1
|
Kunz Coyne AJ, Eshaya M, Bleick C, Vader S, Biswas B, Wilson M, Deschenes MV, Alexander J, Lehman SM, Rybak MJ. Exploring synergistic and antagonistic interactions in phage-antibiotic combinations against ESKAPE pathogens. Microbiol Spectr 2024; 12:e0042724. [PMID: 39082827 PMCID: PMC11468199 DOI: 10.1128/spectrum.00427-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 09/21/2024] Open
Abstract
In the era of antimicrobial resistance, phage-antibiotic combinations offer a promising therapeutic option, yet research on their synergy and antagonism is limited. This study aims to assess these interactions, focusing on protein synthesis inhibitors and cell envelope-active agents against multidrug-resistant bacterial strains. We evaluated synergistic and antagonistic interactions in multidrug-resistant Staphylococcus aureus, Enterococcus faecium, and Pseudomonas aeruginosa strains. Phages were combined with protein synthesis inhibitors [linezolid (LZD), minocycline (MIN), gentamicin (GEN), and azithromycin (AZM)] or cell envelope-active agents [daptomycin (DAP), ceftaroline (CPT), and cefepime (FEP)]. Modified checkerboard minimum inhibitory concentration assays and 24-h time-kill analyses were conducted, alongside one-step growth curves to analyze phage growth kinetics. Statistical comparisons used one-way analysis of variance (ANOVA) and the Tukey test (P < 0.05). In the checkerboard and 24-h time-kill analyses (TKA) of S. aureus and E. faecium, phage-LZD and phage-MIN combinations were antagonistic (FIC > 4) while phage-DAP and phage-CPT were synergistic (FIC 0.5) (ANOVA range of mean differences 0.52-2.59 log10 CFU/mL; P < 0.001). For P. aeruginosa, phage-AZM was antagonistic (FIC > 4), phage-GEN was additive (FIC = 1), and phage-FEP was synergistic (ANOVA range of mean differences 1.04-1.95 log10 CFU/mL; P < 0.001). Phage growth kinetics were altered in the presence of LZD and MIN against S. aureus and in the presence of LZD against a single E. faecium strain (HOU503). Our findings indicate that select protein synthesis inhibitors may induce phage-antibiotic antagonism. However, this antagonism may not solely stem from changes in phage growth kinetics, warranting further investigation into the complex interplay among strains, phage attributes, and antibiotic mechanisms affecting bacterial inhibition.IMPORTANCEIn the face of escalating antimicrobial resistance, combining phages with antibiotics offers a promising avenue for treating infections unresponsive to traditional antibiotics. However, while studies have explored synergistic interactions, less attention has been given to potential antagonism and its impact on phage growth kinetics. This research evaluates the interplay between phages and antibiotics, revealing both synergistic and antagonistic patterns across various bacterial strains and shedding light on the complex dynamics that influence treatment efficacy. Understanding these interactions is crucial for optimizing combination therapies and advancing phage therapy as a viable solution for combating antimicrobial resistance.
Collapse
Affiliation(s)
- Ashlan J. Kunz Coyne
- Anti-Infective
Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum
College of Pharmacy and Health Sciences, Wayne State
University, Detroit,
Michigan, USA
| | - Mirna Eshaya
- Anti-Infective
Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum
College of Pharmacy and Health Sciences, Wayne State
University, Detroit,
Michigan, USA
| | - Callan Bleick
- Anti-Infective
Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum
College of Pharmacy and Health Sciences, Wayne State
University, Detroit,
Michigan, USA
| | - Samantha Vader
- Anti-Infective
Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum
College of Pharmacy and Health Sciences, Wayne State
University, Detroit,
Michigan, USA
| | - Biswajit Biswas
- Naval Medical Research
Center-Fort Detrick,
Frederick, Maryland,
USA
| | - Melanie Wilson
- Naval Medical Research
Center-Fort Detrick,
Frederick, Maryland,
USA
- Leidos,
Reston, Virginia, USA
| | - Michael V. Deschenes
- Naval Medical Research
Center-Fort Detrick,
Frederick, Maryland,
USA
- Leidos,
Reston, Virginia, USA
| | - Jose Alexander
- Department of
Microbiology, Virology and Immunology, AdventHealth Central
Florida, Orlando,
Florida, USA
| | - Susan M. Lehman
- Center for Biologics
Evaluation and Research, US Food and Drug
Administration, Silver Spring,
Maryland, USA
| | - Michael J. Rybak
- Anti-Infective
Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum
College of Pharmacy and Health Sciences, Wayne State
University, Detroit,
Michigan, USA
- Division of Infectious
Diseases, Department of Medicine, School of Medicine, Wayne State
University, Detroit,
Michigan, USA
- Department of
Pharmacy, Detroit Medical Center,
Detroit, Michigan, USA
| |
Collapse
|
2
|
