1
|
Arya D, Pawar P, Gajbhiye R, Tandon D, Kothari P, Goankar R, Singh D. Status of sperm mitochondrial functions and DNA methylation in infertile men with clinical varicocele before and after treatment. Mol Cell Endocrinol 2025; 595:112393. [PMID: 39481748 DOI: 10.1016/j.mce.2024.112393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Varicocele has been associated with reduced male fertility potential. Treatment modalities for varicocele improve semen parameters, yet more than 50% of cases remain infertile. Varicocele-induced heat and hypoxia stress may affect sperm mitochondrial functions, possibly leading to aberrant epigenetic modifications. This study includes 30 fertile men and 40 infertile men with clinical varicocele. The effect of varicocele treatment (antioxidant supplementation and or varicocelectomy) was evaluated after 3 months of treatment. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (iROS) were measured by flow cytometry using JC-1 and DCFDA, respectively. mtDNA copy number and deletions were determined by PCR. DNA methylation was analysed by pyrosequencing. Present investigations suggest that infertile men with varicocele have abnormal semen parameters; significantly low MMP, high iROS, and high mtDNA copy number. Semen parameters were improved in a subset of men of both the treatment modalities; however, it was noted that varicocelectomy helped better in improving sperm parameters compared to antioxidant treatment. Both treatment modalities helped in reducing iROS and mtDNA copy number significantly; however, they were noneffective in improving MMP. Altered DNA methylation at mitochondria D loop and mitochondrial structure and function genes UQCRC2, MIC60, TOM22, and LETM1 (promoter region) were observed in varicocele group. The DNA methylation levels were restored after varicocele treatment; however, the restoration was not consistent at all CpG sites. Both the treatment modalities helped in restoring the altered DNA methylation levels of mitochondrial genes but the restoration is nonhomogeneous across the studied CpG sites.
Collapse
Affiliation(s)
- Deepshikha Arya
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Prakash Pawar
- Lokmanya Tilak Municipal General Hospital, Sion, Mumbai, 400022, India
| | - Rahul Gajbhiye
- Clinical Research Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Deepti Tandon
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Priyank Kothari
- Topiwala National Medical College and Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai, 400008, India
| | - Reshma Goankar
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Nguyen HT, Do SQ, Wakai T, Funahashi H. Mitochondrial content and mtDNA copy number in spermatozoa and penetrability into oocytes. Theriogenology 2024; 234:125-132. [PMID: 39689446 DOI: 10.1016/j.theriogenology.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
The current narrative review aims to summarize the relation of mitochondrial content (MC) and mitochondrial DNA copy number (MDCN) in spermatozoa with sperm penetrability, and to discuss the various determining factors during the process of spermatogenesis in mammals. There are many potential factors associated with the quantitative alteration of MC and MDCN in male gametes from spermatogenesis to ejaculation. Particularly, spermatogenesis may be the first step to jointly contribute to an incomplete reduction of MC and MDCN in spermatozoon. It appears to be now quite clear that some abnormalities during spermatogenesis and oxidative stress are the main factors highly associated with the quantitative change of MC and MDCN in spermatozoa, consequently affecting sperm quality and their penetrability into oocytes. Currently, a series of proteins contributing to form sperm midpiece during spermatogenesis and cytoplasmic elimination during spermiation have been currently identified. The present review provides insight into how these factors interact with sperm MC and MDCN, and handholds to gain a better understanding of their roles. This review also highlights the uniqueness of normal fertile spermatozoa which have relatively lower MC and MDCN, but have mitochondria that function completely in multiple pivotal physiological pathways.
Collapse
Affiliation(s)
- Hai Thanh Nguyen
- Department of Animal Science, Okayama University, Okayama, Japan; Department of Animal Production, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Son Quang Do
- Department of Animal Science, Okayama University, Okayama, Japan
| | - Takuya Wakai
- Department of Animal Science, Okayama University, Okayama, Japan
| | | |
Collapse
|
3
|
Sawaid Kaiyal R, Mukherjee SD, Panner Selvam MK, Miller AW, Vij SC, Lundy SD. Mitochondrial dysfunction signatures in idiopathic primary male infertility: a validated proteomics-based diagnostic approach. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1479568. [PMID: 39726694 PMCID: PMC11669654 DOI: 10.3389/frph.2024.1479568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Research question Male infertility accounts for almost half of all infertility cases worldwide, with idiopathic male infertility accounting for up to 30% of the cases. Sperm proteomics has revealed critical molecular pathway changes in men with infertility. However, the sperm mitochondrial proteome remains poorly understood. We attempted to answer the following question: Do patients with idiopathic primary male infertility exhibit a proteomic signature associated with mitochondrial dysfunction that could be used as a target for future mechanistic investigations? Design Patients with idiopathic primary infertility (20-40 years old) referred to the Cleveland Clinic between March 2012 and April 2014 were compared with fertile donor controls. Sperm proteins were analyzed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis page (SDS-PAGE) and liquid chromatography-mass spectrometry (LC-MS), and differentially expressed proteins (DEPs) were identified based on significance test results and fold change thresholds. Protein expression was validated using western blotting. Results Proteomic analysis of pooled samples from fertile donors (n = 5) and patients with idiopathic primary infertility (n = 5) identified 1,134 proteins, including 344 DEPs. Mitochondrial dysfunction topped the ingenuity toxicity list. Analysis of expression levels of three mitochondrial proteins known to combat oxidative stress revealed that peroxiredoxin-5 (PRDX5) and superoxide dismutase 2 (SOD2), but not glutathione disulphide reductase, were significantly decreased in patient samples compared with those in fertile-donor samples. Conclusions This study revealed an association of downregulated expression of PRDX5 and SOD2 in sperm samples of patients with idiopathic primary male infertility. Our results support future mechanistic studies and development of advanced diagnostic methods to better identify men with mitochondria-related male infertility.
Collapse
Affiliation(s)
- Raneen Sawaid Kaiyal
- Glickman Urological Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Sromona D. Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH, United States
| | | | - Aaron W. Miller
- Glickman Urological Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Sarah C. Vij
- Glickman Urological Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Scott D. Lundy
- Glickman Urological Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
4
|
Liu F, Sun L, Xu J, He M, Wu C, Shen H, Zhu H, Luo F, Gao J, Dai J. Isoglycyrrhizin supplementation of frozen goat semen-extender improves post-thaw sperm quality and in vitro fertilization rates. Theriogenology 2024; 234:133-142. [PMID: 39693806 DOI: 10.1016/j.theriogenology.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
This study examined the effect of supplementation of freezing extender with isoglycyrrhizin (ISL), a natural antioxidant agent, on the quality and fertility potential of goat spermatozoa after cryopreservation. Forty ejaculates were collected from eight Chongming White rams and diluted with five concentrations of ISL: 0 (control group), 50, 100, 150, and 200 μg/mL. The quality, motility parameters, antioxidant properties, mRNA expression of antioxidant and ferroptosis genes, and ability to induce fertilization, were evaluated following freezing/thawing. Total motility and progressive motility were significantly increased in spermatozoa following the addition of 150 and 200 μg/mL ISL. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities were enhanced in all ISL-supplemented groups compared to controls. Adding ISL decreased the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and nitric oxide (NO). mRNA levels of ferroptosis-related genes, voltage-dependent anion channel protein 2 (VDAC2), voltage-dependent anion channel protein 3 (VDAC3), protein 53 (P53), and nuclear factor erythroid 2-related factor 2 (NRF2) tended to decrease after adding ISL, whereas the levels of antioxidant genes glutathione peroxidase 4 (GPX4) and glutathione peroxidase 4 (GPX5), tended to increase. The best spermatozoa quality and the strongest antioxidant properties were obtained after adding 150 μg/mL ISL. Therefore, fresh semen, frozen semen, and frozen semen with 150 μg/mL ISL was used for in vitro fertilization of oocytes. The cleavage and blastocyst rates were significantly lower in frozen semen compared with fresh semen, whereas frozen semen containing 150 μg/mL ISL showed a significant increase in cleavage and blastocyst rates compared with frozen semen. In conclusion, ISL can be used as an antioxidant in goat semen cryodilution, and the addition of ISL can improve the quality and antioxidant properties of frozen and thawed spermatozoa. ISL can also protect the ability of spermatozoa to be fertilized and develop; 150 μg/mL ISL was the optimal concentration for addition.
