1
|
Tsai SYC, Gaffin JM, Hawryluk EB, Ruran HB, Bartnikas LM, Oyoshi MK, Schneider LC, Phipatanakul W, Ma KSK. Evaluation of dupilumab on the disease burden in children and adolescents with atopic dermatitis: A population-based cohort study. Allergy 2024; 79:2748-2758. [PMID: 39166365 DOI: 10.1111/all.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Dupilumab is the first and only biologic agent approved for the treatment of atopic dermatitis (AD) in pediatric patients aged from 6 months to 17 years. The study aimed to evaluate the impact of dupilumab on the occurrence of comorbidities in pediatric patients with AD. METHODS In this population-based cohort study, we utilized electronic health records from multiple healthcare organizations across the United States. Pediatric patients (<18 years of age) with a diagnosis of AD initiating dupilumab were propensity-score matched 1:1 to those initiating other systemic agents (azathioprine, cyclosporine, methotrexate, mycophenolate mofetil, or systemic corticosteroids). The primary outcomes were new-onset comorbidities emerging during the study period measured by the risk ratio (RR) and its confidence interval (CI). Subgroup analyses were stratified by age (0-5 years, 6-11 years, and 12-17 years), sex, and race. RESULTS A total of 3575 pediatric patients with AD treated with dupilumab were matched to 3575 patients treated with other systemic agents. The dupilumab cohort was associated with a lowered risk of new-onset atopic comorbidities (including asthma [RR, 0.72; 95% CI, 0.59-0.89] and allergic rhinitis [RR, 0.62; 95% CI, 0.52-0.74]), infections (e.g., skin and soft tissue infection [RR, 0.70; 95% CI, 0.63-0.76] and respiratory tract infection [RR = 0.56; 95% CI, 0.51-0.61]), psychiatric disorders (e.g., mood disorder [RR, 0.52; 95% CI, 0.39-0.70] and anxiety [RR, 0.57; 95% CI, 0.46-0.70], sleep disturbance [RR, 0.60; 95% CI, 0.47-0.77]), neurologic and developmental disorders (e.g., attention deficit hyperactivity disorder [RR, 0.54; 95% CI, 0.38-0.75]). Furthermore, the positive effects are found to be more pronounced in younger children (aged 0-5 years) with AD. CONCLUSIONS Treatment with dupilumab compared to systemic agents resulted in reductions in AD-related comorbidities in pediatric patients.
Collapse
Affiliation(s)
- Serena Yun-Chen Tsai
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan M Gaffin
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elena B Hawryluk
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hana B Ruran
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lisa M Bartnikas
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michiko K Oyoshi
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Allergy, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, Massachusetts, USA
| | - Lynda C Schneider
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Wanda Phipatanakul
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Sheng-Kai Ma
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Zhou X, Dunham D, Sindher SB, Long A, Fernandes A, Chang I, Assa'ad A, Pongracic J, Spergel JM, Tam J, Tilles S, Wang J, Boyd SD, Chinthrajah RS, Nadeau KC. HLA-DR + regulatory T cells and IL-10 are associated with success or failure of desensitization outcomes. Allergy 2024. [PMID: 39291303 DOI: 10.1111/all.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/14/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Omalizumab (XOLAIR®)-assisted multi-food oral immunotherapy (mOIT) has been shown to safely, effectively, and rapidly desensitize patients with multiple food allergies. In our clinical trial (NCT02626611) on omalizumab-assisted mOIT, different desensitization outcomes (success or failure of desensitization) were observed following a period of either continued or discontinued mOIT. However, the association between the immunological changes induced by omalizumab-assisted mOIT and desensitization outcomes has not yet been fully elucidated. In this study, due to the key roles of regulatory T (Treg) cells and the type 2 helper T cell (Th2) pathway in immune tolerance to food allergens, we aimed to characterize their association with the desensitization outcomes of omalizumab-assisted mOIT. METHODS Mass cytometry and multiplex cytokine assays were performed on blood samples obtained from participants with allergies to peanut, cashew, or milk in our phase 2 clinical study (NCT02626611). Comprehensive statistical and bioinformatic analyses were conducted on