in epidemiology, genetics, skin immunology and psychological aspects resulted in advancements in the precision management of AD. However, the implementation of precision medicine in the management of AD still requires the validation of reliable biomarkers, which will provide more tailored management, starting from prevention strategies towards targeted therapies for more severe diseases. Cutaneous exposure to food via defective barriers is an important route of sensitization to food allergens. Studies on the role of the skin barrier genes demonstrated their association with the development of IgE-mediated FA, and suggest novel prevention and treatment strategies for type 2 diseases in general because of their link to barrier defects not only in AD and FA, but also in asthma, chronic rhinosinusitis, allergic rhinitis and inflammatory bowel disease. The development of more accurate diagnostic tools, biomarkers for early prediction, and innovative solutions require a better understanding of molecular mechanisms and the pathophysiology of FA. Based on these developments, this review provides an overview of novel developments and advances in AD and FA, which are reported particularly during the last two years.
Collapse
|
18
|
Aryl Hydrocarbon Receptor in Atopic Dermatitis and Psoriasis. Int J Mol Sci 2019; 20:ijms20215424. [PMID: 31683543 PMCID: PMC6862295 DOI: 10.3390/ijms20215424] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR)/AHR-nuclear translocator (ARNT) system is a sensitive sensor for small molecular, xenobiotic chemicals of exogenous and endogenous origin, including dioxins, phytochemicals, microbial bioproducts, and tryptophan photoproducts. AHR/ARNT are abundantly expressed in the skin. Once activated, the AHR/ARNT axis strengthens skin barrier functions and accelerates epidermal terminal differentiation by upregulating filaggrin expression. In addition, AHR activation induces oxidative stress. However, some AHR ligands simultaneously activate the nuclear factor-erythroid 2-related factor-2 (NRF2) transcription factor, which is a master switch of antioxidative enzymes that neutralizes oxidative stress. The immunoregulatory system governing T-helper 17/22 (Th17/22) and T regulatory cells (Treg) is also regulated by the AHR system. Notably, AHR agonists, such as tapinarof, are currently used as therapeutic agents in psoriasis and atopic dermatitis. In this review, we summarize recent topics on AHR related to atopic dermatitis and psoriasis.
Collapse
|
19
|
Uttarkar S, Brembilla NC, Boehncke WH. Regulatory cells in the skin: Pathophysiologic role and potential targets for anti-inflammatory therapies. J Allergy Clin Immunol 2019; 143:1302-1310. [PMID: 30664891 DOI: 10.1016/j.jaci.2018.12.1011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
Abstract
Inflammation is a fundamental defense mechanism to protect the body from danger, which becomes potentially harmful if it turns chronic. Therapeutic strategies aimed at specifically blocking proinflammatory signals, particularly cytokines, such as IL-4, IL-6, IL-13, IL-17A, or TNF-α, have substantially improved our ability to effectively and safely treat chronic inflammatory diseases. Much less effort has been made to better understand the role of potential anti-inflammatory mechanisms. Here we summarize the current understanding of regulatory cell populations in the context of chronic inflammation, namely macrophages, Langerhans cells, myeloid-derived suppressor cells, and regulatory T and B lymphocytes. Emphasis is given to the skin because many different immune-related diseases occur in the skin. Development, phenotype, function, and evidence for their role in animal models of inflammation, as well as in the corresponding human diseases, are described. Finally, the feasibility of using regulatory cells as targets for potentially disease-modifying therapeutic strategies is discussed.
Collapse
Affiliation(s)
- Sagar Uttarkar
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, Geneva University Hospitals and School of Medicine, Geneva, Switzerland.
| |
Collapse
|
20
|
Rannug A, Rannug U. The tryptophan derivative 6-formylindolo[3,2-b]carbazole, FICZ, a dynamic mediator of endogenous aryl hydrocarbon receptor signaling, balances cell growth and differentiation. Crit Rev Toxicol 2018; 48:555-574. [PMID: 30226107 DOI: 10.1080/10408444.2018.1493086] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is not essential to survival, but does act as a key regulator of many normal physiological events. The role of this receptor in toxicological processes has been studied extensively, primarily employing the high-affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, regulation of physiological responses by endogenous AHR ligands remains to be elucidated. Here, we review developments in this field, with a focus on 6-formylindolo[3,2-b]carbazole (FICZ), the endogenous ligand with the highest affinity to the receptor reported to date. The binding of FICZ to different isoforms of the AHR seems to be evolutionarily well conserved and there is a feedback loop that controls AHR activity through metabolic degradation of FICZ via the highly inducible cytochrome P450 1A1. Several investigations provide strong evidence that FICZ plays a critical role in normal physiological processes and can ameliorate immune diseases with remarkable efficiency. Low levels of FICZ are pro-inflammatory, providing resistance to pathogenic bacteria, stimulating the anti-tumor functions, and promoting the differentiation of cancer cells by repressing genes in cancer stem cells. In contrast, at high concentrations FICZ behaves in a manner similar to TCDD, exhibiting toxicity toward fish and bird embryos, immune suppression, and activation of cancer progression. The findings are indicative of a dual role for endogenously activated AHR in barrier tissues, aiding clearance of infections and suppressing immunity to terminate a vicious cycle that might otherwise lead to disease. There is not much support for the AHR ligand-specific immune responses proposed, the differences between FICZ and TCDD in this context appear to be explained by the rapid metabolism of FICZ.