Al-Anany AM, Fatima R, Nair G, Mayol JT, Hynes AP. Temperate phage-antibiotic synergy across antibiotic classes reveals new mechanism for preventing lysogeny. mBio 2024; 15:e0050424. [PMID: 38757974 PMCID: PMC11237771 DOI: 10.1128/mbio.00504-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
A recent demonstration of synergy between a temperate phage and the antibiotic ciprofloxacin suggested a scalable approach to exploiting temperate phages in therapy, termed temperate phage-antibiotic synergy, which specifically interacted with the lysis-lysogeny decision. To determine whether this would hold true across antibiotics, we challenged Escherichia coli with the phage HK97 and a set of 13 antibiotics spanning seven classes. As expected, given the conserved induction pathway, we observed synergy with classes of drugs known to induce an SOS response: a sulfa drug, other quinolones, and mitomycin C. While some β-lactams exhibited synergy, this appeared to be traditional phage-antibiotic synergy, with no effect on the lysis-lysogeny decision. Curiously, we observed a potent synergy with antibiotics not known to induce the SOS response: protein synthesis inhibitors gentamicin, kanamycin, tetracycline, and azithromycin. The synergy results in an eightfold reduction in the effective minimum inhibitory concentration of gentamicin, complete eradication of the bacteria, and, when administered at sub-optimal doses, drastically decreases the frequency of lysogens emerging from the combined challenge. However, lysogens exhibit no increased sensitivity to the antibiotic; synergy was maintained in the absence of RecA; and the antibiotic reduced the initial frequency of lysogeny rather than selecting against formed lysogens. Our results confirm that SOS-inducing antibiotics broadly result in temperate-phage-specific synergy, but that other antibiotics can interact with temperate phages specifically and result in synergy. This is the first report of a means of chemically blocking entry into lysogeny, providing a new means for manipulating the key lysis-lysogeny decision.IMPORTANCEThe lysis-lysogeny decision is made by most bacterial viruses (bacteriophages, phages), determining whether to kill their host or go dormant within it. With over half of the bacteria containing phages waiting to wake, this is one of the most important behaviors in all of biology. These phages are also considered unusable for therapy because of this behavior. In this paper, we show that many antibiotics bias this behavior to "wake" the dormant phages, forcing them to kill their host, but some also prevent dormancy in the first place. These will be important tools to study this critical decision point and may enable the therapeutic use of these phages.
Collapse
Affiliation(s)
- Amany M Al-Anany
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rabia Fatima
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gayatri Nair
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jordan T Mayol
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Alexander P Hynes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Bisen M, Kharga K, Mehta S, Jabi N, Kumar L. Bacteriophages in nature: recent advances in research tools and diverse environmental and biotechnological applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22199-22242. [PMID: 38411907 DOI: 10.1007/s11356-024-32535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Bacteriophages infect and replicate within bacteria and play a key role in the environment, particularly in microbial ecosystems and bacterial population dynamics. The increasing recognition of their significance stems from their wide array of environmental and biotechnological uses, which encompass the mounting issue of antimicrobial resistance (AMR). Beyond their therapeutic potential in combating antibiotic-resistant infections, bacteriophages also find vast applications such as water quality monitoring, bioremediation, and nutrient cycling within environmental sciences. Researchers are actively involved in isolating and characterizing bacteriophages from different natural sources to explore their applications. Gaining insights into key aspects such as the life cycle of bacteriophages, their host range, immune interactions, and physical stability is vital to enhance their application potential. The establishment of diverse phage libraries has become indispensable to facilitate their wide-ranging uses. Consequently, numerous protocols, ranging from traditional to cutting-edge techniques, have been developed for the isolation, detection, purification, and characterization of bacteriophages from diverse environmental sources. This review offers an exploration of tools, delves into the methods of isolation, characterization, and the extensive environmental applications of bacteriophages, particularly in areas like water quality assessment, the food sector, therapeutic interventions, and the phage therapy in various infections and diseases.
