1
|
Fernandez-Bravo S, Canyelles M, Martín-Blázquez A, Borràs C, Nuñez-Borque E, Palacio-García L, Rodríguez Del Rio P, Betancor D, Gómez-López A, Sabaté Brescó M, Laguna JJ, Méndez-Barbero N, Rotllan N, Escolà-Gil JC, Esteban V. Impaired high-density lipoprotein function and endothelial barrier stability in severe anaphylaxis. J Allergy Clin Immunol 2024; 154:827-832. [PMID: 38718948 DOI: 10.1016/j.jaci.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Growing evidence demonstrates the importance of high- and low-density lipoprotein cholesterol in certain immune and allergy-mediated diseases. OBJECTIVE This study aimed to evaluate levels of high- and low-density lipoprotein cholesterol and apolipoproteins A1 and B in sera from a cohort of patients presenting with hypersensitivity reactions. We further assessed the function of high-density lipoprotein particles as well as their involvement in the molecular mechanisms of anaphylaxis. METHODS Lipid profile determination was performed in paired (acute and baseline) serum samples from 153 patients. Thirty-eight experienced a non-anaphylactic reaction and 115 had an anaphylactic reaction (88 moderate and 27 severe). Lecithin cholesterol acyl transferase activity was assessed in patient sera, and we also evaluated macrophage cholesterol efflux in response to the serum samples. Last, the effect of anaphylactic-derived high-density lipoprotein (HDL) particles on the endothelial barrier was studied. Detailed methods are provided in the Methods section in this article's Online Repository available at www.jacionline.org. RESULTS Serum samples from severe anaphylactic reactions show statistically significant low levels of HDL cholesterol, low-density lipoprotein cholesterol, and apolipoproteins A1 and B, which points to their possible role as biomarkers. Specifically, HDL particles play a protective role in cardiovascular diseases. Using functional human serum cell assays, we observed impaired capacity of apolipoprotein B-depleted serum to induce macrophage cholesterol efflux in severe anaphylactic reactions. In addition, purified HDL particles from human anaphylactic sera failed to stabilize and maintain the endothelial barrier. CONCLUSION These results encourage further research on HDL functions in severe anaphylaxis, which may lead to new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sergio Fernandez-Bravo
- Department of Allergy and Immunology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Marina Canyelles
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain; CIBER of Diabetes and Related Metabolic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Ariadna Martín-Blázquez
- Department of Allergy and Immunology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Carla Borràs
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain; CIBER of Diabetes and Related Metabolic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Emilio Nuñez-Borque
- Department of Allergy and Immunology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Lucia Palacio-García
- Department of Allergy and Immunology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Pablo Rodríguez Del Rio
- Allergy Department, Hospital Infantil Universitario Niño Jesús, Fundación HNJ, Health Research Institute-Princesa, Madrid, Spain
| | - Diana Betancor
- Department of Allergy. Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (FJD, UAM), Madrid, Spain
| | - Alicia Gómez-López
- Department of Allergy. Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (FJD, UAM), Madrid, Spain
| | - Marina Sabaté Brescó
- Department of Allergy and Clinic Immunology, Clínica Universidad de Navarra, and Red de Enfermedades Inflamatorias (RD21/0002/0028), Pamplona, Spain; Health Research Institute (IDISNA, Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain
| | - José Julio Laguna
- Allergy Unit, Allergo-Anaesthesia Unit, Cruz Roja Central Hospital, and Red de Enfermedades Inflamatorias (RD21/0002/0008), Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Pathology Research Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Faculty of Medicine, Universidad Alfonso X el Sabio (UAX), Villanueva de la Cañada, Spain
| | - Noemi Rotllan
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain; CIBER of Diabetes and Related Metabolic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain; CIBER of Diabetes and Related Metabolic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Faculty of Medicine, Universidad Alfonso X el Sabio (UAX), Villanueva de la Cañada, Spain.
