1
|
Fernandez‐Santamaria R, Ariza A, Fernandez TD, Cespedes JA, Labella M, Mayorga C, Torres MJ. Advances and highlights in T and B cell responses to drug antigens. Allergy 2022; 77:1129-1138. [PMID: 34617287 DOI: 10.1111/all.15126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/31/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022]
Abstract
The immunological mechanisms involved in drug hypersensitivity reactions (DHRs) are complex, and despite important advances, multiple aspects remain poorly understood. These not fully known aspects are mainly related to the factors that drive towards either a tolerant or a hypersensitivity response and specifically regarding the role of B and T cells. In this review, we focus on recent findings on this knowledge area within the last 2 years. We highlight new evidences of covalent and non-covalent interactions of drug antigen with proteins, as well as the very first characterization of naturally processed flucloxacillin-haptenated human leukocyte antigen (HLA) ligands. Moreover, we have analysed new insights into the identification of risk factors associated with the development of DHRs, such as the role of oxidative metabolism of drugs in the activation of the immune system and the discovery of new associations between DHRs and HLA variants. Finally, evidence of IgG-mediated anaphylaxis in humans and the involvement of specific subpopulations of effector cells associated with different clinical entities are also topics explored in this review. All these recent findings are relevant for the underlying pathology mechanisms and advance the field towards a more precise diagnosis, management and treatment approach for DHRs.
Collapse
Affiliation(s)
| | - Adriana Ariza
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
| | - Tahia D. Fernandez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Departamento de Biología Celular Genética y Fisiología Universidad de Málaga Málaga Spain
| | - José A Cespedes
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
| | - Marina Labella
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
| | - Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| | - María J Torres
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
- Departamento de Medicina Universidad de Málaga Málaga Spain
| |
Collapse
|
2
|
Ogulur I, Pat Y, Ardicli O, Barletta E, Cevhertas L, Fernandez‐Santamaria R, Huang M, Bel Imam M, Koch J, Ma S, Maurer DJ, Mitamura Y, Peng Y, Radzikowska U, Rinaldi AO, Rodriguez‐Coira J, Satitsuksanoa P, Schneider SR, Wallimann A, Zhakparov D, Ziadlou R, Brüggen M, Veen W, Sokolowska M, Baerenfaller K, Zhang L, Akdis M, Akdis CA. Advances and highlights in biomarkers of allergic diseases. Allergy 2021; 76:3659-3686. [PMID: 34519063 PMCID: PMC9292545 DOI: 10.1111/all.15089] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/19/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
During the past years, there has been a global outbreak of allergic diseases, presenting a considerable medical and socioeconomical burden. A large fraction of allergic diseases is characterized by a type 2 immune response involving Th2 cells, type 2 innate lymphoid cells, eosinophils, mast cells, and M2 macrophages. Biomarkers are valuable parameters for precision medicine as they provide information on the disease endotypes, clusters, precision diagnoses, identification of therapeutic targets, and monitoring of treatment efficacies. The availability of powerful omics technologies, together with integrated data analysis and network‐based approaches can help the identification of clinically useful biomarkers. These biomarkers need to be accurately quantified using robust and reproducible methods, such as reliable and point‐of‐care systems. Ideally, samples should be collected using quick, cost‐efficient and noninvasive methods. In recent years, a plethora of research has been directed toward finding novel biomarkers of allergic diseases. Promising biomarkers of type 2 allergic diseases include sputum eosinophils, serum periostin and exhaled nitric oxide. Several other biomarkers, such as pro‐inflammatory mediators, miRNAs, eicosanoid molecules, epithelial barrier integrity, and microbiota changes are useful for diagnosis and monitoring of allergic diseases and can be quantified in serum, body fluids and exhaled air. Herein, we review recent studies on biomarkers for the diagnosis and treatment of asthma, chronic urticaria, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, anaphylaxis, drug hypersensitivity and allergen immunotherapy. In addition, we discuss COVID‐19 and allergic diseases within the perspective of biomarkers and recommendations on the management of allergic and asthmatic patients during the COVID‐19 pandemic.
