1
|
Huffines JT, Kiedrowski MR. Staphylococcus aureus Phenol-Soluble Modulins Mediate Interspecies Competition with Upper Respiratory Commensal Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614779. [PMID: 39386438 PMCID: PMC11463439 DOI: 10.1101/2024.09.24.614779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In chronic rhinosinusitis (CRS) disease, microbial dysbiosis is considered a key contributor to inflammation and pathogenicity, with increased prevalence of upper respiratory tract (URT) pathogens concomitant with decreased abundance of commensal species. Staphylococcus aureus is a common URT pathobiont associated with higher carriage rates in CRS. S. aureus secreted toxins are implicated in CRS pathogenesis, and toxins and antibodies to S. aureus secreted factors have been observed in tissue from CRS subjects. CRS disease severity is positively correlated with immune reactivity to S. aureus proteins. Prior studies have examined polymicrobial interactions between S. aureus and URT commensals, however, no studies to date have described possible methods employed by S. aureus to outcompete commensals leading to a S. aureus- dominant microbiome as seen in CRS. This study addresses this gap in knowledge by characterizing how a CRS-associated secreted toxin from S. aureus can inhibit aggregation in commensal URT species. Using a model URT commensal, Corynebacterium pseudodiphtheriticum , we identified a CRS-associated secreted protein from S. aureus , δ-toxin (Hld), that can inhibit C. pseudodiphtheriticum aggregation at biologically relevant concentrations. Furthermore, we observed recombinant δ-toxin reduces C. pseudodiphtheriticum adherence and aggregation on human nasal epithelial cells in an air-liquid interface cell culture model. These results define a novel mechanism by which S. aureus can disrupt URT commensal lifestyles of microbial competitors, contributing to the establishment of microbial dysbiosis. IMPORTANCE Microbial dysbiosis in the upper respiratory tract (URT) is associated with disease pathogenicity in chronic rhinosinusitis (CRS). There are significant links between Staphylococcus aureus and worse CRS outcomes, but no studies to date have demonstrated if S. aureus outcompetes other URT microbes through direct interactions. Here, we report that S. aureus δ-toxin, a secreted protein found in CRS patient tissue, can inhibit the ability of commensal bacteria to aggregate, adhere to, and grow in association with human nasal epithelial cells. These results suggest a potential mechanism for S. aureus to establish dominance in the URT microbiome through direct antagonism of commensals with a disease-associated toxin.
Collapse
|
2
|
Smulders T, Van Der Schee MP, Maitland-Van Der Zee AH, Dikkers FG, Van Drunen CM. Influence of the gut and airway microbiome on asthma development and disease. Pediatr Allergy Immunol 2024; 35:e14095. [PMID: 38451070 DOI: 10.1111/pai.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
There are ample data to suggest that early-life dysbiosis of both the gut and/or airway microbiome can predispose a child to develop along a trajectory toward asthma. Although individual studies show clear associations between dysbiosis and asthma development, it is less clear what (collection of) bacterial species is mechanistically responsible for the observed effects. This is partly due to issues related to the asthma diagnosis and the broad spectrum of anatomical sites, sample techniques, and analysis protocols that are used in different studies. Moreover, there is limited attention for potential differences in the genetics of individuals that would affect the outcome of the interaction between the environment and that individual. Despite these challenges, the first bacterial components were identified that are able to affect the transcriptional state of human cells, ergo the immune system. Such molecules could in the future be the basis for intervention studies that are now (necessarily) restricted to a limited number of bacterial species. For this transition, it might be prudent to develop an ex vivo human model of a local mucosal immune system to better and safer explore the impact of such molecules. With this approach, we might move beyond association toward understanding of causality.
Collapse
Affiliation(s)
- Tamar Smulders
- Department of Otorhinolaryngology/Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Paediatric Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Marc P Van Der Schee
- Department of Paediatric Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Anke H Maitland-Van Der Zee
- Department of Paediatric Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Frederik G Dikkers
- Department of Otorhinolaryngology/Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cornelis M Van Drunen
- Department of Otorhinolaryngology/Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Kim J, Kwak S, Lee J, Park IH, Lee SH, Shin JM, Kim TH. Eosinophilic Chronic Rhinosinusitis and Pathogenic Role of Protease. Int J Mol Sci 2023; 24:17372. [PMID: 38139201 PMCID: PMC10744023 DOI: 10.3390/ijms242417372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is an inflammation of the nasal and paranasal sinus mucosa, and eosinophilic CRS (eCRS) is a subtype characterized by significant eosinophil infiltration and immune response by T-helper-2 cells. The pathogenesis of eCRS is heterogeneous and involves various environmental and host factors. Proteases from external sources, such as mites, fungi, and bacteria, have been implicated in inducing type 2 inflammatory reactions. The balance between these proteases and endogenous protease inhibitors (EPIs) is considered important, and their imbalance can potentially lead to type 2 inflammatory reactions, such as eCRS. In this review, we discuss various mechanisms by which exogenous proteases influence eCRS and highlight the emerging role of endogenous protease inhibitors in eCRS pathogenesis.