| |
Collapse
|
2
|
DuToit G, Smith P, Muraro A, Fox AT, Roberts G, Ring J, Worm M. Identifying patients at risk of anaphylaxis. World Allergy Organ J 2024; 17:100904. [PMID: 38966605 PMCID: PMC11223123 DOI: 10.1016/j.waojou.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 07/06/2024] Open
Abstract
Anaphylaxis is an acute, potentially fatal, systemic hypersensitivity reaction that warrants prompt diagnosis and management. It continues to be challenging to anticipate who may be at risk of a severe, life-threatening allergic reaction. Anaphylaxis can be caused by a range of allergens, such as certain foods, medications, latex, insect stings, etc. Cofactors that augment the severity of clinical symptoms and increase the risk of poor outcomes include exercise, stress, infectious diseases, underlying mast cell disease, active allergic disease such as asthma, advanced age, intake of certain medications, history of previous anaphylaxis, and delayed or missed administration of adrenaline. According to the European Anaphylaxis Registry, food is the major elicitor of anaphylaxis, especially eggs, cow milk, and nuts, in children and adolescents. Reaction to insect venom has also been noted in young adulthood. Early recognition of signs and symptoms and prompt treatment are crucial in anaphylaxis management to avoid serious and even fatal outcomes. It is crucial for both individuals and clinicians to identify the cause of anaphylaxis. Biomarkers of anaphylaxis, such as histamine, tryptase, platelet activation factor (PAF), chymase, carboxypeptidase A3, dipeptidyl peptidase I (DPPI), basogranulin, CCL-2, hsa-miR-451a, may be useful in diagnosis and management. The purpose of this review article is to present a comprehensive overview of current evidence and expert opinions regarding the risk factors that predispose individuals to anaphylaxis. Additionally, it provides insights into potential biomarkers and genetic markers for accurate diagnosis and management. This review underscores the significance of expert guidance in enhancing patient outcomes and enabling self-management of anaphylactic episodes.
Collapse
Affiliation(s)
- George DuToit
- Pediatric Allergy King's College London and Guy's and St Thomas', London, United Kingdom
| | - Pete Smith
- Clinical School of Medicine, Griffith University, Southport, Queensland, Australia
| | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Adam T. Fox
- Children's Allergy Service, Guy's and St Thomas' Hospitals NHS Foundation Trust, Westminster Bridge, London, United Kingdom
| | - Graham Roberts
- University of Southampton, Pediatric Allergy & Respiratory Medicine, Tremona Road, Southampton, United Kingdom
| | - Johannes Ring
- Technical University Munich (TUM), Dept Dermatology Allergology Biederstein, Germany
| | - Margitta Worm
- Allergologie und Immunologie, Klinik für Dermatologie, Venerologie und Allergologie, Campus Charité Mitte, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Worm M, Alexiou A, Höfer V, Birkner T, Jeanrenaud ACSN, Fauchère F, Pazur K, Steinert C, Arnau‐Soler A, Banerjee P, Diefenbach A, Dobbertin‐Welsch J, Dölle‐Bierke S, Francuzik W, Ghauri A, Heller S, Kalb B, Löber U, Marenholz I, Markó L, Scheffel J, Potapenko O, Roll S, Lau S, Lee Y, Braun J, Thiel A, Babina M, Altrichter S, Forslund SK, Beyer K. An interdisciplinary approach to characterize peanut-allergic patients-First data from the FOOD@ consortium. Clin Transl Allergy 2022; 12:e12197. [PMID: 36225266 PMCID: PMC9533219 DOI: 10.1002/clt2.12197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
Background Peanut allergy is a frequent cause of food allergy and potentially life-threatening. Within this interdisciplinary research approach, we aim to unravel the complex mechanisms of peanut allergy. As a first step were applied in an exploratory manner the analysis of peanut allergic versus non-allergic controls. Methods Biosamples were studied regarding DNA methylation signatures, gut microbiome, adaptive and innate immune cell populations, soluble signaling molecules and allergen-reactive antibody specificities. We applied a scalable systems medicine computational workflow to the assembled data. Results We identified combined cellular and soluble biomarker signatures that stratify donors into peanut-allergic and non-allergic with high specificity. DNA methylation profiling revealed various genes of interest and stool microbiota differences in bacteria abundances. Conclusion By extending our findings to a larger set of patients (e.g., children vs. adults), we will establish predictors for food allergy and tolerance and translate these as for example, indicators for interventional studies.