Collapse
Affiliation(s)
- Fuqin Liu
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shangha, 201106, China
| | - Lingwei Sun
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shangha, 201106, China
| | - Jiehuan Xu
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shangha, 201106, China
| | - Mengqian He
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shangha, 201106, China
| | - Caifeng Wu
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shangha, 201106, China
| | - Haoxing Shen
- Shanghai Chongming Yuandu Livestock Breeding Co., Shanghai, 202154, China
| | - Huibin Zhu
- Shanghai Chongming Yuandu Livestock Breeding Co., Shanghai, 202154, China
| | - Feng Luo
- Shanghai Chongming District Animal Epidemic Prevention and Control Center, Shanghai, 202154, China.
| | - Jun Gao
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shangha, 201106, China.
| | - Jianjun Dai
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shangha, 201106, China.
| |
Collapse
|
5
|
Anwar K, Thaller G, Saeed-Zidane M. Sperm-Borne Mitochondrial Activity Influenced by Season and Age of Holstein Bulls. Int J Mol Sci 2024; 25:13064. [PMID: 39684774 DOI: 10.3390/ijms252313064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Sperm mitochondria are vital organelles for energy production and pre- and post-fertilization sperm functions. The potential influence of the age of the bull and season on the sperm-borne mitochondrial copy number and the transcription activity has not yet been investigated. Therefore, the expression patterns of all protein-coding mitochondrial genes were identified throughout the year along with mitochondrial copy numbers in young and old bulls' spermatozoa. For that, high-quality semen samples (n = 32) with more than 80% quality for the morphological parameters, from young (n = 4, aged 18-24 months old) and old (n = 4, aged 40-54 months old) Holstein bulls, were collected during the four seasons (n = 4 samples each animal/season). The DNA and RNA were isolated from sperm cells and subjected to the DNA copy number and expression analyses using qPCR. Furthermore, an in silico analysis using gene ontology online tools for the abundantly expressed genes was utilized. The data were statistically analyzed using Prism10 software. There was a significant reduction in the mitochondria copy number of young bulls' spermatozoa compared to their old counterparts during the summer (29 ± 3 vs. 51 ± 6, p < 0.001) and winter (27 ± 3 vs. 43 ± 7, p < 0.01) seasons. However, sperm-borne mitochondrial protein-coding genes were transcriptionally higher in young bulls throughout the year. Within the same group of bulls, unlike the old bulls, there was a significant (p < 0.05) induction in the transcription activity accompanied by a significant (p < 0.05) reduction in the mitochondrial copy numbers in the summer (29 ± 3) and winter (27 ± 3) compared to the spring (42 ± 9) and autumn (36 ± 5) seasons in young bulls. Additionally, the pathway enrichment of the top six expressed genes differed between age groups and seasons. In conclusion, under the same quality of semen, the early stages of age are associated with mitochondrial biogenesis and transcription activity dysregulation in a season-dependent manner.
Collapse
Affiliation(s)
- Khurshaid Anwar
- Molecular Genetics Group, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Georg Thaller
- Molecular Genetics Group, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Mohammed Saeed-Zidane
- Molecular Genetics Group, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| |
Collapse
|
6
|
de Almeida AL, Gonçalves A, Barros A, Sousa M, Sá R. Bleomycin in vitro exposure decreases markers of human male gamete competence. F&S SCIENCE 2024:S2666-335X(24)00061-2. [PMID: 39393570 DOI: 10.1016/j.xfss.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVE To investigate the in vitro impact of bleomycin on human sperm deoxyribonucleic acid (DNA) integrity, functionality, and morphology, with the aim of elucidating the underlying mechanism and anticipating potential repercussions on patients' reproductive function. DESIGN Controlled laboratory-based in vitro investigation. SETTING University and clinical in vitro fertilization treatment center. PATIENT(S) Surplus human ejaculate donated for research by 45 reproductive-age participants exhibiting normozoospermic sperm parameters after clinical semen analysis. None of the participants had received a cancer diagnosis or undergone radiotherapy, chemotherapy, or both. INTERVENTION(S) After clinical semen analysis, sperm samples were centrifuged, diluted in sperm preparation medium, and exposed to bleomycin (100 μg/mL) for 2 hours at 37 °C in a humidified incubator with 5% CO2. MAIN OUTCOME MEASURE(S) In vitro human sperm competence was evaluated by comparing raw sperm, sperm incubated with sperm preparation medium, and sperm exposed to bleomycin. Competence indicators included sperm motility, vitality, DNA and acrosome integrity, and mitochondrial membrane potential. Transmisson electron microscopy was employed to correlate the ultrastructural morphological findings with functional assays. RESULT(S) Exposure to bleomycin for 2 hours in vitro significantly decreased sperm vitality, motility, and chromatin condensation compared with raw and control sperm. It also significantly increased sperm DNA fragmentation and the proportion of sperm with low mitochondrial membrane potential. Additionally, bleomycin significantly retarded the acrosomal response compared with control but did not affect the formation of intracellular and extracellular reactive oxygen species. Bleomycin-induced ultrastructural morphological changes supported the detected functional alterations. CONCLUSION(S) Bleomycin negatively impacts male gamete competency in humans. Healthcare professionals should vigilantly monitor and further investigate the gonadotoxicity effects of bleomycin, in addition to its recognized lung toxicity. Meanwhile, it is recommended that patients with cancer undergoing bleomycin-containing chemotherapy regimens receive guidance on fertility preservation strategies.
Collapse
Affiliation(s)
- Ana Lobo de Almeida
- Laboratory of Cell Biology, Department of Microscopy, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Investigation in Biomedicine (UMIB), Laboratory for Integrative and Translational Research in Population Health (ITR), UP, Porto, Portugal
| | - Ana Gonçalves
- Centre for Reproductive Genetics Alberto Barros, Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, Porto, Portugal; Faculty of Medicine of UP (FMUP), Porto, Portugal; RISE-Health, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Investigation in Biomedicine (UMIB), Laboratory for Integrative and Translational Research in Population Health (ITR), UP, Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto (UP), Porto, Portugal; Unit for Multidisciplinary Investigation in Biomedicine (UMIB), Laboratory for Integrative and Translational Research in Population Health (ITR), UP, Porto, Portugal; Faculty of Medicine of UP (FMUP), Porto, Portugal.
| |
Collapse
|
7
|
Zhang L, Sun Y, Jiang C, Sohail T, Sun X, Wang J, Li Y. Damage to Mitochondria During the Cryopreservation, Causing ROS Leakage, Leading to Oxidative Stress and Decreased Quality of Ram Sperm. Reprod Domest Anim 2024; 59:e14737. [PMID: 39470252 DOI: 10.1111/rda.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Semen cryopreservation can achieve long-term preservation of sperm. Ice crystal damage, as well as oxidative stress, result in mitochondrial dysfunction and a reduction in sperm motility after thawing. However, limited information exists regarding the impact of reactive oxygen species (ROS) and mitochondria on the cryopreservation of ram sperm. The primary objective of this study was to investigate the relationship between ROS and mitochondria concerning sperm quality during the cryopreservation of ram sperm. This investigation assessed sperm motility, kinematic characteristics, membrane integrity, acrosome integrity, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, expression of mitochondrial respiratory genes (NDUFV2, SDHA, CYC1, and COXIV), ROS levels, malondialdehyde (MDA) content, phosphatidylserine externalisation rate, sperm ultrastructure, mtDNA copy number, expression of apoptosis-related genes (Bax, Caspase-3, and Caspase-8), Cytochrome C, and Caspase-3 content. The results showed the cryopreservation significantly (p < 0.05) decreased motility, kinetic parameters, membrane integrity, acrosome integrity, MMP, ATP, mRNA expression levels of mitochondrial respiratory-related genes, and significantly (p < 0.05) increased ROS levels, MDA content, phosphatidylserine externalisation rate, damage of sperm ultrastructure, mtDNA copy number, mRNA expression levels of apoptosis-related genes, Cytochrome C and Caspase-3 content compared to the fresh semen group. In conclusion, the cryopreservation causes damage to mitochondria, leading to increased ROS and subsequent oxidative stress. This process also initiates mitochondrial dysfunction and interferes with the electron transport chain, ultimately resulting in decreased MMP and ATP production. Furthermore, the liberation of Cytochrome C prompted the increase in Caspase-3 expression and subsequent sperm apoptosis occurred, ultimately leading to a deterioration in sperm quality after thawing.