Collapse
Affiliation(s)
- Jaehyeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sooun Kwak
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Juhyun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Seung Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Jae Min Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Zhou Y, Xu X, Liu Y, Wang A, Luo Y, Liu X, Wang X, Li W, Yao X. Heterogeneous Regulation of StaphylococcusAureus by Different StaphylococcusEpidermidisagr Types in Atopic Dermatitis. J Invest Dermatol 2023; 143:2484-2493.e11. [PMID: 37271450 DOI: 10.1016/j.jid.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/15/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023]
Abstract
The skin commensal Staphylococcus epidermidis exhibits a protective role in skin inflammation; however, the exact functions of S. epidermidis and their mechanisms in atopic dermatitis (AD) are not fully understood. Here, whole-genome sequencing was conducted on strains of S. epidermidis isolated from pediatric patients with AD and revealed significant strain-level heterogeneity in functional genes. Specific sequence analysis of S. epidermidis identified four types of accessory gene regulator (agr) according to locus variations in the agr operon, which was consistent with the metagenomic data of the contextual microbiota. The number of S. epidermidisagr type I was slightly decreased among AD isolates, whereas agr type IV was hardly detected in AD isolates. Functional experiments showed that strains of S. epidermidisagr types I and IV, but not types II and III, inhibited the expression of S. aureusagr-mediated virulence factors in vitro, suppressed S. aureus epidermal colonization, and attenuated skin inflammation in a mouse model. The delineation of genome signatures of S. epidermidis at the strain level in AD and the quorum-sensing interference between S. epidermidisagr type IV and S. aureus provide a foundation for the modulation of the skin microbiota and the treatment of AD.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaoqiang Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Yang Liu
- 01 Life Institute, Shenzhen, China
| | - Ao Wang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yang Luo
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaokai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
5
|
Houtak G, Bouras G, Nepal R, Shaghayegh G, Cooksley C, Psaltis AJ, Wormald PJ, Vreugde S. The intra-host evolutionary landscape and pathoadaptation of persistent Staphylococcus aureus in chronic rhinosinusitis. Microb Genom 2023; 9:001128. [PMID: 38010322 PMCID: PMC10711304 DOI: 10.1099/mgen.0.001128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a common chronic sinonasal mucosal inflammation associated with Staphylococcus aureus biofilm and relapsing infections. This study aimed to determine rates of S. aureus persistence and pathoadaptation in CRS patients by investigating the genomic relatedness and antibiotic resistance/tolerance in longitudinally collected S. aureus clinical isolates. A total of 68 S. aureus paired isolates (34 pairs) were sourced from 34 CRS patients at least 6 months apart. Isolates were grown into 48 h biofilms and tested for tolerance to antibiotics. A hybrid sequencing strategy was used to obtain high-quality reference-grade assemblies of all isolates. Single nucleotide variants (SNV) divergence in the core genome and sequence type clustering were used to analyse the relatedness of the isolate pairs. Single nucleotide and structural genome variations, plasmid similarity, and plasmid copy numbers between pairs were examined. Our analysis revealed that 41 % (14/34 pairs) of S. aureus isolates were persistent, while 59 % (20/34 pairs) were non-persistent. Persistent isolates showed episode-specific mutational changes over time with a bias towards events in genes involved in adhesion to the host and mobile genetic elements such as plasmids, prophages, and insertion sequences. Furthermore, a significant increase in the copy number of conserved plasmids of persistent strains was observed. This was accompanied by a significant increase in biofilm tolerance against all tested antibiotics, which was linked to a significant increase in biofilm biomass over time, indicating a potential biofilm pathoadaptive process in persistent isolates. In conclusion, our study provides important insights into the mutational changes during S. aureus persistence in CRS patients highlighting potential pathoadaptive mechanisms in S. aureus persistent isolates culminating in increased biofilm biomass.
Collapse
Affiliation(s)
- Ghais Houtak
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Roshan Nepal
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
6
|
Kim HS, Keum HL, Chung IY, Nattkemper L, Head CR, Koh A, Sul WJ, Pastar I, Yosipovitch G. Characterization of a Perturbed Skin Microbiome in Prurigo Nodularis and Lichen Simplex Chronicus. J Invest Dermatol 2023; 143:2082-2085.e5. [PMID: 37044259 DOI: 10.1016/j.jid.2023.03.1669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Affiliation(s)
- Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Hye Lim Keum
- Systems Microbial Ecology Laboratory, Department of Systems Biotechnology, Chung-Ang University, Seoul, South Korea
| | - In-Young Chung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Leigh Nattkemper
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Cheyanne R Head
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Woo Jun Sul
- Systems Microbial Ecology Laboratory, Department of Systems Biotechnology, Chung-Ang University, Seoul, South Korea
| | - Irena Pastar
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA.
| |
Collapse
|
7
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
8
|
Valverde-Molina J, García-Marcos L. Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients 2023; 15:nu15030486. [PMID: 36771193 PMCID: PMC9921812 DOI: 10.3390/nu15030486] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The importance of the microbiome, and of the gut-lung axis in the origin and persistence of asthma, is an ongoing field of investigation. The process of microbial colonisation in the first three years of life is fundamental for health, with the first hundred days of life being critical. Different factors are associated with early microbial dysbiosis, such as caesarean delivery, artificial lactation and antibiotic therapy, among others. Longitudinal cohort studies on gut and airway microbiome in children have found an association between microbial dysbiosis and asthma at later ages of life. A low α-diversity and relative abundance of certain commensal gut bacterial genera in the first year of life are associated with the development of asthma. Gut microbial dysbiosis, with a lower abundance of Phylum Firmicutes, could be related with increased risk of asthma. Upper airway microbial dysbiosis, especially early colonisation by Moraxella spp., is associated with recurrent viral infections and the development of asthma. Moreover, the bacteria in the respiratory system produce metabolites that may modify the inception of asthma and is progression. The role of the lung microbiome in asthma development has yet to be fully elucidated. Nevertheless, the most consistent finding in studies on lung microbiome is the increased bacterial load and the predominance of proteobacteria, especially Haemophilus spp. and Moraxella catarrhalis. In this review we shall update the knowledge on the association between microbial dysbiosis and the origins of asthma, as well as its persistence, phenotypes, and severity.