Collapse
Affiliation(s)
- Margitta Worm
- Division of Allergy and ImmunologyDepartment of Dermatology, Venerology and AllergyCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Aikaterina Alexiou
- Division of Allergy and ImmunologyDepartment of Dermatology, Venerology and AllergyCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Veronika Höfer
- Division of Allergy and ImmunologyDepartment of Dermatology, Venerology and AllergyCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Till Birkner
- Experimental and Clinical Research CenterA Cooperation of Charité‐Universitätsmedizin BerlinMax Delbrück Center for Molecular MedicineBerlinGermany
- Charité‐Universitätsmedizin BerlinFreie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of HealthBerlinGermany
- Max Delbrück Center for Molecular MedicineHelmholtz AssociationBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Alexander C. S. N. Jeanrenaud
- Max Delbrück Center for Molecular MedicineHelmholtz AssociationBerlinGermany
- Clinic for Pediatric Allergy, Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Florent Fauchère
- Si‐M/“Der Simulierte Mensch” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin BerlinBerlinGermany
- Regenerative Immunology and AgingBIH Center for Regenerative TherapiesCharité ‐ Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Kristijan Pazur
- Division of Allergy and ImmunologyDepartment of Dermatology, Venerology and AllergyCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Carolin Steinert
- Institute of Allergology IFACharité‐Universitätsmedizin BerlinFreie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of HealthBerlinGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPAllergology and Immunology AIBerlinGermany
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Aleix Arnau‐Soler
- Max Delbrück Center for Molecular MedicineHelmholtz AssociationBerlinGermany
- Clinic for Pediatric Allergy, Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Priyanka Banerjee
- Institute of PhysiologyCharité – Universitätsmedizin BerlinFreie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of HealthBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Andreas Diefenbach
- Mucosal and Developmental ImmunologyGerman Rheuma Research Center Berlin (DRFZ)BerlinGermany
- Department of Microbiology, Infectious Diseases, and ImmunologyLaboratory of Innate ImmunityCharité – Universitätsmedizin BerlinCampus Benjamin FranklinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Josefine Dobbertin‐Welsch
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Sabine Dölle‐Bierke
- Division of Allergy and ImmunologyDepartment of Dermatology, Venerology and AllergyCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Wojciech Francuzik
- Division of Allergy and ImmunologyDepartment of Dermatology, Venerology and AllergyCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Ahla Ghauri
- Max Delbrück Center for Molecular MedicineHelmholtz AssociationBerlinGermany
- Clinic for Pediatric Allergy, Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Stephanie Heller
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Birgit Kalb
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Ulrike Löber
- Experimental and Clinical Research CenterA Cooperation of Charité‐Universitätsmedizin BerlinMax Delbrück Center for Molecular MedicineBerlinGermany
- Charité‐Universitätsmedizin BerlinFreie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of HealthBerlinGermany
- Max Delbrück Center for Molecular MedicineHelmholtz AssociationBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Ingo Marenholz
- Max Delbrück Center for Molecular MedicineHelmholtz AssociationBerlinGermany
- Clinic for Pediatric Allergy, Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Lajos Markó
- Experimental and Clinical Research CenterA Cooperation of Charité‐Universitätsmedizin BerlinMax Delbrück Center for Molecular MedicineBerlinGermany
- Charité‐Universitätsmedizin BerlinFreie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of HealthBerlinGermany
- Max Delbrück Center for Molecular MedicineHelmholtz AssociationBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Jörg Scheffel
- Institute of Allergology IFACharité‐Universitätsmedizin BerlinFreie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of HealthBerlinGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPAllergology and Immunology AIBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Olena Potapenko
- Experimental and Clinical Research CenterA Cooperation of Charité‐Universitätsmedizin BerlinMax Delbrück Center for Molecular MedicineBerlinGermany
- Charité‐Universitätsmedizin BerlinFreie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of HealthBerlinGermany
- Max Delbrück Center for Molecular MedicineHelmholtz AssociationBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Stephanie Roll
- Institute of Social Medicine, Epidemiology and Health EconomicsCharité—Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Susanne Lau
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Young‐Ae Lee
- Max Delbrück Center for Molecular MedicineHelmholtz AssociationBerlinGermany
- Clinic for Pediatric Allergy, Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Julian Braun