Collapse
Affiliation(s)
- Liuming Zhang
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yuxuan Sun
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Caiyu Jiang
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Tariq Sohail
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Jian Wang
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yongjun Li
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Rotimi DE, Acho MA, Falana BM, Olaolu TD, Mgbojikwe I, Ojo OA, Adeyemi OS. Oxidative Stress-induced Hormonal Disruption in Male Reproduction. Reprod Sci 2024; 31:2943-2956. [PMID: 39090335 DOI: 10.1007/s43032-024-01662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Research into the impacts of oxidative stress (OS), and hormonal balance on reproductive potential has increased over the last 40 years possibly due to rising male infertility. Decreased antioxidant levels and increased OS in tissues result from hormonal imbalance, which in turn leads to male infertility. Increased reactive oxygen species (ROS) generation in seminal plasma has been linked to many lifestyle factors such as alcohol and tobacco use, toxicant exposure, obesity, varicocele, stress, and aging. This article provides an overview of the crosslink between OS and gonadal hormone disruption, as well as a potential mode of action in male infertility. Disrupting the equilibrium between ROS generation and the antioxidant defense mechanism in the male reproductive system may affect key hormonal regulators of male reproductive activities. Unchecked ROS production may cause direct injury on reproductive tissues or could disrupt normal regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis and its interaction with other endocrine axes, both of which have negative effects on male reproductive health and can lead to male infertility.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria.
| | - Marvellous A Acho
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Babatunde Michael Falana
- Department of Animal Science, College of Agricultural Sciences, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Tomilola Debby Olaolu
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Ifunaya Mgbojikwe
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwafemi Adeleke Ojo
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria.
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria.
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria
| |
Collapse
|
9
|
Wang Y, Guo AL, Xu Y, Xu X, Yang L, Yang Y, Chao L. EHDPP induces proliferation inhibition and apoptosis to spermatocyte: Insights from transcriptomic and metabolomic profiles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116878. [PMID: 39142116 DOI: 10.1016/j.ecoenv.2024.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND 2-ethylhexyldiphenyl phosphate (EHDPP) was used widespread in recent years and it was reported to impair reproductive behaviors and decrease fertility in male Japanese medaka. However, whether EHDPP causes spermatogenesis disturbance remains uncertain. OBJECTIVES We aimed to study the male reproductive toxicity of EHDPP and its related mechanism. METHODS Human spermatocyte cell line GC-2 was treated with 10 µM, 50 µM or 100 µM EHDPP for 24 h. Male CD-1 mice aged 6 weeks were given 1, 10, or 100 mg/kg/d EHDPP daily for 42 days and then euthanized to detect sperm count and motility. Proliferation, apoptosis, oxidative stress was detected in mice and cell lines. Metabolome and transcriptome were used to detect the related mechanism. Finally, anti-oxidative reagent N-Acetylcysteine was used to detect whether it could reverse the side-effect of EHDPP both in vivo and in vitro. RESULTS Our results showed that EHDPP inhibited proliferation and induced apoptosis in mice testes and spermatocyte cell line GC-2. Metabolome and transcriptome showed that nucleotide metabolism disturbance and DNA damage was potentially involved in EHDPP-induced reproductive toxicity. Finally, we found that excessive ROS production caused DNA damage and mitochondrial dysfunction; NAC supplement reversed the side effects of EHDPP such as DNA damage, proliferation inhibition, apoptosis and decline in sperm motility. CONCLUSION ROS-evoked DNA damage and nucleotide metabolism disturbance mediates EHDPP-induced germ cell proliferation inhibition and apoptosis, which finally induced decline of sperm motility.
Collapse
Affiliation(s)
- Ying Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - An-Liang Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Yang Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China; Department of Reproductive Medicine, Linyi People's Hospital, Lin'yi 276003, PR China
| | - Xiaoyan Xu
- Reproductive Medicine Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong 250012, PR China
| | - Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
10
|
Moon N, Morgan CP, Marx-Rattner R, Jeng A, Johnson RL, Chikezie I, Mannella C, Sammel MD, Epperson CN, Bale TL. Stress increases sperm respiration and motility in mice and men. Nat Commun 2024; 15:7900. [PMID: 39261485 PMCID: PMC11391062 DOI: 10.1038/s41467-024-52319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Semen quality and fertility has declined over the last 50 years, corresponding to ever-increasing environmental stressors. However, the cellular mechanisms involved and their impact on sperm functions remain unknown. In a repeated sampling human cohort study, we identify a significant effect of prior perceived stress to increase sperm motility 2-3 months following stress, timing that expands upon our previous studies revealing significant stress-associated changes in sperm RNA important for fertility. We mechanistically examine this post-stress timing in mice using an in vitro stress model in the epididymal epithelial cells responsible for sperm maturation and find 7282 differentially H3K27me3 bound DNA regions involving genes critical for mitochondrial and metabolic pathways. Further, prior stress exposure significantly changes the composition and size of epithelial cell-secreted extracellular vesicles that when incubated with mouse sperm, increase mitochondrial respiration and sperm motility, adding to our prior work showing impacts on embryo development. Together, these studies identify a time-dependent, translational signaling pathway that communicates stress experience to sperm, ultimately affecting reproductive functions.
Collapse
Affiliation(s)
- Nickole Moon
- Department of Psychiatry, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, 80045, USA
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Christopher P Morgan
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Ruth Marx-Rattner
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Alyssa Jeng
- Department of Psychiatry, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, 80045, USA
| | - Rachel L Johnson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ijeoma Chikezie
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Carmen Mannella
- Department of Physiology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Mary D Sammel
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, 80045, USA
| | - Tracy L Bale
- Department of Psychiatry, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Deng J, Huang Y, Liang J, Jiang Y, Chen T. Medaka ( Oryzias latipes) Dmrt3a Is Involved in Male Fertility. Animals (Basel) 2024; 14:2406. [PMID: 39199940 PMCID: PMC11350882 DOI: 10.3390/ani14162406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Research across various species has demonstrated that the doublesex and mab-3-related transcription factor 3 (dmrt3) plays pivotal roles in testis development. However, the precise molecular mechanisms of dmrt3 remain unclear. In this study, we investigated the role of dmrt3 (dmrt3a) in testis development using the model organism medaka (Oryzias latipes). SqRT-PCR and ISH analyses revealed that dmrt3a is predominantly expressed in the testis, especially in the spermatid and spermatozoon. Using CRISPR/Cas9, we generated two dmrt3a homozygous mutants (-8 bp and -11 bp), which exhibited significantly reduced fertilization rates and embryo production. Additionally, the number of germ cells and sperm motility were markedly decreased in the dmrt3a mutants, manifesting as the symptoms of asthenozoospermia and oligozoospermia. Interestingly, RNA-Seq analysis showed that the deficiency of dmrt3a could lead to a significant downregulation of numerous genes related to gonadal development and severe disruptions in mitochondrial function. These results suggested that dmrt3a is essential for spermatogenesis and spermatozoa energy production. This paper provides new insights and perspectives for further exploring the molecular mechanisms underlying spermatogenesis and addressing male reproductive issues.