Collapse
|
3
|
Jurado-Escobar R, Doña I, Perkins JR, Laguna JJ, Muñoz-Cano R, García-Sánchez A, Ayuso P, Torres MJ, Mayorga C, Cornejo-García JA. Polymorphisms in eicosanoid-related biosynthesis enzymes associated with acute urticaria/angioedema induced by nonsteroidal anti-inflammatory drug hypersensitivity. Br J Dermatol 2021; 185:815-824. [PMID: 33955560 DOI: 10.1111/bjd.20440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) are the main triggers of drug hypersensitivity, with NSAID-induced acute urticaria/angioedema (NIUA) the most frequent phenotype. NSAID hypersensitivity is caused by cyclooxygenase 1 inhibition, which leads to an imbalance in prostaglandin (PG) and cysteinyl leukotriene (CysLT) synthesis. As only susceptible individuals develop NSAID hypersensitivity, genetic factors are believed to be involved; however, no study has assessed the overall genetic variability of key enzymes in PG and CysLT synthesis in NSAID hypersensitivity. OBJECTIVES To evaluate simultaneously variants in the main genes involved in PG and CysLT biosynthesis in NIUA. METHODS Two independent cohorts of patients were recruited in Spain, alongside NSAID-tolerant controls. The discovery cohort included only patients with NIUA; the replication cohort included patients with NSAID-exacerbated respiratory disease (NERD). A set of tagging single-nucleotide polymorphisms (tagSNPs) in PTGS1, PTGS2, ALOX5 and LTC4S was genotyped using mass spectrometry coupled with endpoint polymerase chain reaction. RESULTS The study included 1272 individuals. Thirty-five tagSNPs were successfully genotyped in the discovery cohort, with three being significantly associated after Bonferroni correction (rs10306194 and rs1330344 in PTGS1; rs28395868 in ALOX5). These polymorphisms were genotyped in the replication cohort: rs10306194 and rs28395868 remained associated with NIUA, and rs28395868 was marginally associated with NERD. Odds ratios (ORs) in the combined analysis (discovery and replication NIUA populations) were 1·7 for rs10306194 [95% confidence interval (CI) 1·34-2·14; Pcorrected = 2·83 × 10-4 ) and 2·19 for rs28395868 (95% CI 1·43-3·36; Pcorrected = 0·002). CONCLUSIONS Variants of PTGS1 and ALOX5 may play a role in NIUA and NERD, supporting the proposed mechanisms of NSAID-hypersensitivity and shedding light on their genetic basis.
Collapse
Affiliation(s)
- R Jurado-Escobar
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, ARADyAL, Malaga, Spain.,Departments of, Department of, Medicine, University of Malaga, Malaga, Spain
| | - I Doña
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, ARADyAL, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain
| | - J R Perkins
- Department of, Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain.,CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | - J J Laguna
- ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Alergia, Hospital Central de la Cruz Roja, Madrid, Spain
| | - R Muñoz-Cano
- ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Allergy Section, Pneumology Department, Hospital Clinic, Universitat de Barcelona, ARADyAL, Barcelona, Spain
| | - A García-Sánchez
- ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Department of Clinical Biochemistry, Pharmacogenetics Unit, University Hospital of Salamanca, Salamanca, Spain
| | - P Ayuso
- ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Department of Pharmacology, University of Extremadura, Caceres, Spain
| | - M J Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, ARADyAL, Malaga, Spain.,Departments of, Department of, Medicine, University of Malaga, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - C Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, ARADyAL, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - J A Cornejo-García
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, ARADyAL, Malaga, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Jurado-Escobar R, Doña I, Triano-Cornejo J, Perkins JR, Pérez-Sánchez N, Testera-Montes A, Labella M, Bartra J, Laguna JJ, Estravís M, Agúndez JAG, Torres MJ, Cornejo-García JA. Genetic Variants in Cytosolic Phospholipase A2 Associated With Nonsteroidal Anti-Inflammatory Drug-Induced Acute Urticaria/Angioedema. Front Pharmacol 2021; 12:667824. [PMID: 33995098 PMCID: PMC8120030 DOI: 10.3389/fphar.2021.667824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the main triggers of drug hypersensitivity reactions, probably due to their high consumption worldwide. The most frequent type of NSAID hypersensitivity is NSAID cross-hypersensitivity, in which patients react to NSAIDs from different chemical groups in the absence of a specific immunological response. The underlying mechanism of NSAID cross-hypersensitivity has been linked to cyclooxygenase (COX)-1 inhibition causing an imbalance in the arachidonic acid pathway. Despite NSAID-induced acute urticaria/angioedema (NIUA) being the most frequent clinical phenotype, most studies have focused on NSAID-exacerbated respiratory disease. As NSAID cross-hypersensitivity reactions are idiosyncratic, only appearing in some subjects, it is believed that individual susceptibility is under the influence of genetic factors. Although associations with polymorphisms in genes from the AA pathway have been described, no previous study has evaluated the potential role of cytosolic phospholipase A2 (cPLA2) variants. This enzyme catalyzes the initial hydrolysis of membrane phospholipids to release AA, which can be