Collapse
Affiliation(s)
- Agneta Rannug
- a Karolinska Institutet, Institute of Environmental Medicine , Stockholm , Sweden
| | - Ulf Rannug
- b Department of Molecular Biosciences , The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
21
|
Vieyra-Garcia PA, Wolf P. From Early Immunomodulatory Triggers to Immunosuppressive Outcome: Therapeutic Implications of the Complex Interplay Between the Wavebands of Sunlight and the Skin. Front Med (Lausanne) 2018; 5:232. [PMID: 30250844 PMCID: PMC6139367 DOI: 10.3389/fmed.2018.00232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Phototherapy is an efficient treatment for many cutaneous diseases that involve the activation of inflammatory pathways or the overgrowth of cells with aberrant phenotype. In this review, we discuss recent advances in photoimmunology, focusing on the effects of UV-based therapies currently used in dermatology. We describe the molecular responses to the main forms of photo(chemo)therapy such as UVB, UVA-1, and PUVA that include the triggering of apoptotic or immunosuppressive pathways and help to clear diseased skin. The early molecular response to UV involves DNA photoproducts, the isomerization of urocanic acid, the secretion of biophospholipids such as platelet activating factor (PAF), the activation of aryl hydrocarbon receptor and inflammasome, and vitamin D synthesis. The simultaneous and complex interaction of these events regulates the activity of the immune system both locally and systemically, resulting in apoptosis of neoplastic and/or benign cells, reduction of cellular infiltrate, and regulation of cytokines and chemokines. Regulatory T-cells and Langerhans cells, among other skin-resident cellular populations, are deeply affected by UV exposure and are therefore important players in the mechanisms of immunomodulation and the therapeutic value of UV in all its forms. We weigh the contribution of these cells to the therapeutic application of UV and how they may participate in transferring the direct impact of UV on the skin into local and systemic immunomodulation. Moreover, we review the therapeutic mechanisms revealed by clinical and laboratory animal investigations in the most common cutaneous diseases treated with phototherapy such as psoriasis, atopic dermatitis, vitiligo, and cutaneous T-cell lymphoma. Better understanding of phototherapeutic mechanisms in these diseases will help advance treatment in general and make future therapeutic strategies more precise, targeted, personalized, safe, and efficient.
Collapse
Affiliation(s)
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
22
|
Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chemistry and Properties of Indolocarbazoles. Chem Rev 2018; 118:9058-9128. [PMID: 30191712 DOI: 10.1021/acs.chemrev.8b00186] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.
Collapse
Affiliation(s)
- Tomasz Janosik
- Research Institutes of Sweden , Bioscience and Materials, RISE Surface, Process and Formulation , SE-151 36 Södertälje , Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | | | - Johnny Slätt
- Department of Chemistry, Applied Physical Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Jan Bergman
- Karolinska Institutet , Department of Biosciences and Nutrition , SE-141 83 Huddinge , Sweden
| |
Collapse
|
23
|
Mohammadi S, Memarian A, Sedighi S, Behnampour N, Yazdani Y. Immunoregulatory effects of indole-3-carbinol on monocyte-derived macrophages in systemic lupus erythematosus: A crucial role for aryl hydrocarbon receptor. Autoimmunity 2018; 51:199-209. [PMID: 30289282 DOI: 10.1080/08916934.2018.1494161] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are versatile phagocytic cells in immune system with immunoregulatory functions. However, the removal of apoptotic cells by macrophages is disturbed in systemic lupus erythematosus (SLE). Aryl hydrocarbon receptor (AhR) is a ligand-activated cytoplasmic receptor and transcription factor with diverse effects on immune response. Indole-3-carbinol (I3C) is an AhR agonist which has been implicated as a beneficial factor in regulating inflammation and cytokine expression in murine models of SLE. However, the molecular mechanisms are not thoroughly studied. Here, we aimed to investigate the ex vivo effects of I3C on polarization of monocyte-derived macrophages (MDMs) in SLE patients and the expression of regulatory cytokines upon AhR activation. MDMs from 15 newly diagnosed SLE patients and 10 normal subjects were induced by Jurkat apoptotic bodies (JABs) and treated with I3C. I3C enhanced the nuclear accumulation of AhR among MDMs of SLE patients and altered the expression of AhR target genes including CYP1A1, IL1- β, IDO-1 and MRC-1. The imbalanced expression of pro- and anti- inflammatory cytokines (IL-10, IL-12, TGFβ1, TNFα, IL-23, IL-6 and IFN-γ) was compensated in response to I3C. AhR activation was also associated with the overexpression of M2 markers (CD163) and downregulation of M1 markers (CD86). Thus, macrophages are activated alternatively in response to I3C. The obtained data indicate that I3C-mediated AhR activation possess immunoregulatory effects on macrophages of SLE patients by exerting an obvious downregulation in the expression of pro-inflammatory and overexpression of anti-inflammatory cytokines. Therefore, AhR could be targeted and further investigated as a choice of anti-inflammatory therapies for autoimmune disorders such as SLE.