Collapse
Affiliation(s)
- Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sakshi Mehta
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Nashra Jabi
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| |
Collapse
|
4
|
Renteria AE, Valera FCP, Maniakas A, Adam D, Filali-Mouhim A, Ruffin M, Mfuna LE, Brochiero E, Desrosiers MY. Azithromycin Mechanisms of Action in CRS Include Epithelial Barrier Restoration and Type 1 Inflammation Reduction. Otolaryngol Head Neck Surg 2023; 169:1055-1063. [PMID: 37125631 DOI: 10.1002/ohn.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023]
Abstract
OBJECTIVE Previous in vitro transcriptomic profiling suggests azithromycin exerts its effects in patients with chronic rhinosinusitis (CRS) via modulation of type 1 inflammation and restoration of epithelial barrier function. We wished to verify these postulated effects using in vitro models of epithelial repair and in vivo transcriptional profiling. STUDY DESIGN Functional effects of azithromycin in CRS were verified using in vitro models of wounding. The mechanism of the effect of azithromycin was assessed in vivo using transcriptomic profiling. SETTING Academic medical center. METHODS Effects of azithromycin on the speed of epithelial repair were verified in a wounding model using primary nasal epithelial cells (pNEC) from CRS patients. Nasal brushings collected pre-and posttreatment during a placebo-controlled trial of azithromycin for CRS patients unresponsive to surgery underwent transcriptomic profiling to identify implicated pathways. RESULTS Administration of azithromycin improved the wound healing rates in CRS pNECs and prevented the negative effect of Staphylococcus aureus on epithelial repair. In vivo, response to azithromycin was associated with downregulation in pathways of type 1 inflammation, and upregulation of pathways implicated in the restoration of the cell cycle. CONCLUSION Restoration of healthy epithelial function may represent a major mode of action of azithromycin in CRS. In vitro models show enhanced epithelial repair, while in vivo transcriptomics shows downregulation of pathways type 1 inflammation accompanied by upregulation of DNA repair and cell-cycle pathways. The maximal effect in patients with high levels of type 1-enhanced inflammation suggests that azithromycin may represent a novel therapeutic option for surgery-unresponsive CRS patients.
Collapse
Affiliation(s)
- Axel E Renteria
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département d'Oto-rhino-laryngologie et chirurgie cervico-faciale, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Fabiana C P Valera
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Ali Filali-Mouhim
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Leandra Endam Mfuna
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Martin Y Desrosiers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département d'Oto-rhino-laryngologie et chirurgie cervico-faciale, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| |
Collapse
|
5
|
Xu Z, Yan J, Wen W, Zhang N, Bachert C. Pathophysiology and management of Staphylococcus aureus in nasal polyp disease. Expert Rev Clin Immunol 2023; 19:981-992. [PMID: 37409375 DOI: 10.1080/1744666x.2023.2233700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Staphylococcus aureus (S. aureus) is a common pathogen that frequently colonizes the sinonasal cavity. Recent studies demonstrated the essential role of Staphylococcus aureus in the pathophysiology of uncontrolled severe chronic rhinosinusitis with nasal polyps (NP) by initiating an immune response to the germ and its products, resulting in type 2 inflammation. AREAS COVERED This review aims to summarize the evidence for the role of S. aureus in the development of NP disease including S. aureus-related virulence factors, the pathophysiologic mechanisms used by S. aureus, and the synergistic effects of S. aureus and other pathogens. It also describes the current management of S. aureus associated with NPs as well as potential therapeutic strategies that are used in clinical practice. EXPERT OPINION S. aureus is able to damage the nasal mucosal epithelial barrier, impair the clearance of the host immune system, and trigger adaptive and innate immune reactions which lead to the formation of inflammation and nasal polyp growth. Further studies should focus on the development of novel therapeutic strategies, such as biologics, bacteriophages, probiotics, and nanomedicine, which could be used to treat S. aureus and its immunological consequences in the future.