- Si‐M/“Der Simulierte Mensch” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin BerlinBerlinGermany
- Regenerative Immunology and AgingBIH Center for Regenerative TherapiesCharité ‐ Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Andreas Thiel
- Si‐M/“Der Simulierte Mensch” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin BerlinBerlinGermany
- Regenerative Immunology and AgingBIH Center for Regenerative TherapiesCharité ‐ Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Magda Babina
- Institute of Allergology IFACharité‐Universitätsmedizin BerlinFreie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of HealthBerlinGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPAllergology and Immunology AIBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Sabine Altrichter
- Institute of Allergology IFACharité‐Universitätsmedizin BerlinFreie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of HealthBerlinGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPAllergology and Immunology AIBerlinGermany
- Department of Dermatology and VenerologyKepler University HospitalLinzAustria
- KFO339, FOOD@BerlinGermany
| | - Sofia Kirke Forslund
- Experimental and Clinical Research CenterA Cooperation of Charité‐Universitätsmedizin BerlinMax Delbrück Center for Molecular MedicineBerlinGermany
- Charité‐Universitätsmedizin BerlinFreie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of HealthBerlinGermany
- Max Delbrück Center for Molecular MedicineHelmholtz AssociationBerlinGermany
- KFO339, FOOD@BerlinGermany
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinFreie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- KFO339, FOOD@BerlinGermany
| |
Collapse
|
4
|
Vizuet-de-Rueda JC, Montero-Vargas JM, Galván-Morales MÁ, Porras-Gutiérrez-de-Velasco R, Teran LM. Current Insights on the Impact of Proteomics in Respiratory Allergies. Int J Mol Sci 2022; 23:ijms23105703. [PMID: 35628512 PMCID: PMC9144092 DOI: 10.3390/ijms23105703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Respiratory allergies affect humans worldwide, causing extensive morbidity and mortality. They include allergic rhinitis (AR), asthma, pollen food allergy syndrome (PFAS), aspirin-exacerbated respiratory disease (AERD), and nasal polyps (NPs). The study of respiratory allergic diseases requires new technologies for early and accurate diagnosis and treatment. Omics technologies provide the tools required to investigate DNA, RNA, proteins, and other molecular determinants. These technologies include genomics, transcriptomics, proteomics, and metabolomics. However, proteomics is one of the main approaches to studying allergic disorders' pathophysiology. Proteins are used to indicate normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. In this field, the principal goal of proteomics has been to discover new proteins and use them in precision medicine. Multiple technologies have been applied to proteomics, but that most used for identifying, quantifying, and profiling proteins is mass spectrometry (MS). Over the last few years, proteomics has enabled the establishment of several proteins for diagnosing and treating respiratory allergic diseases.
Collapse
|
5
|
Francuzik W, Pažur K, Dalke M, Dölle-Bierke S, Babina M, Worm M. Serological profiling reveals hsa-miR-451a as a possible biomarker of anaphylaxis. JCI Insight 2022; 7:156669. [PMID: 35202004 PMCID: PMC9057591 DOI: 10.1172/jci.insight.156669] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background There is a need to support the diagnosis of anaphylaxis by objective markers. miRNAs are promising noncoding RNA species that may serve as serological biomarkers, but their use in diagnosing anaphylaxis has not been systematically studied to our knowledge. We aimed to comprehensively investigate serum biomarker profiles (proteins, lipids, and miRNAs) to support the diagnosis of anaphylaxis. Methods Adult patients admitted to the emergency room with a diagnosis of anaphylaxis (<3 hours) were included. Blood samples were taken upon emergency room arrival and 1 month later. Results Next-generation sequencing of 18 samples (6 patients with anaphylaxis in both acute and nonacute condition, for 12 total samples, and 6 healthy controls) identified hsa-miR-451a to be elevated during anaphylaxis, which was verified by quantitative real-time PCR in the remaining cohort. The random forest classifier enabled us to classify anaphylaxis with high accuracy using a composite model. We identified tryptase, 9α,11β-PGF2, apolipoprotein A1, and hsa-miR-451a as serological biomarkers of anaphylaxis. These predictors qualified as serological biomarkers individually but performed better in combination. Conclusion Unexpectedly, hsa-miR-451a was identified as the most relevant biomarker in our data set. We were also able to distinguish between patients with a history of anaphylaxis and healthy individuals with higher accuracy than any other available model. Future studies will need to verify miRNA biomarker utility in real-life clinical settings. Funding This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the clinical research unit (CRU339): Food Allergy and Tolerance (FOOD@) (project number 409525714) and a grant to MW (Wo541-16-2, project number 264921598), as well as by FOOD@ project numbers 428094283 and 428447634.