high-dimensional cytometry-based single-cell data and high-throughput multiplex cytokine data. RESULTS Our results demonstrated that the frequency of HLA-DR+ Treg cells, and the production of Th2 cytokines (IL-4, IL-5, IL-13, and IL-9) as well as the immunoregulatory cytokine IL-10 by peripheral blood mononuclear cells (PBMCs) was significantly increased in cultures with allergen compared to cultures with media alone at baseline (Week 0). We also observed increased frequency of allergen responsive HLA-DR+ Treg cells and enhanced production of IL-10 by PBMCs in participants who achieved successful desensitization compared to those with failure of desensitization. However, the production of Th2 cytokines by PBMCs did not show significant differences between participants with different desensitization outcomes (success vs. failure of desensitization), despite omalizumab-assisted mOIT inducing a significant reduction in the production of Th2 cytokines. CONCLUSIONS We demonstrated that the frequency of HLA-DR+ Treg cells and IL-10 cytokine production by PBMCs are associated with desensitization outcomes of omalizumab-assisted mOIT. These findings suggest potential immunological parameters that could be targeted to enhance desensitization success rates.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Diane Dunham
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Sayantani B Sindher
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew Long
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Andrea Fernandes
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Iris Chang
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Amal Assa'ad
- Division of Allergy and Immunology, Cincinnati Children's Medical Center, Cincinnati, Ohio, USA
| | - Jacqueline Pongracic
- Division of Allergy and Immunology, The Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Jonathan M Spergel
- Division of Allergy and Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan Tam
- Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Stephen Tilles
- Seattle Allergy and Asthma Research Institute, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott D Boyd
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California, USA
| | - R Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Yan S, Yang B, Qin H, Du C, Liu H, Jin T. Exploring the therapeutic potential of monoclonal antibodies targeting TSLP and IgE in asthma management. Inflamm Res 2024; 73:1425-1434. [PMID: 38907743 DOI: 10.1007/s00011-024-01908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND In recent years, there has been a growing interest in the utilization of biologic therapies for the management of asthma. Both TSLP and IgE are important immune molecules in the development of asthma, and they are involved in the occurrence and regulation of inflammatory response. METHODS A comprehensive search of PubMed and Web of Science was conducted to gather information on anti-TSLP antibody and anti-IgE antibody. RESULTS This investigation elucidates the distinct mechanistic roles of Thymic Stromal Lymphopoietin (TSLP) and Immunoglobulin E (IgE) in the pathogenesis of asthma, with a particular emphasis on delineating the therapeutic mechanisms and pharmacological properties of monoclonal antibodies targeting IgE and TSLP. Through a meticulous examination of clinical trials involving paradigmatic agents such as omalizumab and tezepelumab, we offer valuable insights into the potential treatment modalities for diseases with shared immunopathogenic pathways involving IgE and TSLP. CONCLUSION The overarching objective of this comprehensive study is to delve into the latest advancements in asthma therapeutics and to provide guidance for future investigations in this domain.
Collapse
Affiliation(s)
- Shuang Yan
- Sichuan University of Arts and Science, DaZhou, 635000, China.
- Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province, Sichuan Institute of Arts and Science, DaZhou, 635000, China.
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, ZiGong, 643000, China.
| | - Bowen Yang
- Unit for Drug and Instrument Supervision and Inspection of Wuxi Joint Logistic Support Center, Nanjing, 210000, China
| | - Haichuan Qin
- Sichuan University of Arts and Science, DaZhou, 635000, China
| | - Chengzhen Du
- Sichuan University of Arts and Science, DaZhou, 635000, China
| | - Hua Liu
- Sichuan University of Arts and Science, DaZhou, 635000, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, P.R. China.