Collapse
Affiliation(s)
- Zhaofeng Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Jieying Yan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Weiping Wen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Nan Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
- Division of ENT Diseases, Stockholm, Sweden
- Clinic for ENT Diseases and Head and Neck Surgery, University Clinic Münster, Münster, Germany
| |
Collapse
|
6
|
Fungo GBN, Uy JCW, Porciuncula KLJ, Candelario CMA, Chua DPS, Gutierrez TAD, Clokie MRJ, Papa DMD. "Two Is Better Than One": The Multifactorial Nature of Phage-Antibiotic Combinatorial Treatments Against ESKAPE-Induced Infections. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:55-67. [PMID: 37350995 PMCID: PMC10282822 DOI: 10.1089/phage.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Phage-antibiotic synergy (PAS) has been extensively explored over the past decade, with the aim of developing more effective treatments against multidrug-resistant organisms. However, it remains unclear how to effectively combine these two approaches. To address this uncertainty, we assessed four main aspects of PAS interactions in this review, seeking to identify commonalities of combining treatments within and between bacterial species. We examined all literature on PAS efficacy toward ESKAPE pathogens and present an analysis of the data in papers focusing on: (1) order of treatment, (2) dose of both phage and antibiotics, (3) mechanism of action, and (4) viability of transfer from in vivo or animal model trials to clinical applications. Our analysis indicates that there is little consistency within phage-antibiotic therapy regimens, suggesting that highly individualized treatment regimens should be used. We propose a set of experimental studies to address these research gaps. We end our review with suggestions on how to improve studies on phage-antibiotic combination therapy to advance this field.
Collapse
Affiliation(s)
- Gale Bernice N. Fungo
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - John Christian W. Uy
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Kristiana Louise J. Porciuncula
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Chiarah Mae A. Candelario
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Deneb Philip S. Chua
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Tracey Antaeus D. Gutierrez
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | | | - Donna May D. Papa
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
7
|
Wang M, Zhu H, Wei J, Jiang L, Jiang L, Liu Z, Li R, Wang Z. Uncovering the determinants of model Escherichia coli strain C600 susceptibility and resistance to lytic T4-like and T7-like phage. Virus Res 2023; 325:199048. [PMID: 36681192 DOI: 10.1016/j.virusres.2023.199048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
As antimicrobial resistance (AMR) continues to increase, the therapeutic use of phages has re-emerged as an attractive alternative. However, knowledge of phage resistance development and bacterium-phage interaction complexity are still not fully interpreted. In this study, two lytic T4-like and T7-like phage infecting model Escherichia coli strain C600 are selected, and host genetic determinants involved in phage susceptibility and resistance are also identified using TraDIS strategy. Isolation and identification of the lytic T7-like show that though it belongs to the phage T7 family, genes encoding replication and transcription protein exhibit high differences. The TraDIS results identify a huge number of previously unidentified genes involved in phage infection, and a subset (six in susceptibility and nine in resistance) are shared under pressure of the two kinds of lytic phage. Susceptible gene wbbL has the highest value and implies the important role in phage susceptibility. Importantly, two susceptible genes QseE (QseE/QseF) and RstB (RstB/RstA), encoding the similar two-component system sensor histidine kinase (HKs), also identified. Conversely and strangely, outer membrane protein gene ompW, unlike the gene ompC encoding receptor protein of T4 phage, was shown to provide phage resistance. Overall, this study exploited a genome-wide fitness assay to uncover susceptibility and resistant genes, even the shared genes, important for the E. coli strain of both most popular high lytic T4-like and T7-like phages. This knowledge of the genetic determinants can be further used to analysis the behind function signatures to screen the potential agents to aid phage killing of MDR pathogens, which will greatly be valuable in improving the phage therapy outcome in fighting with microbial resistance.
Collapse
Affiliation(s)
- Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China.
| | - Heng Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Jingyi Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Li Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Lei Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China; International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
8
|
Lorenzo-Rebenaque L, Casto-Rebollo C, Diretto G, Frusciante S, Rodríguez JC, Ventero MP, Molina-Pardines C, Vega S, Marin C, Marco-Jiménez F. Examining the effects of Salmonella phage on the caecal microbiota and metabolome features in Salmonella-free broilers. Front Genet 2022; 13:1060713. [PMID: 36437955 PMCID: PMC9691336 DOI: 10.3389/fgene.2022.1060713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
Bacteriophages selectively infect and kill their target bacterial host, being a promising approach to controlling zoonotic bacteria in poultry production. To ensure confidence in its use, fundamental questions of safety and toxicity monitoring of phage therapy should be raised. Due to its high specificity, a minimal impact on the gut ecology is expected; however, more in-depth research into key parameters that influence the success of phage interventions has been needed to reach a consensus on the impact of bacteriophage therapy in the gut. In this context, this study aimed to investigate the interaction of phages with animals; more specifically, we compared the caecum microbiome and metabolome after a Salmonella phage challenge in Salmonella-free broilers, evaluating the role of the phage administration route. To this end, we employed 45 caecum content samples from a previous study where Salmonella phages were administered via drinking water or feed for 24 h from 4, 5 to 6-weeks-old broilers. High-throughput 16S rRNA gene sequencing showed a high level of similarity (beta diversity) but revealed a significant change in alpha diversity between broilers with Salmonella-phage administered in the drinking water and control. Our results showed that the phages affected only a few genera of the microbiota's structure, regardless of the administration route. Among these, we found a significant increase in Streptococcus and Sellimonas in the drinking water and Lactobacillus, Anaeroplasma and Clostridia_vadinBB60_group in the feed. Nevertheless, the LC-HRMS-based metabolomics analyses revealed that despite few genera were significantly affected, a substantial number of metabolites, especially in the phage administered in the drinking water were significantly altered (64 and 14 in the drinking water and feed groups, respectively). Overall, our study shows that preventive therapy with bacteriophages minimally alters the caecal microbiota but significantly impacts their metabolites, regardless of the route of administration.