Collapse
Affiliation(s)
- Wojciech Francuzik
- Division of Allergy and Immunology, Department of Dermatology, Venereology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin,, Berlin, Germany
| | - Kristijan Pažur
- Division of Allergy and Immunology, Department of Dermatology, Venereology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin,, Berlin, Germany
| | - Magdalena Dalke
- Division of Allergy and Immunology, Department of Dermatology, Venereology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabine Dölle-Bierke
- Division of Allergy and Immunology, Department of Dermatology, Venereology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magda Babina
- Division of Allergy and Immunology, Department of Dermatology, Venereology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venereology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Precision medicine reaching out to the patients in allergology - a German-Japanese workshop report. Allergol Select 2021; 5:162-179. [PMID: 34079922 PMCID: PMC8167740 DOI: 10.5414/alx02234e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
An expert workshop in collaboration of the German Society of Allergy and Clinical Immunology (DGAKI) and the Japanese Society of Allergy (JSA) provided a platform for key opinion leaders of both countries aimed to join expertise and to highlight current developments and achievements in allergy research. Key domains of the meeting included the following seven main sections and related subchapters: 1) basic immunology, 2) bronchial asthma, 3) prevention of allergic diseases, 4) food allergy and anaphylaxis, 5) atopic dermatitis, 6) venom allergy, and 7) upper airway diseases. This report provides a summary of panel discussions of all seven domains and highlights unmet needs and project possibilities of enhanced collaborations of scientific projects.
Collapse
|
7
|
PGE2 deficiency predisposes to anaphylaxis by causing mast cell hyperresponsiveness. J Allergy Clin Immunol 2020; 146:1387-1396.e13. [DOI: 10.1016/j.jaci.2020.03.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
|
8
|
Passia E, Jandus P. Using Baseline and Peak Serum Tryptase Levels to Diagnose Anaphylaxis: a Review. Clin Rev Allergy Immunol 2020; 58:366-376. [PMID: 32034676 DOI: 10.1007/s12016-020-08777-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of anaphylaxis relies on a suggestive clinical history after exposure to a potential triggering factor. Serum tryptase concentrations increase on degranulation of mast cells and therefore serum tryptase levels are measured to diagnose anaphylaxis. There is no standardized method for assessing total serum mast cell tryptase (MCT) in anaphylaxis. The Working Conference in 2010 proposed a consensus equation (peak MCT should be > 1.2x baseline tryptase + 2 ng/L) to diagnose acute mast cell activation (aMCA). Our objective was to narratively review the literature since the Working Conference in 2010, examining the use of the consensus equation and other equations comparing baseline and peak serum tryptase during anaphylaxis. Computerized bibliographic searches of PUBMED and EMBASE were supplemented with a manual search of reference lists. English-language studies were included. Eleven studies met our inclusion criteria with a total of 4551 participants. However, only four studies with 653 participants used the consensus equation. The other seven studies used other methods to compare peak and baseline serum tryptase concentrations. Measuring serum tryptase levels is valuable in the diagnosis of anaphylaxis but is unable to detect all anaphylactic reactions. Based on our current literature review, the consensus equation is underused in the diagnosis of anaphylaxis. There is also a need for exploration of other biomarkers which could be used in parallel to peak and baseline serum tryptase measurements for further diagnostic certainty. Serum tryptase is the most studied biomarker in anaphylaxis but is still far from being the ideal biomarker for this. There is a need to identify new potential useful biomarkers. Serum tryptase levels are valuable in the diagnosis of anaphylaxis, but are unable to detect all anaphylactic reactions. Additionally serial tryptase measurements are laborious in daily clinical practice.