Collapse
Affiliation(s)
- Ju Deng
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen 361021, China; (J.D.); (Y.H.); (J.L.); (Y.J.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yan Huang
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen 361021, China; (J.D.); (Y.H.); (J.L.); (Y.J.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jingjie Liang
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen 361021, China; (J.D.); (Y.H.); (J.L.); (Y.J.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yuewen Jiang
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen 361021, China; (J.D.); (Y.H.); (J.L.); (Y.J.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Tiansheng Chen
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Jimei University, Xiamen 361021, China; (J.D.); (Y.H.); (J.L.); (Y.J.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
12
|
Yu KK, Li K, Wang HY, Li XL, Wu SX, Xu WM, Liu YH, Wu CF, Yu XQ, Bao JK. Construction of Near-Infrared Probes with Remarkable Large Stokes Shift Based on a Novel Purine Platform for the Visualization of mtG4 Upregulation during Mitochondrial Disorder in Somatic Cells and Human Sperms. Anal Chem 2024; 96:11915-11922. [PMID: 39007441 DOI: 10.1021/acs.analchem.4c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
G-quadruplex structures within the nuclear genome (nG4) is an important regulatory factor, while the function of G4 in the mitochondrial genome (mtG4) still needs to be explored, especially in human sperms. To gain a better understanding of the relationship between mtG4 and mitochondrial function, it is crucial to develop excellent probes that can selectively visualize and track mtG4 in both somatic cells and sperms. Herein, based on our previous research on purine frameworks, we attempted for the first time to extend the conjugated structure from the C-8 site of purine skeleton and discovered that the purine derivative modified by the C-8 aldehyde group is an ideal platform for constructing near-infrared probes with extremely large Stokes shift (>220 nm). Compared with the compound substituted with methylpyridine (PAP), the molecule substituted with methylthiazole orange (PATO) showed better G4 recognition ability, including longer emission (∼720 nm), more significant fluorescent enhancement (∼67-fold), lower background, and excellent photostability. PATO exhibited a sensitive response to mtG4 variation in both somatic cells and human sperms. Most importantly, PATO helped us to discover that mtG4 was significantly increased in cells with mitochondrial respiratory chain damage caused by complex I inhibitors (6-OHDA and rotenone), as well as in human sperms that suffer from oxidative stress. Altogether, our study not only provides a novel ideal molecular platform for constructing high-performance probes but also develops an effective tool for studying the relationship between mtG4 and mitochondrial function in both somatic cells and human sperms.
Collapse
Affiliation(s)
- Kang-Kang Yu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hao-Yuan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiao-Liang Li
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Med-Centre for Manufacturing, Sichuan University, Chengdu 610064, China
| | - Si-Xian Wu
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Med-Centre for Manufacturing, Sichuan University, Chengdu 610064, China
| | - Wen-Ming Xu
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Med-Centre for Manufacturing, Sichuan University, Chengdu 610064, China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chuan-Fang Wu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jin-Ku Bao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Vahedi Raad M, Firouzabadi AM, Tofighi Niaki M, Henkel R, Fesahat F. The impact of mitochondrial impairments on sperm function and male fertility: a systematic review. Reprod Biol Endocrinol 2024; 22:83. [PMID: 39020374 PMCID: PMC11253428 DOI: 10.1186/s12958-024-01252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Besides adenine triphosphate (ATP) production for sustaining motility, the mitochondria of sperm also host other critical cellular functions during germ cell development and fertilization including calcium homeostasis, generation of reactive oxygen species (ROS), apoptosis, and in some cases steroid hormone biosynthesis. Normal mitochondrial membrane potential with optimal mitochondrial performance is essential for sperm motility, capacitation, acrosome reaction, and DNA integrity. RESULTS Defects in the sperm mitochondrial function can severely harm the fertility potential of males. The role of sperm mitochondria in fertilization and its final fate after fertilization is still controversial. Here, we review the current knowledge on human sperm mitochondria characteristics and their physiological and pathological conditions, paying special attention to improvements in assistant reproductive technology and available treatments to ameliorate male infertility. CONCLUSION Although mitochondrial variants associated with male infertility have potential clinical use, research is limited. Further understanding is needed to determine how these characteristics lead to adverse pregnancy outcomes and affect male fertility potential.
Collapse
Affiliation(s)
- Minoo Vahedi Raad
- Department of Biology & Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Masoud Firouzabadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Physiology, School of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Tofighi Niaki
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Ralf Henkel
- LogixX Pharma, Theale, Berkshire, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
14
|
Gill K, Machałowski T, Harasny P, Grabowska M, Duchnik E, Piasecka M. Low human sperm motility coexists with sperm nuclear DNA damage and oxidative stress in semen. Andrology 2024; 12:1154-1169. [PMID: 38018344 DOI: 10.1111/andr.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Low sperm motility, one of the common causes of male infertility, is associated with abnormal sperm quality. Currently, important sperm/semen biomarkers are sperm chromatin status and oxidation‒reduction potential (ORP) in semen. Because the association between sperm motility and these biomarkers is still not fully clarified, our study was designed to verify the distribution and risk of sperm DNA fragmentation (SDF) and oxidative stress in semen in asthenozoospermic men. MATERIALS AND METHODS This study was carried out on discharged sperm cells of asthenozoospermic men (isolated asthenozoospermia or coexisted with reduced sperm number and/or morphology), nonasthenozoospermic men (reduced total sperm count and/or sperm morphology) (experimental groups) and normozoospermic men (proven and presumed fertility) (control group). Basic semen analysis was evaluated according to the 6th edition of the World Health Organization manual guidelines. SDF was assessed using the sperm chromatin dispersion test, while static(s) ORP in semen was measured by means of a MiOXSYS analyser. RESULTS The men from the asthenozoospermic group had lower basic semen parameters than those from the control and nonasthenozoospermic groups. In men with poor sperm motility SDF and sORP, prevalence and risk for > 20% SDF (high level of DNA damage) and for > 1.37 sORP (oxidative stress) were significantly higher than those of control and nonasthenozoospermic subjects. The risk for sperm DNA damage and oxidative stress in asthenozoospermic men was over 10-fold higher and almost 6-fold higher than those in control subjects and almost or over 3-fold higher than those in nonasthenozoospermic men. CONCLUSIONS AND DISCUSSION Poor human sperm motility coexisted with low basic sperm quality. Sperm DNA damage and oxidative stress in semen were much more frequent in asthenozoospermia. These abnormalities can decrease the sperm fertilizing capability under both natural and medically assisted reproduction conditions. Thus, in asthenozoospermia, the evaluation of sperm chromatin status and oxidation-reduction potential in semen is justified and inevitable, and the appropriate antioxidant therapy can be suggested.
Collapse
Affiliation(s)
- Kamil Gill
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Machałowski
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Perinatology, Obstetrics and Gynecology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Police, Poland
| | - Patryk Harasny
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Urology and Urological Oncology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Małgorzata Piasecka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
15
|
Bravo A, Sánchez R, Zambrano F, Uribe P. Exogenous Oxidative Stress in Human Spermatozoa Induces Opening of the Mitochondrial Permeability Transition Pore: Effect on Mitochondrial Function, Sperm Motility and Induction of Cell Death. Antioxidants (Basel) 2024; 13:739. [PMID: 38929178 PMCID: PMC11201210 DOI: 10.3390/antiox13060739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress (OS) and disrupted antioxidant defense mechanisms play a pivotal role in the etiology of male infertility. The alterations in reactive oxygen species (ROS) production and calcium (Ca2+) homeostasis are the main activators for the mitochondrial permeability transition pore (mPTP) opening. The mPTP opening is one of the main mechanisms involved in mitochondrial dysfunction in spermatozoa. This alteration in mitochondrial function adversely affects energy supply, sperm motility, and fertilizing capacity and contributes to the development of male infertility. In human spermatozoa, the mPTP opening has been associated with ionomycin-induced endogenous oxidative stress and peroxynitrite-induced nitrosative stress; however, the effect of exogenous oxidative stress on mPTP opening in sperm has not been evaluated. The aim of this study was to determine the effect of exogenous oxidative stress induced by hydrogen peroxide (H2O2) on mPTP opening, mitochondrial function, motility, and cell death markers in human spermatozoa. Human spermatozoa were incubated with 3 mmol/L of H2O2 for 60 min, and intracellular Ca2+ concentration, mPTP opening, mitochondrial membrane potential (ΔΨm), ATP levels, mitochondrial reactive oxygen species (mROS) production, phosphatidylserine (PS) externalization, DNA fragmentation, viability, and sperm motility were evaluated. H2O2-induced exogenous oxidative stress caused increased intracellular Ca2+, leading to subsequent mPTP opening and alteration of mitochondrial function, characterized by ΔΨm dissipation, decreased ATP levels, increased mROS production, and the subsequent alteration of sperm motility. Furthermore, H2O2-induced opening of mPTP was associated with the expression of apoptotic cell death markers including PS externalization and DNA fragmentation. These results highlight the role of exogenous oxidative stress in causing mitochondrial dysfunction, deterioration of sperm motility, and an increase in apoptotic cell death markers, including PS externalization and DNA fragmentation, through the mPTP opening. This study yielded new knowledge regarding the effects of this type of stress on mitochondrial function and specifically on mPTP opening, factors that can contribute to the development of male infertility, considering that the role of mPTP in mitochondrial dysfunction in human sperm is not completely elucidated. Therefore, these findings are relevant to understanding male infertility and may provide an in vitro model for further research aimed at improving human sperm quality.