Collapse
Affiliation(s)
- Laura Lorenzo-Rebenaque
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Cristina Casto-Rebollo
- Institute of Science and Animal Technology, Universitat Politècnica de València, Valencia, Spain
| | - Gianfranco Diretto
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Santa Maria di Galeria, Rome, Italy
| | - Sarah Frusciante
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Santa Maria di Galeria, Rome, Italy
| | - Juan Carlos Rodríguez
- Microbiology Department, Balmis General University Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, Alicante, Spain
| | - María-Paz Ventero
- Microbiology Department, Balmis General University Hospital, ISABIAL, Alicante, Spain
| | | | - Santiago Vega
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Clara Marin
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute of Science and Animal Technology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
9
|
Liu S, Hon K, Bouras GS, Psaltis AJ, Shearwin K, Wormald PJ, Vreugde S. APTC-C-SA01: A Novel Bacteriophage Cocktail Targeting Staphylococcus aureus and MRSA Biofilms. Int J Mol Sci 2022; 23:ijms23116116. [PMID: 35682794 PMCID: PMC9181636 DOI: 10.3390/ijms23116116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
The high infection and mortality rate of methicillin-resistant Staphylococcus aureus (MRSA) necessitates the urgent development of new treatment strategies. Bacteriophages (phages) have several advantages compared to antibiotics for the treatment of multi-drug-resistant bacterial infections, and thus provide a promising alternative to antibiotics. Here, S. aureus phages were isolated from patients and environmental sources. Phages were characterized for stability, morphology and genomic sequence and their bactericidal activity against the biofilm form of methicillin-susceptible Staphylococcus aureus (MSSA) and MRSA was investigated. Four S. aureus phages were isolated and tested against 51 MSSA and MRSA clinical isolates and reference strains. The phages had a broad host range of 82−94% individually and of >98% when combined and could significantly reduce the viability of S. aureus biofilms. The phages had a latent period of ≤20 min and burst size of >11 plaque forming units (PFU)/infected cell. Transmission electron microscopy (TEM) identified phages belonging to the family of Myoviridae. Genomic sequencing indicated the lytic nature of all four phages, with no identified resistance or virulence genes. The 4 phages showed a high complementarity with 49/51 strains (96%) sensitive to at least 2/4 phages tested. Furthermore, the frequency of bacteriophage insensitive mutant (BIM) generation was lower when the phages were combined into the phage cocktail APTC-C-SA01 than for bacteria exposed to each of the phages alone. In conclusion, APTC-C-SA01, containing four lytic S. aureus phages has the potential for further development as a treatment against MSSA and MRSA infections.
Collapse
Affiliation(s)
- Sha Liu
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA 5011, Australia; (S.L.); (K.H.); (G.S.B.); (A.J.P.); (P.-J.W.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Karen Hon
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA 5011, Australia; (S.L.); (K.H.); (G.S.B.); (A.J.P.); (P.-J.W.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - George Spyro Bouras
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA 5011, Australia; (S.L.); (K.H.); (G.S.B.); (A.J.P.); (P.-J.W.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Alkis James Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA 5011, Australia; (S.L.); (K.H.); (G.S.B.); (A.J.P.); (P.-J.W.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Keith Shearwin
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA 5011, Australia; (S.L.); (K.H.); (G.S.B.); (A.J.P.); (P.-J.W.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA 5011, Australia; (S.L.); (K.H.); (G.S.B.); (A.J.P.); (P.-J.W.)
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Correspondence: ; Tel.: +61-8-8222-6928
| |
Collapse
|