Collapse
Affiliation(s)
- José Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
| | - Luis García-Marcos
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, University of Murcia and IMIB Biomedical Research Institute, 20120 Murcia, Spain
- Correspondence:
| |
Collapse
|
9
|
Kim J, Kim BE, Berdyshev E, Bronova I, Bin L, Bae J, Kim S, Kim HY, Lee UH, Kim MS, Kim H, Lee J, Hall CF, Hui-Beckman J, Chang Y, Bronoff AS, Hwang D, Lee HY, Goleva E, Ahn K, Leung DYM. Staphylococcus aureus causes aberrant epidermal lipid composition and skin barrier dysfunction. Allergy 2023; 78:1292-1306. [PMID: 36609802 DOI: 10.1111/all.15640] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Staphylococcus (S) aureus colonization is known to cause skin barrier disruption in atopic dermatitis (AD) patients. However, it has not been studied how S. aureus induces aberrant epidermal lipid composition and skin barrier dysfunction. METHODS Skin tape strips (STS) and swabs were obtained from 24 children with AD (6.0 ± 4.4 years) and 16 healthy children (7.0 ± 4.5 years). Lipidomic analysis of STS samples was performed by mass spectrometry. Skin levels of methicillin-sensitive and methicillin-resistant S. aureus (MSSA and MRSA) were evaluated. The effects of MSSA and MRSA were evaluated in primary human keratinocytes (HEKs) and organotypic skin cultures. RESULTS AD and organotypic skin colonized with MRSA significantly increased the proportion of lipid species with nonhydroxy fatty acid sphingosine ceramide with palmitic acid ([N-16:0 NS-CER], sphingomyelins [16:0-18:0 SM]), and lysophosphatidylcholines [16:0-18:0 LPC], but significantly reduced the proportion of corresponding very long-chain fatty acids (VLCFAs) species (C22-28) compared to the skin without S. aureus colonization. Significantly increased transepidermal water loss (TEWL) was found in MRSA-colonized AD skin. S. aureus indirectly through interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, and IL-33 inhibited expression of fatty acid elongase enzymes (ELOVL3 and ELOVL4) in HEKs. ELOVL inhibition was more pronounced by MRSA and resulted in TEWL increase in organotypic skin. CONCLUSION Aberrant skin lipid profiles and barrier dysfunction are associated with S. aureus colonization in AD patients. These effects are attributed to the inhibition of ELOVLs by S. aureus-induced IL-1β, TNF-α, IL-6, and IL-33 seen in keratinocyte models and are more prominent in MRSA than MSSA.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Irina Bronova
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Jaewoong Bae
- R&D Institute, BioEleven Co., Ltd., Seoul, Korea
| | - Seokjin Kim
- R&D Institute, BioEleven Co., Ltd., Seoul, Korea
| | - Hye-Young Kim
- Department of Pediatrics, Medical Research Institute of Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Un Ha Lee
- Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Myoung Shin Kim
- Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Hyunmi Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jinyoung Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Clifton F Hall
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | - Yunhee Chang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | | | - Dasom Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | - Hae-Young Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
10
|
Krysko O, Korsakova D, Teufelberger A, De Meyer A, Steels J, De Ruyck N, van Ovost J, Van Nevel S, Holtappels G, Coppieters F, Ivanchenko M, Braun H, Vedunova M, Krysko DV, Bachert C. Differential protease content of mast cells and the processing of IL-33 in Alternaria alternata induced allergic airway inflammation in mice. Front Immunol 2023; 14:1040493. [PMID: 37153601 PMCID: PMC10154570 DOI: 10.3389/fimmu.2023.1040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background Recent in vitro studies strongly implicated mast cell-derived proteases as regulators of IL-33 activity by enzymatic cleavage in its central domain. A better understanding of the role of mast cell proteases on IL-33 activity in vivo is needed. We aimed to compare the expression of mast cell proteases in C57BL/6 and BALB/c mice, their role in the cleavage of IL-33 cytokine, and their contribution to allergic airway inflammation. Results In vitro, full-length IL-33 protein was efficiently degraded by mast cell supernatants of BALB/c mice in contrast to the mast cell supernatants from C57BL/6 mice. RNAseq analysis indicated major differences in the gene expression profiles of bone marrow-derived mast cells from C57BL/6 and BALB/c mice. In Alternaria alternata (Alt) - treated C57BL/6 mice the full-length form of IL-33 was mainly present, while in BALB/c mice, the processed shorter form of IL-33 was more prominent. The observed cleavage pattern of IL-33 was associated with a nearly complete lack of mast cells and their proteases in the lungs of C57BL/6 mice. While most inflammatory cells were similarly increased in Alt-treated C57BL/6 and BALB/c mice, C57BL/6 mice had significantly more eosinophils in the bronchoalveolar lavage fluid and IL-5 protein levels in their lungs than BALB/c mice. Conclusion Our study demonstrates that lung mast cells differ in number and protease content between the two tested mouse strains and could affect the processing of IL-33 and inflammatory outcome of Alt -induced airway inflammation. We suggest that mast cells and their proteases play a regulatory role in IL-33-induced lung inflammation by limiting its proinflammatory effect via the IL-33/ST2 signaling pathway.
Collapse
Affiliation(s)
- Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
- *Correspondence: Olga Krysko,
| | - Darya Korsakova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Andrea Teufelberger
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Amse De Meyer
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Jill Steels
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Natalie De Ruyck
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Judith van Ovost
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Sharon Van Nevel
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Gabriele Holtappels
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Mikhail Ivanchenko
- Institute of Information Technology, Mathematics and Mechanics, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Harald Braun
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Maria Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
- First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China
| |
Collapse
|
11
|
Jorde I, Schreiber J, Stegemann-Koniszewski S. The Role of Staphylococcus aureus and Its Toxins in the Pathogenesis of Allergic Asthma. Int J Mol Sci 2022; 24:ijms24010654. [PMID: 36614093 PMCID: PMC9820472 DOI: 10.3390/ijms24010654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.
Collapse
|
12
|
Ogata A, Hayashi K, Kitano T, Onozaki K, Itoh S, Hida S. Staphylococcal γ-hemolysins induce IL-4 production in murine basophils. Biochem Biophys Res Commun 2022; 632:107-112. [DOI: 10.1016/j.bbrc.2022.09.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
|
13
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
14
|
Maiello N, Comberiati P, Giannetti A, Ricci G, Carello R, Galli E. New Directions in Understanding Atopic March Starting from Atopic Dermatitis. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040450. [PMID: 35455494 PMCID: PMC9029734 DOI: 10.3390/children9040450] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/12/2023]
Abstract
Recent evidence showed that the postulated linear progression of the atopic march, from atopic dermatitis to food and respiratory allergies, does not capture the heterogeneity of allergic phenotypes, which are influenced by complex interactions between environmental, genetic, and psychosocial factors. Indeed, multiple atopic trajectories are possible in addition to the classic atopic march. Nevertheless, atopic dermatitis is often the first manifestation of an atopic march. Improved understanding of atopic dermatitis pathogenesis is warranted as this could represent a turning point in the prevention of atopic march. In this review, we outline the recent findings on the pathogenetic mechanisms leading to atopic dermatitis that could be targeted by intervention strategies for the prevention of atopic march.