Collapse
Affiliation(s)
- Anita Bravo
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
| | - Raúl Sánchez
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
- Department of Preclinical Science, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Fabiola Zambrano
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
- Department of Preclinical Science, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Pamela Uribe
- Center of Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4810296, Chile; (A.B.); (R.S.); (F.Z.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| |
Collapse
|
16
|
Abu-Risha SE, Sokar SS, Elzorkany KE, Elsisi AE. Donepezil and quercetin alleviate valproate-induced testicular oxidative stress, inflammation and apoptosis: Imperative roles of AMPK/SIRT1/ PGC-1α and p38-MAPK/NF-κB/ IL-1β signaling cascades. Int Immunopharmacol 2024; 134:112240. [PMID: 38744177 DOI: 10.1016/j.intimp.2024.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The mounting evidence of valproate-induced testicular damage in clinical settings is alarming, especially for men taking valproate (VPA) for long-term or at high doses. Both donepezil (DON) and quercetin (QUE) have promising antioxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, this study aimed to determine whether DON, QUE, and their combination could mitigate VPA-induced testicular toxicity and unravel the mechanisms underlying their protective effect. In this study, male albino rats were randomly categorized into six equal groups: control, VPA (500 mg/kg, I.P., for 14 days), DON (3 and 5 mg/kg), QUE (50 mg/kg), and DON 3 + QUE combination groups. The DON and QUE treatments were administered orally for 7 consecutive days before VPA administration and then concomitantly with VPA for 14 days. VPA administration disrupted testicular function by altering testicular architecture, ultrastructure, reducing sperm count, viability, and serum testosterone levels. Additionally, VPA triggered oxidative damage, inflammatory, and apoptotic processes and suppressed the AMPK/SIRT1/PGC-1α signaling cascade. Pretreatment with DON, QUE, and their combination significantly alleviated histological and ultrastructure damage caused by VPA and increased the serum testosterone level, sperm count, and viability. They also suppressed the oxidative stress by reducing testicular MDA content and elevating SOD activity. In addition, they reduced the inflammatory response by suppressing IL-1β level, NF-κB, and the p38-MAPK expression as well as inhibiting apoptosis by diminishing caspase-3 and increasing Bcl-2 expression. These novel protective effects were mediated by upregulating AMPK/SIRT1/PGC-1α signaling cascade. In conclusion, these findings suggest that DON, QUE, and their combination possess potent protective effects against VPA-induced testicular toxicity.
Collapse
Affiliation(s)
- Sally E Abu-Risha
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Samia S Sokar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Kawthar E Elzorkany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Alaa E Elsisi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
17
|
Sutovsky P, Hamilton LE, Zigo M, Ortiz D’Avila Assumpção ME, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping: the good, the bad and the ugly†. Biol Reprod 2024; 110:1135-1156. [PMID: 38640912 PMCID: PMC11180624 DOI: 10.1093/biolre/ioae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Conventional, brightfield-microscopic semen analysis provides important baseline information about sperm quality of an individual; however, it falls short of identifying subtle subcellular and molecular defects in cohorts of "bad," defective human and animal spermatozoa with seemingly normal phenotypes. To bridge this gap, it is desirable to increase the precision of andrological evaluation in humans and livestock animals by pursuing advanced biomarker-based imaging methods. This review, spiced up with occasional classic movie references but seriously scholastic at the same time, focuses mainly on the biomarkers of altered male germ cell proteostasis resulting in post-testicular carryovers of proteins associated with ubiquitin-proteasome system. Also addressed are sperm redox homeostasis, epididymal sperm maturation, sperm-seminal plasma interactions, and sperm surface glycosylation. Zinc ion homeostasis-associated biomarkers and sperm-borne components, including the elements of neurodegenerative pathways such as Huntington and Alzheimer disease, are discussed. Such spectrum of biomarkers, imaged by highly specific vital fluorescent molecular probes, lectins, and antibodies, reveals both obvious and subtle defects of sperm chromatin, deoxyribonucleic acid, and accessory structures of the sperm head and tail. Introduction of next-generation image-based flow cytometry into research and clinical andrology will soon enable the incorporation of machine and deep learning algorithms with the end point of developing simple, label-free methods for clinical diagnostics and high-throughput phenotyping of spermatozoa in humans and economically important livestock animals.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Mayra E Ortiz D’Avila Assumpção
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| |
Collapse
|
18
|
Tímermans A, Otero F, Garrido M, Gosálvez J, Johnston S, Fernández JL. The relationship between sperm nuclear DNA fragmentation, mitochondrial DNA fragmentation, and copy number in normal and abnormal human ejaculates. Andrology 2024; 12:870-880. [PMID: 37786274 DOI: 10.1111/andr.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND While it is common to clinically evaluate sperm nuclear DNA fragmentation, less attention has been given to sperm mitochondrial DNA. Recently, a digital PCR assay has allowed accurate estimation of the proportion of fragmented mtDNA molecules and relative copy number. OBJECTIVES To determine the correlation of classical sperm parameters, average mtDNA copies per spermatozoon and the level of mtDNA fragmentation (SDF-mtDNA) to that of nuclear DNA fragmentation (SDF-nDNA), measured as the proportion of global, single-strand DNA (SDF-SSBs) and double-strand DNA breaks (SDF-DSBs). To determine whether the level of nuclear and mitochondrial DNA fragmentation and/or copy number can differentiate normozoospermic from non-normozoospermic samples. MATERIALS AND METHODS Ejaculates from 29 normozoospermic and 43 non-normozoospermic were evaluated. SDF was determined using the sperm chromatin dispersion assay. mtDNA copy number and SDF-mtDNA were analyzed using digital PCR assays. RESULTS Relative mtDNA copy increased as sperm concentration or motility decreased, or abnormal morphology increased. Unlike SDF-mtDNA, mtDNA copy number was not correlated with SDF-nDNA. SDF-mtDNA increased as the concentration or proportion of non-vital sperm increased; the higher the mtDNA copy number, the lower the level of fragmentation. Non-normozoospermic samples showed double the level of SDF-nDNA compared to normozoospermic (median 25.00 vs. 13.67). mtDNA copy number per spermatozoon was 3× higher in non-normozoospermic ejaculates (median 16.06 vs. 4.99). Although logistic regression revealed SDF-Global and mtDNA copy number as independent risk factors for non-normozoospermia, when SDF-Global and mtDNA copy number were combined, ROC curve analysis resulted in an even stronger discriminatory ability for predicting the probability of non-normozoospermia (AUC = 0.85, 95% CI 0.76-0.94, p < 0.001). CONCLUSION High-quality ejaculates show lower nuclear SDF and retain less mtDNA copies, with approximately half of them fragmented, so that the absolute number of non-fragmented mtDNA molecules per spermatozoon is extremely low.