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
4
|
Martín-Cruz L, Benito-Villalvilla C, Sirvent S, Angelina A, Palomares O. The Role of Regulatory T Cells in Allergic Diseases: Collegium Internationale Allergologicum (CIA) Update 2024. Int Arch Allergy Immunol 2024; 185:503-518. [PMID: 38408438 DOI: 10.1159/000536335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Allergy represents a major health problem of increasing prevalence worldwide with a high socioeconomic impact. Our knowledge on the molecular mechanisms underlying allergic diseases and their treatments has significantly improved over the last years. The generation of allergen-specific regulatory T cells (Tregs) is crucial in the induction of healthy immune responses to allergens, preventing the development and worsening of allergic diseases. SUMMARY In the last decades, intensive research has focused on the study of the molecular mechanisms involved in Treg development and Treg-mediated suppression. These mechanisms are essential for the induction of sustained tolerance by allergen-specific immunotherapy (AIT) after treatment discontinuation. Compelling experimental evidence demonstrated altered suppressive capacity of Tregs in patients suffering from allergic rhinitis, allergic asthma, food allergy, or atopic dermatitis, as well as the restoration of their numbers and functionality after successful AIT. KEY MESSAGE The better understanding of the molecular mechanisms involved in Treg generation during allergen tolerance induction might well contribute to the development of novel strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Leticia Martín-Cruz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University, Madrid, Spain
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University, Madrid, Spain
| | - Sofía Sirvent
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| |
Collapse
|
5
|
Charles N, Kortekaas-Krohn I, Kocaturk E, Scheffel J, Altrichter S, Steinert C, Xiang YK, Gutermuth J, Reber LL, Maurer M. Autoreactive IgE: Pathogenic role and therapeutic target in autoimmune diseases. Allergy 2023; 78:3118-3135. [PMID: 37555488 DOI: 10.1111/all.15843] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Autoimmunity is the break of tolerance to self-antigens that leads to organ-specific or systemic diseases often characterized by the presence of pathogenic autoreactive antibodies (AAb) produced by plasmablast and/or plasma cells. AAb are prevalent in the general population and not systematically associated with clinical symptoms. In contrast, in some individuals, these AAb are pathogenic and drive the development of signs and symptoms of antibody-mediated autoimmune diseases (AbAID). AAb production, isotype profiles, and glycosylations are promoted by pro-inflammatory triggers linked to genetic, environmental, and hormonal parameters. Recent evidence supports a role for pathogenic AAb of the IgE isotype in a number of AbAID. Autoreactive IgE can drive the activation of mast cells, basophils, and other types of FcεRI-bearing cells and may play a role in promoting autoantibody production and other pro-inflammatory pathways. In this review, we discuss the current knowledge on the pathogenicity of autoreactive IgE in AbAID and their status as therapeutic targets. We also highlight unresolved issues including the need for assays that reproducibly quantify IgE AAbs, to validate their diagnostic and prognostic value, and to further study their pathophysiological contributions to AbAID.
Collapse
Affiliation(s)
- Nicolas Charles
- Faculté de Médecine site Bichat, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Université Paris Cité, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Inge Kortekaas-Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Emek Kocaturk
- Department of Dermatology, Koç University School of Medicine, Istanbul, Turkey
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Sabine Altrichter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Departement of Dermatology and Venerology, Kepler University Hospital, Linz, Austria
| | - Carolin Steinert
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Yi-Kui Xiang
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jan Gutermuth
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR 1291, University of Toulouse, INSERM, CNRS, Toulouse, France
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| |
Collapse
|
6
|
Kolkhir P, Akdis CA, Akdis M, Bachert C, Bieber T, Canonica GW, Guttman-Yassky E, Metz M, Mullol J, Palomares O, Renz H, Ständer S, Zuberbier T, Maurer M. Type 2 chronic inflammatory diseases: targets, therapies and unmet needs. Nat Rev Drug Discov 2023; 22:743-767. [PMID: 37528191 DOI: 10.1038/s41573-023-00750-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/03/2023]
Abstract
Over the past two decades, significant progress in understanding of the pathogenesis of type 2 chronic inflammatory diseases has enabled the identification of compounds for more than 20 novel targets, which are approved or at various stages of development, finally facilitating a more targeted approach for the treatment of these disorders. Most of these newly identified pathogenic drivers of type 2 inflammation and their corresponding treatments are related to mast cells, eosinophils, T cells, B cells, epithelial cells and sensory nerves. Epithelial barrier defects and dysbiotic microbiomes represent exciting future drug targets for chronic type 2 inflammatory conditions. Here, we review common targets, current treatments and emerging therapies for the treatment of five major type 2 chronic inflammatory diseases - atopic dermatitis, chronic prurigo, chronic urticaria, asthma and chronic rhinosinusitis with nasal polyps - with a high need for targeted therapies. Unmet needs and future directions in the field are discussed.