Collapse
Affiliation(s)
- Nunzia Maiello
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy
- Correspondence:
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, 56126 Pisa, Italy;
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Arianna Giannetti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Giampaolo Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy;
| | - Rossella Carello
- Pediatric Allergic Unit, S.Pietro Hospital FbF Roma, 00189 Rome, Italy; (R.C.); (E.G.)
| | - Elena Galli
- Pediatric Allergic Unit, S.Pietro Hospital FbF Roma, 00189 Rome, Italy; (R.C.); (E.G.)
| |
Collapse
|
15
|
Karaguzel D, Sarac BE, Akel Bilgic H, Summak GY, Unal MA, Kalayci O, Karaaslan C. House dust mite-derived allergens effect on matrix metalloproteases in airway epithelial cells. Exp Lung Res 2021; 47:436-450. [PMID: 34739337 DOI: 10.1080/01902148.2021.1998734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aim of the Study: Many allergens have protease activities. Although the immunomodulatory effects of these antigens are well known, the effects attributed to their protease activities are not thoroughly investigated. We set out to determine the effects of house dust mite (HDM) allergens with varying protease activities on bronchial epithelial cell functions. Materials and methods: BEAS-2B cells were maintained in ALI-culture and stimulated with Der p1 (cysteine protease), Der p6 (serine protease), and Der p2 (non-protease) with and without specific protease inhibitors or heat denaturation. Cell viability and epithelial permeability were measured with MTT and paracellular flux assay, respectively. The effect of heat denaturation on allergen structure was examined using in silico models. Matrix metalloproteinases (MMPs) were investigated at the transcription (qPCR), protein (ELISA), and functional (zymography) levels. Results: Epithelial permeability increased only after Der p6 but not after Der p1 or Der p2 stimulation. Der p2 increased both MMP-2 and MMP-9 expression, while Der p1 increased only MMP-9 expression. The heat-denatured form of Der p1 unexpectedly increased MMP-9 gene expression, which, through the use of in silico models, was attributed to its ability to change receptor connections by the formation of new electrostatic and hydrogen bonds. IL-8 and GM-CSF production were increased after Der p1 and Der p2 but decreased after Der p6 stimulation. IL-6 decreased after Der p1 but increased following stimulation with Der p6 and heat-denatured Der p2. Conclusion: Allergens in house dust mites are capable of inducing various changes in the epithelial cell functions by virtue of their protease activities.
Collapse
Affiliation(s)
- Dilara Karaguzel
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Basak Ezgi Sarac
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Hayriye Akel Bilgic
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Gokce Yagmur Summak
- Department of Physics Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| | - Mehmet Altay Unal
- Department of Physics Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| | - Omer Kalayci
- Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, Ankara, Turkey
| | - Cagatay Karaaslan
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
16
|
Hülpüsch C, Weins AB, Traidl‐Hoffmann C, Reiger M. A new era of atopic eczema research: Advances and highlights. Allergy 2021; 76:3408-3421. [PMID: 34407212 DOI: 10.1111/all.15058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/03/2021] [Accepted: 08/12/2021] [Indexed: 01/09/2023]
Abstract
Atopic eczema (AE) is an inflammatory skin disease with involvement of genetic, immunological and environmental factors. One hallmark of AE is a skin barrier disruption on multiple, highly interconnected levels: filaggrin mutations, increased skin pH and a microbiome dysbiosis towards Staphylococcus aureus overgrowth are observed in addition to an abnormal type 2 immune response. Extrinsic factors seem to play a major role in the development of AE. As AE is a first step in the atopic march, its prevention and appropriate treatment are essential. Although standard therapy remains topical treatment, powerful systemic treatment options emerged in the last years. However, thorough endotyping of the individual patients is still required for ideal precision medicine approaches in future. Therefore, novel microbial and immunological biomarkers were described recently for the prediction of disease development and treatment response. This review summarizes the current state of the art in AE research.
Collapse
Affiliation(s)
- Claudia Hülpüsch
- Department of Environmental Medicine Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München Augsburg Germany
- CK CARE – Christine Kühne Center for Allergy research and Education Davos Switzerland
| | - Andreas B. Weins
- Department of Dermatology Faculty of Medicine University of Augsburg Augsburg Germany
| | - Claudia Traidl‐Hoffmann
- Department of Environmental Medicine Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München Augsburg Germany
- CK CARE – Christine Kühne Center for Allergy research and Education Davos Switzerland
- ZIEL Technical University of Munich Freising Germany
| | - Matthias Reiger
- Department of Environmental Medicine Faculty of Medicine University of Augsburg Augsburg Germany
- Institute of Environmental Medicine Helmholtz Zentrum München Augsburg Germany
- CK CARE – Christine Kühne Center for Allergy research and Education Davos Switzerland
| |
Collapse
|
17
|
Jeong J, Lee HK. The Role of CD4 + T Cells and Microbiota in the Pathogenesis of Asthma. Int J Mol Sci 2021; 22:11822. [PMID: 34769255 PMCID: PMC8584410 DOI: 10.3390/ijms222111822] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Asthma, a chronic respiratory disease involving variable airflow limitations, exhibits two phenotypes: eosinophilic and neutrophilic. The asthma phenotype must be considered because the prognosis and drug responsiveness of eosinophilic and neutrophilic asthma differ. CD4+ T cells are the main determinant of asthma phenotype. Th2, Th9 and Tfh cells mediate the development of eosinophilic asthma, whereas Th1 and Th17 cells mediate the development of neutrophilic asthma. Elucidating the biological roles of CD4+ T cells is thus essential for developing effective asthma treatments and predicting a patient's prognosis. Commensal bacteria also play a key role in the pathogenesis of asthma. Beneficial bacteria within the host act to suppress asthma, whereas harmful bacteria exacerbate asthma. Recent literature indicates that imbalances between beneficial and harmful bacteria affect the differentiation of CD4+ T cells, leading to the development of asthma. Correcting bacterial imbalances using probiotics reportedly improves asthma symptoms. In this review, we investigate the effects of crosstalk between the microbiota and CD4+ T cells on the development of asthma.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
18
|
Patel N, Nair M. The small RNA RsaF regulates the expression of secreted virulence factors in Staphylococcus aureus Newman. J Microbiol 2021; 59:920-930. [PMID: 34554453 DOI: 10.1007/s12275-021-1205-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022]
Abstract
The pathogenesis of Staphylococcus aureus, from local infections to systemic dissemination, is mediated by a battery of virulence factors that are regulated by intricate mechanisms, which include regulatory proteins and small RNAs (sRNAs) as key regulatory molecules. We have investigated the involvement of sRNA RsaF, in the regulation of pathogenicity genes hyaluronate lyase (hysA) and serine proteaselike protein D (splD), by employing S. aureus strains with disruption and overexpression of rsaF. Staphylococcus aureus strain with disruption of rsaF exhibited marked down-regulation of hysA transcripts by 0.2 to 0.0002 fold, and hyaluronate lyase activity by 0.2-0.1 fold, as well as increased biofilm formation, during growth from log phase to stationery phase. These mutants also displayed down-regulation of splD transcripts by 0.8 to 0.005 fold, and reduced activity of multiple proteases by zymography. Conversely, overexpression of rsaF resulted in a 2- to 4- fold increase in hysA mRNA levels and hyaluronidase activity. Both hysA and splD mRNAs demonstrated an increased stability in RsaF+ strains. In silico RNA-RNA interaction indicated a direct base pairing of RsaF with hysA and splD mRNAs, which was established in electrophoretic mobility shift assays. The findings demonstrate a positive regulatory role for small RNA RsaF in the expression of the virulence factors, HysA and SplD.