subsequently metabolized into eicosanoids. Here, we analyzed for the first time the overall genetic variation in the cPLA2 gene (PLA2G4A) in NIUA patients. For this purpose, a set of tagging single nucleotide polymorphisms (tagSNPs) in PLA2G4A were selected using data from Europeans subjects in the 1,000 Genomes Project, and genotyped with the iPlex Sequenom MassArray technology. Two independent populations, each comprising NIUA patients and NSAID-tolerant controls, were recruited in Spain, for the purposes of discovery and replication, comprising a total of 1,128 individuals. Fifty-eight tagSNPs were successfully genotyped in the discovery cohort, of which four were significantly associated with NIUA after Bonferroni correction (rs2049963, rs2064471, rs12088010, and rs12746200). These polymorphisms were then genotyped in the replication cohort: rs2049963 was associated with increased risk for NIUA after Bonferroni correction under the dominant and additive models, whereas rs12088010 and rs12746200 were protective under these two inheritance models. Our results suggest a role for PLA2G4A polymorphisms in NIUA. However, further studies are required to replicate our findings, elucidate the mechanistic role, and evaluate the participation of PLA2G4A variants in other phenotypes induced by NSAID cross-hypersensitivity.
Collapse
Affiliation(s)
- Raquel Jurado-Escobar
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain.,Departamento De Medicina, Universidad De Málaga, Malaga, Spain
| | - Inmaculada Doña
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario De Málaga, Malaga, Spain.,ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain
| | - José Triano-Cornejo
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain
| | - James R Perkins
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain.,CIBER De Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | | | | | - Marina Labella
- Allergy Unit, Hospital Regional Universitario De Málaga, Malaga, Spain
| | - Joan Bartra
- ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Allergy Section, Pneumology Department, Hospital Clinic, Universitat De Barcelona, Barcelona, Spain
| | - José J Laguna
- ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Allergy Unit, Allergo-Anaesthesia Unit, Hospital Central De La Cruz Roja, Faculty of Medicine, Alfonso X El Sabio University, Madrid, Spain
| | - Miguel Estravís
- ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Instituto De Investigación Biomédica De Salamanca (IBSAL), Salamanca, Spain
| | - José A G Agúndez
- ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain
| | - María J Torres
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain.,Departamento De Medicina, Universidad De Málaga, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario De Málaga, Malaga, Spain.,ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Malaga, Spain
| | - José A Cornejo-García
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain.,ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Doña I, Jurado-Escobar R, Pérez-Sánchez N, Laguna JJ, Bartra J, Testera-Montes A, de Santa María RS, Torres MJ, Cornejo-García JA. Genetic Variants Associated With Drug-Induced Hypersensitivity Reactions: towards Precision Medicine? CURRENT TREATMENT OPTIONS IN ALLERGY 2021. [DOI: 10.1007/s40521-020-00278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Breiteneder H, Peng Y, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, Traidl‐Hoffmann C, Nadeau K, O'Hehir RE, O'Mahony L, Pfaar O, Torres MJ, Wang D, Zhang L, Akdis CA. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020; 75:3039-3068. [PMID: 32893900 PMCID: PMC7756301 DOI: 10.1111/all.14582] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Modern health care requires a proactive and individualized response to diseases, combining precision diagnosis and personalized treatment. Accordingly, the approach to patients with allergic diseases encompasses novel developments in the area of personalized medicine, disease phenotyping and endotyping, and the development and application of reliable biomarkers. A detailed clinical history and physical examination followed by the detection of IgE immunoreactivity against specific allergens still represents the state of the art. However, nowadays, further emphasis focuses on the optimization of diagnostic and therapeutic standards and a large number of studies have been investigating the biomarkers of allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, food allergy, urticaria and anaphylaxis. Various biomarkers have been developed by omics technologies, some of which lead to a better classification of distinct phenotypes or endotypes. The introduction of biologicals to clinical practice increases the need for biomarkers for patient selection, prediction of outcomes and monitoring, to allow for an adequate choice of the duration of these costly and long‐lasting therapies. Escalating healthcare costs together with questions about the efficacy of the current management of allergic diseases require further development of a biomarker‐driven approach. Here, we review biomarkers in diagnosis and treatment of asthma, atopic dermatitis, allergic rhinitis, viral infections, chronic rhinosinusitis, food allergy, drug hypersensitivity and allergen immunotherapy with a special emphasis on specific IgE, the microbiome and the epithelial barrier. In addition, EAACI guidelines on biologicals are discussed within the perspective of biomarkers.