Collapse
Affiliation(s)
| | - Peter Jandus
- Department of Medicine, Division of Immunology and Allergy, University Hospital and Medical Faculty, Geneva, Switzerland.
| |
Collapse
|
9
|
The pseudo-allergic/neurogenic route of mast cell activation via MRGPRX2: discovery, functional programs, regulation, relevance to disease, and relation with allergic stimulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1097/itx.0000000000000032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Sugita K, Akdis CA. Recent developments and advances in atopic dermatitis and food allergy. Allergol Int 2020; 69:204-214. [PMID: 31648922 DOI: 10.1016/j.alit.2019.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
This review highlights recent advances in atopic dermatitis (AD) and food allergy (FA), particularly on molecular mechanisms and disease endotypes, recent developments in global strategies for the management of patients, pipeline for future treatments, primary and secondary prevention and psychosocial aspects. During the recent years, there has been major advances in personalized/precision medicine linked to better understanding of disease pathophysiology and precision treatment options of AD. A greater understanding of the molecular and cellular mechanisms of AD through substantial progress in epidemiology, genetics, skin immunology and psychological aspects resulted in advancements in the precision management of AD. However, the implementation of precision medicine in the management of AD still requires the validation of reliable biomarkers, which will provide more tailored management, starting from prevention strategies towards targeted therapies for more severe diseases. Cutaneous exposure to food via defective barriers is an important route of sensitization to food allergens. Studies on the role of the skin barrier genes demonstrated their association with the development of IgE-mediated FA, and suggest novel prevention and treatment strategies for type 2 diseases in general because of their link to barrier defects not only in AD and FA, but also in asthma, chronic rhinosinusitis, allergic rhinitis and inflammatory bowel disease. The development of more accurate diagnostic tools, biomarkers for early prediction, and innovative solutions require a better understanding of molecular mechanisms and the pathophysiology of FA. Based on these developments, this review provides an overview of novel developments and advances in AD and FA, which are reported particularly during the last two years.
Collapse
|
11
|
Doña I, Pérez‐Sánchez N, Eguiluz‐Gracia I, Muñoz-Cano R, Bartra J, Torres MJ, Cornejo‐García JA. Progress in understanding hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Allergy 2020; 75:561-575. [PMID: 31469167 DOI: 10.1111/all.14032] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), the medications most commonly used for treating pain and inflammation, are the main triggers of drug hypersensitivity reactions. The latest classification of NSAIDs hypersensitivity by the European Academy of Allergy and Clinical Immunology (EAACI) differentiates between cross-hypersensitivity reactions (CRs), associated with COX-1 inhibition, and selective reactions, associated with immunological mechanisms. Three phenotypes fill into the first group: NSAIDs-exacerbated respiratory disease, NSAIDs-exacerbated cutaneous disease and NSAIDs-induced urticaria/angioedema. Two phenotypes fill into the second one: single-NSAID-induced urticaria/angioedema/anaphylaxis and single-NSAID-induced delayed reactions. Diagnosis of NSAIDs hypersensitivity is hampered by different factors, including the lack of validated in vitro biomarkers and the uselessness of skin tests. The advances achieved over recent years recommend a re-evaluation of the EAACI classification, as it does not consider other phenotypes such as blended reactions (coexistence of cutaneous and respiratory symptoms) or food-dependent NSAID-induced anaphylaxis. In addition, it does not regard the natural evolution of phenotypes and their potential interconversion, the development of tolerance over time or the role of atopy. Here, we address these topics. A state of the art on the underlying mechanisms and on the approaches for biomarkers discovery is also provided, including genetic studies and available information on transcriptomics and metabolomics.