Collapse
Affiliation(s)
- Ana Tímermans
- INIBIC-Complexo Hospitalario Universitario A Coruña (CHUAC), Spain
- Laboratory of Molecular Genetics and Radiobiology, Centro Oncológico de Galicia, Doctor Camilo Veiras, Spain
| | - Fátima Otero
- INIBIC-Complexo Hospitalario Universitario A Coruña (CHUAC), Spain
- Laboratory of Molecular Genetics and Radiobiology, Centro Oncológico de Galicia, Doctor Camilo Veiras, Spain
| | - Manuel Garrido
- Complexo Hospitalario Universitario A Coruña (CHUAC), Clinical Analysis Service, Spain
| | - Jaime Gosálvez
- Genetics Unit, Facultad de Biología, Universidad Autónoma de Madrid, Spain
| | - Stephen Johnston
- School of Environment, The University of Queensland, Gatton, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Gatton, Australia
| | - José Luis Fernández
- INIBIC-Complexo Hospitalario Universitario A Coruña (CHUAC), Spain
- Laboratory of Molecular Genetics and Radiobiology, Centro Oncológico de Galicia, Doctor Camilo Veiras, Spain
| |
Collapse
|
19
|
Vedelek V, Jankovics F, Zádori J, Sinka R. Mitochondrial Differentiation during Spermatogenesis: Lessons from Drosophila melanogaster. Int J Mol Sci 2024; 25:3980. [PMID: 38612789 PMCID: PMC11012351 DOI: 10.3390/ijms25073980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Numerous diseases can arise as a consequence of mitochondrial malfunction. Hence, there is a significant focus on studying the role of mitochondria in cancer, ageing, neurodegenerative diseases, and the field of developmental biology. Mitochondria could exist as discrete organelles in the cell; however, they have the ability to fuse, resulting in the formation of interconnected reticular structures. The dynamic changes between these forms correlate with mitochondrial function and mitochondrial health, and consequently, there is a significant scientific interest in uncovering the specific molecular constituents that govern these transitions. Moreover, the specialized mitochondria display a wide array of variable morphologies in their cristae formations. These inner mitochondrial structures are closely associated with the specific functions performed by the mitochondria. In multiple cases, the presence of mitochondrial dysfunction has been linked to male sterility, as it has been observed to cause a range of abnormal spermatogenesis and sperm phenotypes in different species. This review aims to elucidate the dynamic alterations and functions of mitochondria in germ cell development during the spermatogenesis of Drosophila melanogaster.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Ferenc Jankovics
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
- Department of Medical Biology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
| | - János Zádori
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, 6723 Szeged, Hungary;
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
20
|
Sanyal D, Arya D, Nishi K, Balasinor N, Singh D. Clinical Utility of Sperm Function Tests in Predicting Male Fertility: A Systematic Review. Reprod Sci 2024; 31:863-882. [PMID: 38012524 DOI: 10.1007/s43032-023-01405-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Routine semen analysis provides considerable information regarding sperm parameters; however, it is not solely adequate to predict male fertility potential. In the past two decades, several advance sperm function tests have been developed. The present systematic review intends to assess the clinical utility of available advance sperm function tests in predicting the male fertility potential. A systematic literature search was conducted as per PRISMA guidelines using PubMed, MEDLINE, Google Scholar, and Cochrane Library. Different keywords either singly or in combination were used to retrieve the relevant articles related to sperm function tests, male fertility, and pregnancy outcomes. A total of 5169 articles were obtained, out of which 110 meeting the selection criteria were included in this review. The majorly investigated sperm function tests are hypo-osmotic swelling test, acrosome reaction test, sperm capacitation test, hemizona binding assay, sperm DNA fragmentation test, seminal reactive oxygen species test, mitochondrial dysfunction tests, antisperm antibody test, nuclear chromatin de-condensation (NCD) test, etc. The different advance sperm function tests analyse different aspects of sperm function. Hence, any one test may not be helpful to appropriately predict the male fertility potential. Currently, the unavailability of high-quality clinical data, robust thresholds, complex protocols, high cost, etc., are the limiting factors and prohibiting current sperm function tests to reach the clinics. Further multi-centric research efforts are required to fulfil the existing lacunas and pave the way for these tests to be introduced into the clinics.
Collapse
Affiliation(s)
- Debarati Sanyal
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Deepshikha Arya
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Kumari Nishi
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India.
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India.
| |
Collapse
|
21
|
Vafaie A, Raveshi MR, Devendran C, Nosrati R, Neild A. Making immotile sperm motile using high-frequency ultrasound. SCIENCE ADVANCES 2024; 10:eadk2864. [PMID: 38354240 PMCID: PMC10866541 DOI: 10.1126/sciadv.adk2864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Sperm motility is a natural selection with a crucial role in both natural and assisted reproduction. Common methods for increasing sperm motility are by using chemicals that cause embryotoxicity, and the multistep washing requirements of these methods lead to sperm DNA damage. We propose a rapid and noninvasive mechanotherapy approach for increasing the motility of human sperm cells by using ultrasound operating at 800 mW and 40 MHz. Single-cell analysis of sperm cells, facilitated by droplet microfluidics, shows that exposure to ultrasound leads to up to 266% boost to motility parameters of relatively immotile sperm, and as a result, 72% of these immotile sperm are graded as progressive after exposure, with a swimming velocity greater than 5 micrometer per second. These promising results offer a rapid and noninvasive clinical method for improving the motility of sperm cells in the most challenging assisted reproduction cases to replace intracytoplasmic sperm injection (ICSI) with less invasive treatments and to improve assisted reproduction outcomes.
Collapse
Affiliation(s)
- Ali Vafaie
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Mohammad Reza Raveshi
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Citsabehsan Devendran
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
22
|
Llavanera M, Mateo-Otero Y, Viñolas-Vergés E, Bonet S, Yeste M. Sperm function, mitochondrial activity and in vivo fertility are associated to their mitochondrial DNA content in pigs. J Anim Sci Biotechnol 2024; 15:10. [PMID: 38297401 PMCID: PMC10832242 DOI: 10.1186/s40104-023-00988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Despite their low abundance in sperm, mitochondria have diverse functions in this cell type, including energy production, signalling and calcium regulation. In humans, sperm mitochondrial DNA content (mtDNAc) has been reported to be negatively linked to sperm function and fertility. Yet, the association between mtDNAc and sperm function in livestock remains unexplored. For this reason, this study aimed to shed some light on the link between mtDNAc and sperm function and fertilising potential in pigs. A qPCR method for mtDNAc quantification was optimised for pig sperm, and the association of this parameter with sperm motility, kinematics, mitochondrial activity, and fertility was subsequently interrogated. RESULTS First, the qPCR method was found to be sensitive and efficient for mtDNAc quantification in pig sperm. By using this technique, mtDNAc was observed to be associated to sperm motility, mitochondrial activity and in vivo, but not in vitro, fertility outcomes. Specifically, sperm with low mtDNAc were seen to exhibit greater motility but decreased mitochondrial activity and intracellular reactive oxygen species. Interestingly, samples with lower mtDNAc showed higher conception and farrowing rates, but similar in vitro fertilisation rates and embryo development, when compared to those with greater mtDNAc. CONCLUSIONS These findings enrich our comprehension of the association of mtDNAc with sperm biology, and lay the foundation for future research into employing this parameter as a molecular predictor for sperm function and fertility in livestock.
Collapse
Affiliation(s)
- Marc Llavanera
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain.
| | - Yentel Mateo-Otero
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
| | - Estel Viñolas-Vergés
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
| | - Sergi Bonet
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, ES-08010, Spain
| |
Collapse
|
23
|
Mateo-Otero Y, Llavanera M, Torres-Garrido M, Yeste M. Embryo development is impaired by sperm mitochondrial-derived ROS. Biol Res 2024; 57:5. [PMID: 38287386 PMCID: PMC10825979 DOI: 10.1186/s40659-024-00483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Basal energetic metabolism in sperm, particularly oxidative phosphorylation, is known to condition not only their oocyte fertilising ability, but also the subsequent embryo development. While the molecular pathways underlying these events still need to be elucidated, reactive oxygen species (ROS) could have a relevant role. We, therefore, aimed to describe the mechanisms through which mitochondrial activity can influence the first stages of embryo development. RESULTS We first show that embryo development is tightly influenced by both intracellular ROS and mitochondrial activity. In addition, we depict that the inhibition of mitochondrial activity dramatically decreases intracellular ROS levels. Finally, we also demonstrate that the inhibition of mitochondrial respiration positively influences sperm DNA integrity, most likely because of the depletion of intracellular ROS formation. CONCLUSION Collectively, the data presented in this work reveals that impairment of early embryo development may result from the accumulation of sperm DNA damage caused by mitochondrial-derived ROS.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES- 17003, Spain.