Collapse
Affiliation(s)
- Niralee Patel
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Mrinalini Nair
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
19
|
Van Nevel S, van Ovost J, Holtappels G, De Ruyck N, Zhang N, Braun H, Maes T, Bachert C, Krysko O. Neutrophils Affect IL-33 Processing in Response to the Respiratory Allergen Alternaria alternata. Front Immunol 2021; 12:677848. [PMID: 34484177 PMCID: PMC8416032 DOI: 10.3389/fimmu.2021.677848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Future precision medicine requires further clarifying the mechanisms of inflammation in the severe endotypes of chronic airway diseases such as asthma and chronic rhinosinusitis (CRS). The presence of neutrophils in the airways is often associated with severe airway inflammation, while their precise contribution to the severe inflammation is largely unknown. We aimed to study the role of neutrophils in BALB/c and C57BL/6 mice exposed to Alternaria alternata (Alt). The mice were exposed to Alt extract for twelve hours or ten days to induce allergic airway inflammation. C57BL/6 mice exposed to Alt responded with eosinophilic infiltration and the characteristic IL-5 upregulation. In contrast, the inflammatory response to Alt extract in BALB/c mice was characterized by a neutrophilic response, high levels of G-CSF, and elastase in the lungs. The lack of neutrophils affected the processing of IL-33 in BALB/c mice, as was demonstrated by depletion of neutrophils through intraperitoneal injections of anti-Ly6G antibody. Our data identifies the key role of neutrophils in airway inflammation through IL-33 cleavage in the Alt-induced airway inflammation in mice, which could potentially underline the different endotypes in human disease.
Collapse
Affiliation(s)
- Sharon Van Nevel
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Judith van Ovost
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Gabriele Holtappels
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Natalie De Ruyck
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Nan Zhang
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Harald Braun
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Tania Maes
- Department of Respiratory Medicine, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium.,Department of Ear, Nose and Throat Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Mitamura Y, Ogulur I, Pat Y, Rinaldi AO, Ardicli O, Cevhertas L, Brüggen MC, Traidl-Hoffmann C, Akdis M, Akdis CA. Dysregulation of the epithelial barrier by environmental and other exogenous factors. Contact Dermatitis 2021; 85:615-626. [PMID: 34420214 PMCID: PMC9293165 DOI: 10.1111/cod.13959] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022]
Abstract
The “epithelial barrier hypothesis” proposes that the exposure to various epithelial barrier–damaging agents linked to industrialization and urbanization underlies the increase in allergic diseases. The epithelial barrier constitutes the first line of physical, chemical, and immunological defense against environmental factors. Recent reports have shown that industrial products disrupt the epithelial barriers. Innate and adaptive immune responses play an important role in epithelial barrier damage. In addition, recent studies suggest that epithelial barrier dysfunction plays an essential role in the pathogenesis of the atopic march by allergen sensitization through the transcutaneous route. It is evident that external factors interact with the immune system, triggering a cascade of complex reactions that damage the epithelial barrier. Epigenetic and microbiome changes modulate the integrity of the epithelial barrier. Robust and simple measurements of the skin barrier dysfunction at the point‐of‐care are of significant value as a biomarker, as recently reported using electrical impedance spectroscopy to directly measure barrier defects. Understanding epithelial barrier dysfunction and its mechanism is key to developing novel strategies for the prevention and treatment of allergic diseases. The aim of this review is to summarize recent studies on the pathophysiological mechanisms triggered by environmental factors that contribute to the dysregulation of epithelial barrier function.