Collapse
Affiliation(s)
- Inmaculada Doña
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
| | - Natalia Pérez‐Sánchez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
- Departamento de Medicina Universidad de Málaga Malaga Spain
| | - Ibon Eguiluz‐Gracia
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
| | - Rosa Muñoz-Cano
- Allergy Section Pneumology Department Hospital Clinic ARADyAL Universitat de Barcelona Barcelona Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE) August Pi i Sunyer Biomedical Research Institute (IDIBAPS) ARADyAL Barcelona Spain
| | - Joan Bartra
- Allergy Section Pneumology Department Hospital Clinic ARADyAL Universitat de Barcelona Barcelona Spain
- Clinical and Experimental Respiratory Immunoallergy (IRCE) August Pi i Sunyer Biomedical Research Institute (IDIBAPS) ARADyAL Barcelona Spain
| | - María José Torres
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA ARADyAL Malaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Malaga Spain
- Departamento de Medicina Universidad de Málaga Malaga Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Malaga Spain
| | | |
Collapse
|
12
|
Roula D, Theiler A, Luschnig P, Sturm GJ, Tomazic PV, Marsche G, Heinemann A, Sturm EM. Apolipoprotein A-IV acts as an endogenous anti-inflammatory protein and is reduced in treatment-naïve allergic patients and allergen-challenged mice. Allergy 2020; 75:392-402. [PMID: 31408538 PMCID: PMC7065107 DOI: 10.1111/all.14022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/07/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
Background Recent studies pointed to a crucial role for apolipoproteins in the pathogenesis of inflammatory diseases. However, the role of apolipoprotein‐IV (ApoA‐IV) in allergic inflammation has not been addressed thoroughly thus far. Objective Here, we explored the anti‐inflammatory effects and underlying signaling pathways of ApoA‐IV on eosinophil effector function in vitro and in vivo. Methods Migratory responsiveness, Ca2+‐flux and apoptosis of human peripheral blood eosinophils were assessed in vitro. Allergen‐driven airway inflammation was assessed in a mouse model of acute house dust mite‐induced asthma. ApoA‐IV serum levels were determined by ELISA. Results Recombinant ApoA‐IV potently inhibited eosinophil responsiveness in vitro as measured by Ca2+‐flux, shape change, integrin (CD11b) expression, and chemotaxis. The underlying molecular mechanism involved the activation of Rev‐ErbA‐α and induced a PI3K/PDK1/PKA‐dependent signaling cascade. Systemic application of ApoA‐IV prevented airway hyperresponsiveness (AHR) and airway eosinophilia in mice following allergen challenge. ApoA‐IV levels were decreased in serum from allergic patients compared to healthy controls. Conclusion Our data suggest that ApoA‐IV is an endogenous anti‐inflammatory protein that potently suppresses effector cell functions in eosinophils. Thus, exogenously applied ApoA‐IV may represent a novel pharmacological approach for the treatment of allergic inflammation and other eosinophil‐driven disorders.
Collapse
Affiliation(s)
- David Roula
- Division of Pharmacology, Otto‐Loewi Research Center for Vascular Biology, Immunology and Inflammation Medical University of Graz Graz Austria
| | - Anna Theiler
- Division of Pharmacology, Otto‐Loewi Research Center for Vascular Biology, Immunology and Inflammation Medical University of Graz Graz Austria
| | - Petra Luschnig
- Division of Pharmacology, Otto‐Loewi Research Center for Vascular Biology, Immunology and Inflammation Medical University of Graz Graz Austria
| | - Gunter J. Sturm
- Department of Dermatology and Venerology Medical University of Graz Graz Austria
- Allergy Outpatient Clinic Reumannplatz Vienna Austria
| | | | - Gunther Marsche
- Division of Pharmacology, Otto‐Loewi Research Center for Vascular Biology, Immunology and Inflammation Medical University of Graz Graz Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto‐Loewi Research Center for Vascular Biology, Immunology and Inflammation Medical University of Graz Graz Austria
| | - Eva M. Sturm
- Division of Pharmacology, Otto‐Loewi Research Center for Vascular Biology, Immunology and Inflammation Medical University of Graz Graz Austria
| |
Collapse
|
13
|
Eguiluz-Gracia I, Tay TR, Hew M, Escribese MM, Barber D, O'Hehir RE, Torres MJ. Recent developments and highlights in biomarkers in allergic diseases and asthma. Allergy 2018; 73:2290-2305. [PMID: 30289997 DOI: 10.1111/all.13628] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
The potential of precision medicine in allergy and asthma has only started to be explored. A significant clarification in the pathophysiology of rhinitis, chronic rhinosinusitis, asthma, food allergy and drug hypersensitivity was made in the last decade. This improved understanding led to a better classification of the distinct phenotypes and to the discovery of new drugs such as biologicals, targeting phenotype-specific mechanisms. Nevertheless, many conditions remain poorly understood such as non-eosinophilic airway diseases or non-IgE-mediated food allergy. Moreover, there is a need to predict the response to specific therapies and the outcome of drug and food provocations. The identification of patients at risk of progression towards severity is also an unmet need in order to establish adequate preventive or therapeutic measures. The implementation of precision medicine in the clinical practice requires the identification of phenotype-specific markers measurable in biological matrices. To become useful, these biomarkers need to be quantifiable by reliable systems, and in samples obtained in an easy, rapid and cost-efficient way. In the last years, significant research resources have been put in the identification of valid biomarkers for asthma and allergic diseases. This review summarizes these recent advances with focus on the biomarkers with higher clinical applicability.