Collapse
Affiliation(s)
- Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Ya‐Qi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Otorhinolaryngology Hospital The First Affiliated Hospital Sun Yat‐Sen University Guangzhou China
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University of Brasov Brasov Romania
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
- Department of Clinical Pharmacy & Pharmacology University of GroningenUniversity Medical Center Groningen Groningen Netherlands
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute Hospital for Sick Children Toronto ON Canada
- Department of Immunology University of Toronto Toronto ON Canada
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program The Hospital for Sick Children Departments of Paediatrics and Immunology University of Toronto Toronto ON Canada
| | - Wytske J. Fokkens
- Department of Otorhinolaryngology Amsterdam University Medical Centres Amsterdam The Netherlands
| | - Claudia Traidl‐Hoffmann
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- ZIEL ‐ Institute for Food & Health Technical University of Munich Freising‐Weihenstephan Germany
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research Stanford University Stanford CA USA
| | - Robyn E. O'Hehir
- Department of Allergy, immunology and Respiratory Medicine Central Clinical School Monash University Melbourne Vic. Australia
- Allergy, Asthma and Clinical Immunology Service Alfred Health Melbourne Vic. Australia
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Maria J. Torres
- Allergy Unit Regional University Hospital of Malaga‐IBIMA‐UMA‐ARADyAL Malaga Spain
| | - De‐Yun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy Beijing TongRen Hospital Beijing China
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|
7
|
Ariza A, Mayorga C, Bogas G, Barrionuevo E, Torres MJ, Doña I, Fernandez TD. Advances and novel developments in drug hypersensitivity diagnosis. Allergy 2020; 75:3112-3123. [PMID: 32990987 DOI: 10.1111/all.14603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
A correct diagnosis of drug hypersensitivity reactions (DHRs) is very important for both the patient and health system. However, DHRs diagnosis is complex, time consuming, requires trained personnel, is not standardized for many drugs, involves procedures not exempt of risk, and in most cases lacks standardized in vivo and in vitro tests. Thus, there is an urgent need for improving the different approaches to diagnose patients with suspected DHRs. In this review, we have analyzed the advances performed in immediate and nonimmediate DHRs diagnosis during the last two years and obtained several conclusions: the significant heterogeneity in current practice among centers illustrates the need to re-evaluate, update, and standardize in vivo tests and protocols for the diagnosis and management of patients with suspected drug allergy. Regarding in vitro tests, the latest studies have focused on increasing their sensitivity or on establishing the sensitivity and specificity for the tests performed with new drugs. There seems to be a consensus about combining in vivo and in vitro tests as the best way to increase the diagnostic accuracy.
Collapse
Affiliation(s)
- Adriana Ariza
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
| | - Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| | - Gador Bogas
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
| | - Esther Barrionuevo
- Asthma and Immunoallergic Diseases Research Group Instituto de Investigación Hospital 12 de Octubre (i+12)‐ARADyAL Madrid Spain
- Allergy Unit Hospital Universitario 12 de Octubre Madrid Spain
| | - Maria J. Torres
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
- Departamento de Medicina Universidad de Málaga Málaga Spain
| | - Inmaculada Doña
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
| | - Tahia D. Fernandez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Departamento de Biología Celular, Genética y Fisiología Universidad de Málaga Málaga Spain
| |
Collapse
|