Collapse
Affiliation(s)
- Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Department of Medical Microbiology, Faculty of Medicine, Aydin Menderes University, Aydin, Turkey
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Department of Microbiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education, Davos.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Claudia Traidl-Hoffmann
- Christine Kühne-Center for Allergy Research and Education, Davos.,Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos.,Christine Kühne-Center for Allergy Research and Education, Davos
| |
Collapse
|
21
|
Wang W, Wu J, Ji M, Wu C. Exogenous interleukin-33 promotes hepatocellular carcinoma growth by remodelling the tumour microenvironment. J Transl Med 2020; 18:477. [PMID: 33308251 PMCID: PMC7733302 DOI: 10.1186/s12967-020-02661-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
Background Interleukin-33 (IL-33) is an effective inducer of pro-inflammatory cytokines regulating innate and adaptive immunity. Inflammation could be a double-edged sword, promoting or inhibiting tumour growth. To date, the roles and mechanisms of IL-33 in tumours remain controversial. Here, we examined the effect of exogenous IL-33 on the biological characteristics of hepatocellular carcinoma (HCC) and the possible mechanism of action. Methods In this study, IL-33 expression in the tissues of 69 HCC patients was detected and its relationship with prognosis was evaluated. After establishing a mouse HCC model and IL-33 treatment operation, the infiltration of splenic myeloid-derived suppressor (MDSCs), dendritic (DCs), regulatory T, and natural killer (NK) cells was detected by flow cytometry analysis, and the vascular density of the tumour tissues was detected by immunohistochemistry to reveal the mechanism of IL-33 in HCC proliferation. Finally, the Cancer Genome Atlas database was used to analyse Gene Ontology terms the and Kyoto Encyclopaedia of Genes and Genomes pathway. Moreover, the chi-square test, two-tailed unpaired Student’s t-test, and multiple t-tests were performed using SPSS version 23.0 and GraphPad Prism 8.0 software. Results The IL-33 expression level was negatively correlated with the overall survival of HCC patients, suggesting its potential clinical significance in the prognosis of HCC. We found that systemic IL-33 administration significantly promoted the tumour size in vivo. Furthermore, the IL-33-treated mice presented decreased frequencies of tumouricidal NK and CD69+ CD8+ T cells. After IL-33 treatment, the incidence of monocytic MDSCs and conventional DCs increased, while that of granulocytic MDSCs decreased. Moreover, IL-33 promoted the formation of intracellular neovascularization. Therefore, IL-33 accelerated HCC progression by increasing the accumulation of immunosuppressive cells and neovascularization formation. Finally, we found that the transcription of IL-33 was closely related to the PI3K-Akt and MAPK pathways in Gene Set Enrichment Analysis plots, which were involved in the tumourigenesis and pathogenesis of HCC. Conclusions Taken together, IL-33 may be a key tumour promoter of HCC proliferation and tumourigenicity, an important mediator, and a potential therapeutic target for regulating HCC progression.
Collapse
Affiliation(s)
- Wenxiu Wang
- Department of Tumour Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Changping Wu
- Department of Tumour Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China. .,Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
22
|
Imoto Y, Takabayashi T, Sakashita M, Kato Y, Yoshida K, Kidoguchi M, Koyama K, Adachi N, Kimura Y, Ogi K, Ito Y, Kanno M, Okamoto M, Narita N, Fujieda S. Enhanced 15-Lipoxygenase 1 Production is Related to Periostin Expression and Eosinophil Recruitment in Eosinophilic Chronic Rhinosinusitis. Biomolecules 2020; 10:biom10111568. [PMID: 33218117 PMCID: PMC7698943 DOI: 10.3390/biom10111568] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The pathological features of chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) tissues include an eosinophilic infiltration pattern (eosinophilic CRS (ECRS)) or a less eosinophilic pattern (non-ECRS). Recently, it has been suggested that 15-lipoxygenase 1 (15-LOX-1) may have significant roles in allergic disease; however, the significance of 15-LOX-1 in CRS is not well understood. The objective of this study was to demonstrate the expression of 15-LOX-1 in CRS. METHODS The mRNA expression levels of 15-LOX-1 and periostin in nasal tissues were measured by quantitative real-time polymerase chain reaction. We also performed an immunofluorescence study of nasal tissues. Cells of the Eol-1 eosinophilic leukemic cell line were stimulated with interleukin-33 to test the induction of 15-LOX-1. RESULTS The expression level of 15-LOX-1 mRNA in nasal polyps (NPs) was significantly higher in ECRS patients than in non-ECRS patients. The immunofluorescence study revealed that both airway epithelial cells and eosinophils in NPs expressed 15-LOX-1. A significant correlation was seen between the number of eosinophils and the mRNA expression levels of 15-LOX-1 and periostin in nasal polyps. Moreover, interleukin-33 enhanced 15-LOX-1 expression in Eol-1 cells. CONCLUSIONS 15-LOX-1 was shown to be a significant molecule that facilitates eosinophilic inflammation in ECRS.
Collapse
|
23
|
Hong H, Liao S, Chen F, Yang Q, Wang D. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy 2020; 75:2794-2804. [PMID: 32737888 DOI: 10.1111/all.14526] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/25/2022]
Abstract
Under the concept of "united airway diseases," the airway is a single organ wherein upper and lower airway diseases are commonly comorbid. The upper and lower airways are lined with respiratory epithelium that plays a vital role in immune surveillance and modulation as the first line of defense to various infective pathogens, allergens, and physical insults. Recently, there is a common hypothesis emphasizing epithelium-derived cytokines, namely IL-25, IL-33, and TSLP, as key regulatory factors that link in immune-pathogenic mechanisms of allergic rhinitis (AR), chronic rhinosinusitis (CRS), and asthma, mainly involving in type 2 inflammatory responses and linking innate and adaptive immunities. Herein, we review studies that elucidated the role of epithelium-derived triple cytokines in both upper and lower airways with the purpose of expediting better clinical treatments and managements of AR, CRS, asthma, and other associated allergic diseases via applications of the modulators of these cytokines.