Collapse
Affiliation(s)
- Ibon Eguiluz-Gracia
- Unidad de Alergia; IBIMA-Hospital Regional Universitario de Malaga-UMA; ARADyAL; Malaga Spain
| | - Tunn Ren Tay
- Department of Respiratory and Critical Care Medicine; Changi General Hospital; Singapore Singapore
| | - Mark Hew
- Allergy, Asthma and Clinical Immunology Service; The Alfred Hospital; Melbourne Victoria Australia
- School of Public Health & Preventive Medicine; Monash University; Melbourne Victoria Australia
| | - Maria M. Escribese
- Facultad de Medicina; Instituto de Medicina Molecular Aplicada (IMMA); Universidad San Pablo CEU; Madrid Spain
- Departamento de Ciencias Médicas Básicas; Facultad de Medicina; Universidad San Pablo CEU; Madrid Spain
| | - Domingo Barber
- Facultad de Medicina; Instituto de Medicina Molecular Aplicada (IMMA); Universidad San Pablo CEU; Madrid Spain
| | - Robyn E. O'Hehir
- Allergy, Asthma and Clinical Immunology Service; The Alfred Hospital; Melbourne Victoria Australia
- Department of Allergy, Clinical Immunology & Respiratory Medicine; Central Clinical School; Monash University; Melbourne Victoria Australia
| | - Maria J. Torres
- Unidad de Alergia; IBIMA-Hospital Regional Universitario de Malaga-UMA; ARADyAL; Malaga Spain
- Andalusian Center for Nanomedicine and Biotechnology - BIONAND; Malaga Spain
| |
Collapse
|
14
|
Francuzik W, Dölle S, Worm M. Risk factors and treatment of refractory anaphylaxis - a review of case reports. Expert Rev Clin Immunol 2018. [PMID: 29513116 DOI: 10.1080/1744666x.2018.1450140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Patients experiencing anaphylaxis who do not recover after treatment with intramuscular adrenaline are regarded as suffering from refractory anaphylaxis. The incidence of refractory anaphylaxis is estimated to range between 3-5% of anaphylaxis cases. The risk factors for refractory anaphylaxis are unknown. Areas covered: In the present analysis, we aimed to evaluate the management and risk factors of refractory anaphylaxis to highlight possible clinical implications for updating current management algorithms. Expert commentary: According to international guidelines, adrenaline given through the intramuscular (i.m.) route is a rapid and safe treatment but may be insufficient. Therefore, defined standardized treatment protocols for such cases of refractory anaphylaxis are needed to optimize the treatment. Point-of-care diagnostics may enable doctors to identify patients experiencing severe, refractory anaphylaxis early in order to initiate intensified critical care treatment.
Collapse
Affiliation(s)
- Wojciech Francuzik
- a Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergology , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| | - Sabine Dölle
- a Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergology , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| | - Margitta Worm
- a Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergology , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| |
Collapse
|