Collapse
Affiliation(s)
- Pavel Kolkhir
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) Davos, University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) Davos, University of Zürich, Davos, Switzerland
| | - Claus Bachert
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Division of ENT diseases, Karolinska Hospital, Stockholm, Sweden
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital, Bonn, Germany
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
- Davos Biosciences, Davos, Switzerland
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Asthma & Allergy Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Joaquim Mullol
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clínic Barcelona, FRCB-IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Harald Renz
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Sonja Ständer
- Section Pruritus Medicine, Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Torsten Zuberbier
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
7
|
Sindher SB, Hillier C, Anderson B, Long A, Chinthrajah RS. Treatment of food allergy: Oral immunotherapy, biologics, and beyond. Ann Allergy Asthma Immunol 2023; 131:29-36. [PMID: 37100276 PMCID: PMC10330596 DOI: 10.1016/j.anai.2023.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
The prevalence of food allergy (FA) has been increasing globally and comes with a heavy burden not just economically, but also on quality of life. Although oral immunotherapy (OIT) is effective at inducing desensitization to food allergens, it has several limitations that weaken its success. Limitations include a long duration of build-up, especially when used for multiple allergens, and a high rate of reported adverse events. Furthermore, OIT may not be effective in all patients. Efforts are underway to identify additional treatment options, either as monotherapy or in combination, to treat FA or enhance the safety and efficacy of OIT. Biologics such as omalizumab and dupilumab, which already have US Food and Drug Administration approval for other atopic conditions have been the most studied, but additional biologics and novel strategies are emerging. In this review, we discuss therapeutic strategies including immunoglobulin E inhibitors, immunoglobulin E disruptors, interleukin-4 and interleukin-13 inhibitors, antialarmins, JAK1 and BTK inhibitors, and nanoparticles, and the data surrounding their application in FA and highlighting their potential.
Collapse
Affiliation(s)
- Sayantani B Sindher
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California.
| | - Claire Hillier
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California
| | - Brent Anderson
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California
| | - Andrew Long
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California
| | - R Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California
| |
Collapse
|
8
|
Olewicz-Gawlik A, Kowala-Piaskowska A. Self-reactive IgE and anti-IgE therapy in autoimmune diseases. Front Pharmacol 2023; 14:1112917. [PMID: 36755957 PMCID: PMC9899859 DOI: 10.3389/fphar.2023.1112917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Growing evidence indicates the pathogenic role of autoreactive IgE in autoimmune diseases. Incidence of autoimmune and allergic diseases in the industrialized countries is consistently icreasing, thus leading to concerted efforts to comprehend the regulation of IgE-mediated mechanisms. The first reports of a presence of IgE autoantibodies in patients with autoimmune diseases have been published a long time ago, and it is now recognized that self-reactive IgE can mediate inflammatory response in bullous pemhigoid, systemic lupus erythematosus, chronic urticaria, and atopic dermatitis. The advances in understanding the pathomechanisms of these disorders brought to a successful use of anti-IgE strategies in their management. The present review discusses the current state of knowledge on the IgE-mediated autoimmunity and anti-IgE treatment, and pave the way for further exploration of the subject.
Collapse
Affiliation(s)
- Anna Olewicz-Gawlik
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland,Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Poznan, Poland,*Correspondence: Anna Olewicz-Gawlik,
| | - Arleta Kowala-Piaskowska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|