Collapse
Affiliation(s)
- Haiyu Hong
- Department of Otolaryngology Allergy Center The Fifth Affiliated Hospital of Sun Yat‐sen University Zhuhai China
- Department of Otolaryngology National University of Singapore National University Health System Singapore Singapore
| | - Shumin Liao
- Department of Otolaryngology Allergy Center The Fifth Affiliated Hospital of Sun Yat‐sen University Zhuhai China
| | - Fenghong Chen
- Otorhinolaryngology Hospital The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Qintai Yang
- Department of Otolaryngology The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - De‐Yun Wang
- Department of Otolaryngology National University of Singapore National University Health System Singapore Singapore
| |
Collapse
|
24
|
Mann C, Schmidtmann I, Bopp T, Brieger J, Fruth K. Treg activation and their role in different subtypes of chronic rhinosinusitis. Allergy 2020; 75:2687-2689. [PMID: 32347979 DOI: 10.1111/all.14346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Caroline Mann
- Molecular Tumor Biology Department of Otorhinolaryngology, Head and Neck Surgery Johannes Gutenberg‐University Medical Center Mainz Germany
| | - Irene Schmidtmann
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI) Johannes Gutenberg‐University Medical Center Mainz Germany
| | - Tobias Bopp
- Institute for Immunology Johannes Gutenberg‐University Medical Center Mainz Germany
| | - Juergen Brieger
- Molecular Tumor Biology Department of Otorhinolaryngology, Head and Neck Surgery Johannes Gutenberg‐University Medical Center Mainz Germany
| | - Kai Fruth
- Molecular Tumor Biology Department of Otorhinolaryngology, Head and Neck Surgery Johannes Gutenberg‐University Medical Center Mainz Germany
- Department of Otorhinolaryngology, Head and Neck Surgery HELIOS Dr. Horst Schmidt Kliniken Wiesbaden Wiesbaden Germany
| |
Collapse
|
25
|
Teufelberger AR, Van Nevel S, Hulpiau P, Nordengrün M, Savvides SN, De Graeve S, Akula S, Holtappels G, De Ruyck N, Declercq W, Vandenabeele P, Hellman L, Bröker BM, Krysko DV, Bachert C, Krysko O. Mouse Strain-Dependent Difference Toward the Staphylococcus aureus Allergen Serine Protease-Like Protein D Reveals a Novel Regulator of IL-33. Front Immunol 2020; 11:582044. [PMID: 33072128 PMCID: PMC7544847 DOI: 10.3389/fimmu.2020.582044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus (S. aureus) can secrete a broad range of virulence factors, among which staphylococcal serine protease-like proteins (Spls) have been identified as bacterial allergens. The S. aureus allergen serine protease-like protein D (SplD) induces allergic asthma in C57BL/6J mice through the IL-33/ST2 signaling axis. Analysis of C57BL/6J, C57BL/6N, CBA, DBA/2, and BALB/c mice treated with intratracheal applications of SplD allowed us to identify a frameshift mutation in the serine (or cysteine) peptidase inhibitor, clade A, and member 3I (Serpina3i) causing a truncated form of SERPINA3I in BALB/c, CBA, and DBA/2 mice. IL-33 is a key mediator of SplD-induced immunity and can be processed by proteases leading to its activation or degradation. Full-length SERPINA3I inhibits IL-33 degradation in vivo in the lungs of SplD-treated BALB/c mice and in vitro by direct inhibition of mMCP-4. Collectively, our results establish SERPINA3I as a regulator of IL-33 in the lungs following exposure to the bacterial allergen SplD, and that the asthma phenotypes of mouse strains may be strongly influenced by the observed frameshift mutation in Serpina3i. The analysis of this protease-serpin interaction network might help to identify predictive biomarkers for type-2 biased airway disease in individuals colonized by S. aureus.
Collapse
Affiliation(s)
- Andrea R Teufelberger
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Sharon Van Nevel
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Howest, University College West Flanders, Bruges, Belgium
| | - Maria Nordengrün
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Savvas N Savvides
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sarah De Graeve
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Srinivas Akula
- The Biomedical Center, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Gabriele Holtappels
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Natalie De Ruyck
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Ghent, Belgium
| | - Peter Vandenabeele
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Ghent, Belgium
| | - Lars Hellman
- The Biomedical Center, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Regeneration and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium.,International Airway Research Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Ear, Nose and Throat Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Krysko
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium.,Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
26
|
Sugita K, Soyka MB, Wawrzyniak P, Rinaldi AO, Mitamura Y, Akdis M, Akdis CA. Outside-in hypothesis revisited: The role of microbial, epithelial, and immune interactions. Ann Allergy Asthma Immunol 2020; 125:517-527. [PMID: 32454094 DOI: 10.1016/j.anai.2020.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Our understanding of the origin of allergic diseases has increased in recent years, highlighting the importance of microbial dysbiosis and epithelial barrier dysfunction in affected tissues. Exploring the microbial-epithelial-immune crosstalk underlying the mechanisms of allergic diseases will allow the development of novel prevention and treatment strategies for allergic diseases. DATA SOURCES This review summarizes the recent advances in microbial, epithelial, and immune interactions in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, and asthma. STUDY SELECTIONS We performed a literature search, identifying relevant recent primary articles and review articles. RESULTS Dynamic crosstalk between the environmental factors and microbial, epithelial, and immune cells in the development of atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, and asthma underlies the pathogenesis of these diseases. There is substantial evidence in the literature suggesting that environmental factors directly affect barrier function of the epithelium. In addition, T-helper 2 (TH2) cells, type 2 innate lymphoid cells, and their cytokine interleukin 13 (IL-13) damage skin and lung barriers. The effects of environmental factors may at least in part be mediated by epigenetic mechanisms. Histone deacetylase activation by type 2 immune response has a major effect on leaky barriers and blocking of histone deacetylase activity corrects the defective barrier in human air-liquid interface cultures and mouse models of allergic asthma with rhinitis. We also present and discuss a novel device to detect and monitor skin barrier dysfunction, which provides an opportunity to rapidly and robustly assess disease severity. CONCLUSION A complex interplay between environmental factors, epithelium, and the immune system is involved in the development of systemic allergic diseases.
Collapse
Affiliation(s)
- Kazunari Sugita
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Japan.
| | - Michael B Soyka
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Department of Otorhinolaryngology, Head and Neck Surgery, University and University Hospital of Zurich, Zurich, Switzerland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
27
|
Bachert C, Humbert M, Hanania NA, Zhang N, Holgate S, Buhl R, Bröker BM. Staphylococcus aureus and its IgE-inducing enterotoxins in asthma: current knowledge. Eur Respir J 2020; 55:13993003.01592-2019. [PMID: 31980492 DOI: 10.1183/13993003.01592-2019] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023]
Abstract
While immunoglobulin (Ig) E is a prominent biomarker for early-onset, its levels are often elevated in non-allergic late-onset asthma. However, the pattern of IgE expression in the latter is mostly polyclonal, with specific IgEs low or below detection level albeit with an increased total IgE. In late-onset severe asthma patients, specific IgE to Staphylococcal enterotoxins (se-IgE) can frequently be detected in serum, and has been associated with asthma, with severe asthma defined by hospitalisations, oral steroid use and decrease in lung function. Recently, se-IgE was demonstrated to even predict the development into severe asthma with exacerbations over the next decade. Staphylococcus aureus manipulates the airway mucosal immunology at various levels via its proteins, including superantigens, serine-protease-like proteins (Spls), or protein A (SpA) and possibly others. Release of IL-33 from respiratory epithelium and activation of innate lymphoid cells (ILCs) via its receptor ST2, type 2 cytokine release from those ILCs and T helper (Th) 2 cells, mast cell degranulation, massive local B-cell activation and IgE formation, and finally eosinophil attraction with consequent release of extracellular traps, adding to the epithelial damage and contributing to disease persistence via formation of Charcot-Leyden crystals are the most prominent hallmarks of the manipulation of the mucosal immunity by S. aureus In summary, S. aureus claims a prominent role in the orchestration of severe airway inflammation and in current and future disease severity. In this review, we discuss current knowledge in this field and outline the needs for future research to fully understand the impact of S. aureus and its proteins on asthma.