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES- 17003, Spain
| | - Marc Torres-Garrido
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES- 17003, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES- 17003, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, ES-08010, Spain
| |
Collapse
|
24
|
Sun X, Wang X, Shi K, Lyu X, Sun J, Raikhel AS, Zou Z. Leucine aminopeptidase1 controls egg deposition and hatchability in male Aedes aegypti mosquitoes. Nat Commun 2024; 15:106. [PMID: 38168045 PMCID: PMC10762072 DOI: 10.1038/s41467-023-44444-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Aedes aegypti are vectors for several arboviruses infecting hundreds of millions of people annually. Controlling mosquito populations by regulating their reproduction is a potential strategy to minimize viral transmission in the absence of effective antiviral therapies or vaccines. Here, we demonstrate that leucine aminopeptidase1 (LAP1), detected by a SWATH-MS-based proteomic screen of female spermathecae, is a crucial determinant in mosquito population expansion. Mitochondrial defects and aberrant autophagy of sperm in LAP1 mutant males (LAP1-/-), prepared using CRISPR/Cas9 system, result in a reduction of reproduction in wild-type females that mated with them. The fitness of LAP1-/- males is strong enough to efficiently transmit genetic changes to mosquito populations through a low number of hatchable offspring. Thus, LAP1-/- males represent an opportunity to suppress mosquito populations and further studies should be undertaken to characterize LAP1's suitability for gene drive usage.
Collapse
Affiliation(s)
- Xiaomei Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueli Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyang Lyu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Sun
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Fujisawa Y, Kikuchi S, Kuba F, Oishi K, Murayama S, Sugiyama T, Tokito R, Ueno H, Kashiwabara S, Yumura Y, Kurihara Y. Ectopic expression of the mitochondrial protein COXFA4L3 in human sperm acrosome and its potential application in the selection of male infertility treatments. Reprod Med Biol 2024; 23:e12602. [PMID: 39478730 PMCID: PMC11522028 DOI: 10.1002/rmb2.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 11/02/2024] Open
Abstract
Purpose Spermatogenesis requires a large amount of energy, which is primarily produced by the mitochondrial electron transfer chain. Mitochondrial dysfunction affects male infertility, suggesting a relationship between the electron transfer chain and male infertility. COXFA4L3 (C15ORF48) is an emerging subunit protein of cytochrome oxidase specifically expressed in germ cells during spermatogenesis, and it may be involved in male infertility. Therefore, to investigate whether COXFA4L3 could be a marker of mitochondrial dysfunction in the sperm, this study examined the protein expression and localization profile of COXFA4L3 in the sperm of male patients with infertility. Methods Twenty-seven semen samples from a male infertility clinic at the Reproductive Center of Yokohama City University Medical Center were used to analyze sperm quality parameters and the expression and localization of energy production-related proteins. These data were compared with the outcomes of infertility treatment. Results The expression levels of COXFA4L3 varied significantly between samples. Furthermore, COXFA4L3 was ectopically localized to the acrosome. Conclusions Ectopic expression of COXFA4L3 and PNA-stained acrosomes may be useful parameters for fertility treatment selection. Assessing the acrosomal localization of COXFA4L3 will expedite pregnancy treatment planning.
Collapse
Affiliation(s)
- Yusuke Fujisawa
- Graduate School of Engineering ScienceYokohama National UniversityKanagawaJapan
| | - Sayaka Kikuchi
- Life Science Laboratory, Technology and Development DivisionKanto Chemical Co., Inc.KanagawaJapan
| | - Fujino Kuba
- Graduate School of Engineering ScienceYokohama National UniversityKanagawaJapan
| | - Kosei Oishi
- Graduate School of Engineering ScienceYokohama National UniversityKanagawaJapan
| | - Soushi Murayama
- Graduate School of Engineering ScienceYokohama National UniversityKanagawaJapan
| | - Tomoya Sugiyama
- Graduate School of Engineering ScienceYokohama National UniversityKanagawaJapan
| | - Reiji Tokito
- Graduate School of Engineering ScienceYokohama National UniversityKanagawaJapan
| | - Hiroe Ueno
- Department of Urology, Reproduction CenterYokohama City University Medical CenterKanagawaJapan
| | | | - Yasushi Yumura
- Department of Urology, Reproduction CenterYokohama City University Medical CenterKanagawaJapan
| | - Yasuyuki Kurihara
- Laboratory of Molecular Biology, Faculty of Engineering ScienceYokohama National UniversityKanagawaJapan
| |
Collapse
|
26
|
Neuman NM, Dziekońska A, Orzołek A, Gilun P. A comparison of the biological properties of European red deer (Cervus elaphus elaphus) spermatozoa stored in the epididymides and in a liquid state at 5 °C. Anim Reprod Sci 2024; 260:107387. [PMID: 38056178 DOI: 10.1016/j.anireprosci.2023.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
The biological properties of European red deer (Cervus elaphus elaphus) spermatozoa stored in the epididymides and in a liquid state were compared. Spermatozoa were collected from the epididymides harvested post-mortem. In the first variant, spermatozoa were diluted in two extenders (Bovidyl® and Salomon's), and were stored at 5 °C for up to 144 h. In the second variant, spermatozoa were stored in the epididymides at 5 °C for up to 144 h, and then diluted in the same extenders. Biological properties were evaluated after 0, 48, 96, and 144 h of storage. Sperm motility parameters were determined in the CASA system. Plasma and acrosomal membrane integrity, mitochondrial activity, apoptotic changes, and DNA integrity were assessed by the fluorescence method. Most variables were significantly influenced by the storage method and time. At 144 h, differences (P ≤ 0.05) in sperm parameters were observed between storage variants. Total motility (TMOT), plasma membrane integrity, and mitochondrial activity decreased below 50% of baseline values in the spermatozoa stored in the epididymides, but remained above 70% of baseline values in the spermatozoa stored in a liquid state. The compared storage variants did not differ in TMOT, mitochondrial activity, or the percentage of viable spermatozoa without apoptotic-like changes up to 96 h of storage, regardless of the applied extender. The earliest significant changes were noted in sperm motility parameters. In conclusion, European red deer spermatozoa can be stored in the epididymides at 5 °C for up to 96 h, but their biological parameters are more effectively preserved during liquid storage.
Collapse
Affiliation(s)
- Nicoletta M Neuman
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Anna Dziekońska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Aleksandra Orzołek
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Przemysław Gilun
- Department of Local Physiological Regulations, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
27
|
Rahman MA, Rahman MDH, Rhim H, Kim B. Drug Target to Alleviate Mitochondrial Dysfunctions in Alzheimer's Disease: Recent Advances and Therapeutic Implications. Curr Neuropharmacol 2024; 22:1942-1959. [PMID: 39234772 PMCID: PMC11333791 DOI: 10.2174/1570159x22666240426091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is a severe progressive neurodegenerative condition associated with neuronal damage and reduced cognitive function that primarily affects the aged worldwide. While there is increasing evidence suggesting that mitochondrial dysfunction is one of the most significant factors contributing to AD, its accurate pathobiology remains unclear. Mitochondrial bioenergetics and homeostasis are impaired and defected during AD pathogenesis. However, the potential of mutations in nuclear or mitochondrial DNA encoding mitochondrial constituents to cause mitochondrial dysfunction has been considered since it is one of the intracellular processes commonly compromised in early AD stages. Additionally, electron transport chain dysfunction and mitochondrial pathological protein interactions are related to mitochondrial dysfunction in AD. Many mitochondrial parameters decline during aging, causing an imbalance in reactive oxygen species (ROS) production, leading to oxidative stress in age-related AD. Moreover, neuroinflammation is another potential causative factor in AD-associated mitochondrial dysfunction. While several treatments targeting mitochondrial dysfunction have undergone preclinical studies, few have been successful in clinical trials. Therefore, this review discusses the molecular mechanisms and different therapeutic approaches for correcting mitochondrial dysfunction in AD, which have the potential to advance the future development of novel drug-based AD interventions.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - MD. Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| |
Collapse
|
28
|
Hassanpour H, Mirshokraei P, Salehpour M, Amiri K, Ghareghani P, Nasiri L. Canine sperm motility is associated with telomere shortening and changes in expression of shelterin genes. BMC Vet Res 2023; 19:236. [PMID: 37950187 PMCID: PMC10637008 DOI: 10.1186/s12917-023-03795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Motion quality is a critical property for essential functions. Several endogenous and exogenous factors are involved in sperm motility. Here, we measured the relative telomere length and evaluated the gene expression of its binding-proteins, shelterin complex (TRF1, TRF2, RAP1, POT1, TIN2, and TPP1) in sperm of dogs using relative quantitative real-time PCR. We compared them between two sperm subpopulations with poor and good motion qualities (separated by swim-up method). Telomere shortening and alterations of shelterin gene expression result from ROS, genotoxic insults, and genetic predisposition. RESULTS Sperm kinematic parameters were measured in two subpopulations and then telomeric index of each parameter was calculated. Telomeric index for linearity, VSL, VCL, STR, BCF, and ALH were significantly higher in sperms with good motion quality than in sperms with poor quality. We demonstrated that poor motion quality is associated with shorter telomere, higher expression of TRF2, POT1, and TIN2 genes, and lower expression of the RAP1 gene in dog sperm. The levels of TRF1 and TPP1 gene expression remained consistent despite variations in sperm quality and telomere length. CONCLUSION Data provided evidence that there are considerable changes in gene expression of many shelterin components (TRF2, TIN2, POT1and RAP1) associated with shortening telomere in the spermatozoa with poor motion quality. Possibly, the poor motion quality is the result of defects in the shelterin complex and telomere length. Our data suggests a new approach in the semen assessment and etiologic investigations of subfertility or infertility in male animals.