Collapse
Affiliation(s)
- Saeed Mohammadi
- a Stem Cell Research Center , Golestan University of Medical Sciences , Gorgan , Iran
| | - Ali Memarian
- b Golestan Research Center of Gastroenterology and Hepatology , Golestan University of Medical Sciences , Gorgan , Iran
| | - Sima Sedighi
- c Joint, Bone and Connective tissue Research Center (JBCRC) , Golestan University of Medical Sciences , Gorgan , Iran
| | - Nasser Behnampour
- d Department of Biostatistics, Faculty of Health , Golestan University of Medical Sciences , Gorgan , Iran
| | - Yaghoub Yazdani
- e Infectious Diseases Research Center and Laboratory Science Research Center , Golestan University of Medical Sciences , Gorgan , Iran
| |
Collapse
|
24
|
Furue M, Uchi H, Mitoma C, Hashimoto-Hachiya A, Tanaka Y, Ito T, Tsuji G. Implications of tryptophan photoproduct FICZ in oxidative stress and terminal differentiation of keratinocytes. GIORN ITAL DERMAT V 2018; 154:37-41. [PMID: 30035475 DOI: 10.23736/s0392-0488.18.06132-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ultraviolet B (UVB) irradiation activates aryl hydrocarbon receptor (AHR), generates reactive oxygen species (ROS) and mediates photocarcinogenesis and photoaging. 6-Formylindolo[3,2-b]carbazole (FICZ) is a tryptophan photoproduct generated by UVB exposure. FICZ exhibits similar biological effects to UVB, including AHR ligation and ROS production. FICZ also acts as a potent photosensitizer for UVA and the production of ROS is synergistically augmented in the simultaneous presence of FICZ and UVA. In contrast, FICZ upregulates the expression of terminal differentiation molecules such as filaggrin and loricrin via AHR. In parallel with this, the administration of FICZ inhibits skin inflammation in a murine psoriasis and dermatitis model. In this article, we summarize the harmful and beneficial aspects of FICZ in skin pathology.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan - .,Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan - .,Division of Skin Surface Sensing, Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan -
| | - Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikage Mitoma
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| | - Akiko Hashimoto-Hachiya
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| | - Yuka Tanaka
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Deckers J, Hammad H, Hoste E. Langerhans Cells: Sensing the Environment in Health and Disease. Front Immunol 2018; 9:93. [PMID: 29449841 PMCID: PMC5799717 DOI: 10.3389/fimmu.2018.00093] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, our understanding of Langerhans cells (LCs) has drastically changed based on novel findings regarding the developmental origin and biological functions of these epidermis-specific resident immune cells. It has become clear that LCs not only exert pivotal roles in immune surveillance and homeostasis but also impact on pathology by either inducing tolerance or mediating inflammation. Their unique capabilities to self-renew within the epidermis, while also being able to migrate to lymph nodes in order to present antigen, place LCs in a key position to sample the local environment and decide on the appropriate cutaneous immune response. Exciting new data distinguishing LCs from Langerin+ dermal dendritic cells (DCs) on a functional and ontogenic level reveal crucial roles for LCs in trauma and various skin pathologies, which will be thoroughly discussed here. However, despite rapid progress in the field, the exact role of LCs during immune responses has not been completely elucidated. This review focuses on what mouse models that have been developed in order to enable the study of murine LCs and other Langerin-expressing DCs have taught us about LC development and function.
Collapse
Affiliation(s)
- Julie Deckers
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|