Collapse
Affiliation(s)
- Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium .,Division of ENT diseases, CLINTEC, Karolinska Institute, University of Stockholm, Stockholm, Sweden
| | - Marc Humbert
- Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nan Zhang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Stephen Holgate
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, The Sir Henry Wellcome Research Laboratories, Southampton General Hospital, Southampton, UK
| | - Roland Buhl
- Pulmonary Dept, Mainz University Hospital, Mainz, Germany
| | - Barbara M Bröker
- Dept of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
28
|
Xu X, Ong YK, Wang DY. Novel findings in immunopathophysiology of chronic rhinosinusitis and their role in a model of precision medicine. Allergy 2020; 75:769-780. [PMID: 31512248 DOI: 10.1111/all.14044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of the pathophysiology of chronic rhinosinusitis (CRS) is continuously evolving. The traditional description of CRS in terms of two phenotypes based on the presence or absence of nasal polyps belies the underlying intricate immunopathophysiological processes responsible for this condition. CRS is being increasingly recognized as a disease spectrum encompassing a range of inflammatory states in the sinonasal cavity, with non-type 2 inflammatory disease on one end, type 2 inflammatory, eosinophil-heavy disease on the other and an overlap of both in different proportions in between. Abundance in research on the immune mechanisms of CRS has revealed various new endotypes that hold promise as biomarkers for the development of targeted therapies in severe, uncontrolled CRS. The introduction of precision medicine to manage this chronic, complex condition is a step forward in providing individualized care for all patients with CRS. In this review, the latest research on the pathophysiology of CRS with a focus on potential novel biomarkers and treatment options over the last 2 years are summarized and integrated into a suggested model of precision medicine in CRS.
Collapse
Affiliation(s)
- Xinni Xu
- Department of Otolaryngology‐Head and Neck Surgery National University Hospital System (NUHS) Singapore Singapore
| | - Yew Kwang Ong
- Department of Otolaryngology‐Head and Neck Surgery National University Hospital System (NUHS) Singapore Singapore
| | - De Yun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| |
Collapse
|
29
|
Sugita K, Kabashima K. Tight junctions in the development of asthma, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and inflammatory bowel diseases. J Leukoc Biol 2020; 107:749-762. [PMID: 32108379 DOI: 10.1002/jlb.5mr0120-230r] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
This review focuses on recent developments related to asthma, chronic rhinosinusitis, atopic dermatitis (AD), eosinophilic esophagitis, and inflammatory bowel diseases (IBD), with a particular focus on tight junctions (TJs) and their role in the pathogenetic mechanisms of these diseases. Lung, skin, and intestinal surfaces are lined by epithelial cells that interact with environmental factors and immune cells. Therefore, together with the cellular immune system, the epithelium performs a pivotal role as the first line physical barrier against external antigens. Paracellular space is almost exclusively sealed by TJs and is maintained by complex protein-protein interactions. Thus, TJ dysfunction increases paracellular permeability, resulting in enhanced flux across TJs. Epithelial TJ dysfunction also causes immune cell activation and contributes to the pathogenesis of chronic lung, skin, and intestinal inflammation. Characterization of TJ protein alteration is one of the key factors for enhancing our understanding of allergic diseases as well as IBDs. Furthermore, TJ-based epithelial disturbance can promote immune cell behaviors, such as those in dendritic cells, Th2 cells, Th17 cells, and innate lymphoid cells (ILCs), thereby offering new insights into TJ-based targets. The purpose of this review is to illustrate how TJ dysfunction can lead to the disruption of the immune homeostasis in barrier tissues and subsequent inflammation. This review also highlights the various TJ barrier dysfunctions across different organ sites, which would help to develop future drugs to target allergic diseases and IBD.
Collapse
Affiliation(s)
- Kazunari Sugita
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
30
|
Fujieda S, Imoto Y, Kato Y, Ninomiya T, Tokunaga T, Tsutsumiuchi T, Yoshida K, Kidoguchi M, Takabayashi T. Eosinophilic chronic rhinosinusitis. Allergol Int 2019; 68:403-412. [PMID: 31402319 DOI: 10.1016/j.alit.2019.07.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/05/2019] [Indexed: 01/08/2023] Open
Abstract
Eosinophilic chronic rhinosinusitis (ECRS) is a subgroup of chronic rhinosinusitis with nasal polyps (CRSwNP), which is associated with severe eosinophilic infiltration and intractable. Its symptoms include dysosmia, nasal obstruction, and visous nasal discharge. The cause of ECRS is not clear, although it is thought that Staphylococcus aureus and its enterotoxins are involved in stimulating the Th2 system to promote IgE production and eosinophil infiltration through various pathways. While, the coagulation system is activated and the fibrinolytic system is suppressed, leading to deposition of fibrinous networks in nasal polyps. Therefore, a fibrin-degrading agent could be a new treatment for ECRS. Genetic analysis of nasal polyp cells using next-generation sequencing has identified some of the factors involved in ECRS, including periostin, which can be used as a biomarker of this condition. A protease inhibitor could be a therapeutic agent for ECRS. Regarding the role of eosinophils, many researchers have been interested in the mechanism of ETosis. However, the mechanism leading to development of nasal polyps is unknown. In Japan (as well as in East Asia), the incidence of non-ECRS is decreasing and that of ECRS is increasing, but the reason is also unknown. Thanks to the development of biologics therapy, it is thought that there will be a shift to precision medicine in the future.
Collapse
|