Collapse
Affiliation(s)
- Hossein Hassanpour
- Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran.
| | - Pezhman Mirshokraei
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marzieh Salehpour
- Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Khadije Amiri
- Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Parvin Ghareghani
- Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Leila Nasiri
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| |
Collapse
|
29
|
Moustakli E, Zikopoulos A, Skentou C, Bouba I, Tsirka G, Stavros S, Vrachnis D, Vrachnis N, Potiris A, Georgiou I, Zachariou A. Sperm Mitochondrial Content and Mitochondrial DNA to Nuclear DNA Ratio Are Associated with Body Mass Index and Progressive Motility. Biomedicines 2023; 11:3014. [PMID: 38002013 PMCID: PMC10669626 DOI: 10.3390/biomedicines11113014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a risk factor in the pathogenesis of metabolic disorders. According to the energy requirements, oxidative phosphorylation and the electron transport chain work together to produce ATP in sufficient quantities in the mitochondria of eukaryotic cells. Abnormal mitochondrial activity causes fat accumulation and insulin resistance as cells require a balance between the production of ATP by oxidative phosphorylation (OXPHOS) in the mitochondria and the dissipation of the proton gradient to reduce damage from reactive oxygen species (ROS). This study aims to explore the relationship between the mitochondrial content of sperm and the ratio of mitochondrial DNA to nuclear DNA in relation to body mass index (BMI) and how it may affect the progressive motility of sperm cell. Understanding the relationships between these important variables will help us better understand the possible mechanisms that could connect sperm motility and quality to BMI, as well as further our understanding of male fertility and reproductive health. METHODS Data were collected from 100 men who underwent IVF/ICSI at the University Hospital of Ioannina's IVF Unit in the Obstetrics and Gynecology Department. The body mass index (BMI) of the males tested was used to classify them as normal weight; overweight; and obese. Evaluations included sperm morphology; sperm count; sperm motility; and participant history. RESULTS In the group of men with normal BMI, both BMI and progressive motility displayed a statistically significant association (p < 0.05) with mitochondrial DNA content, relative mitochondrial DNA copy number, and the mtDNA/nDNA ratio. Similar to this, there was a positive association between BMI and motility in the groups of men who were overweight and obese, as well as between the expression of mitochondrial DNA and the mtDNA/nDNA ratio, with statistically significant differences (p < 0.05). There was not a statistically significant difference observed in the association between the relative mtDNA copy number and BMI or motility for the overweight group. Finally, the relative mtDNA copy number in the obese group was only associated with motility (p = 0.034) and not with BMI (p = 0.24). CONCLUSIONS We found that in all three groups, BMI and progressive motility exhibited comparable relationships with mitochondrial DNA expression and the mtDNA/nDNA ratio. However, only in the normal group and in the obese group, the relative mitochondrial DNA copy number showed a positive association with BMI and progressive motility.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (G.T.); (I.G.)
| | | | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Ioanna Bouba
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (G.T.); (I.G.)
| | - Georgia Tsirka
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (G.T.); (I.G.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (N.V.); (A.P.)
| | - Dionysios Vrachnis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (N.V.); (A.P.)
- Vascular Biology, Molecular, and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (N.V.); (A.P.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (G.T.); (I.G.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece;
| |
Collapse
|
30
|
Nguyen HT, Do SQ, Kobayashi H, Wakai T, Funahashi H. Negative correlations of mitochondrial DNA copy number in commercial frozen bull spermatozoa with the motility parameters after thawing. Theriogenology 2023; 210:154-161. [PMID: 37506625 DOI: 10.1016/j.theriogenology.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
The purpose of the current study was to investigate the relationship between mitochondrial content of commercial frozen-thawed bull spermatozoa and motility. Firstly, mitochondrial DNA copy number per spermatozoon (MDCN), mitochondrial content (MC), the percentage of spermatozoa with high mitochondrial membrane potential (HMMP), intracellular reactive oxygen species (ROS) and motility parameters of frozen-thawed spermatozoa derived from five bulls were determined by using qPCR, flow cytometry and CASA, respectively, and analyzed the relationships. Results showed that all parameters examined, including MDCN, MC, HMMP, ROS and motility indicators, significantly differed among frozen spermatozoa from different bulls. Both MDCN and MC were negatively correlated with HMMP and motility indicators, but positively with ROS, of course, whereas there was a highly positive relationship between MDCN and MC. Secondly, when MDCN and MC were examined in frozen spermatozoa prepared at different points in the lives of four bulls, those did not correlate overall throughout their lives (1.3-14.3 years old), but did correlate significantly in two sires. From these results, we conclude that MDCN and MC of frozen spermatozoa differ among sires, and are negatively correlated with HMMP and sperm motility parameters, probably due to mitochondrial oxidative stress resulted in the presence of ROS, demonstrating that these appear to be useful markers to assess sires' spermatozoa. It should be noted that the MDCN and MC of bull spermatozoa may not vary overall with the age of the sire, whereas those changes with age in some individuals and may affect sperm motility.
Collapse
Affiliation(s)
- Hai Thanh Nguyen
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Son Quang Do
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Hiroshi Kobayashi
- Okayama Prefectural Center for Animal Husbandry and Research, Misaki, Okayama, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan.
| |
Collapse
|
31
|
Kaltsas A. Oxidative Stress and Male Infertility: The Protective Role of Antioxidants. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1769. [PMID: 37893487 PMCID: PMC10608597 DOI: 10.3390/medicina59101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Oxidative stress is a significant factor in male infertility, compromising sperm function and overall reproductive health. As male infertility garners increasing attention, effective therapeutic interventions become paramount. This review investigates the therapeutic role of antioxidants in addressing male infertility. A detailed examination was conducted on antioxidants such as vitamin C, E, B12, D, coenzyme Q10, zinc, folic acid, selenium, l-carnitine, l-arginine, inositols, and alpha-lipoic acid. This analysis examines the methodologies, outcomes, and constraints of current clinical studies. Antioxidants show notable potential in counteracting the negative effects of oxidative stress on sperm. Based on the evidence, these antioxidants, individually or synergistically, can enhance sperm health and reproductive outcomes. However, certain limitations in the studies call for careful interpretation. Antioxidants are integral in tackling male infertility attributed to oxidative stress. The current findings underscore their therapeutic value, yet there's a pressing need for deeper, comprehensive research. Future studies should focus on refining dosage guidelines, identifying potential side effects, and discerning the most efficacious antioxidant combinations for male infertility solutions.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
32
|
Hou F, Huang J, Qing F, Guo T, Ouyang S, Xie L, Ding Y, Yu J, Li Y, Liu X, He TS, Fan X, Liu Z. The rare-earth yttrium induces cell apoptosis and autophagy in the male reproductive system through ROS-Ca 2+-CamkII/Ampk axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115262. [PMID: 37480693 DOI: 10.1016/j.ecoenv.2023.115262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
China has the world's largest reserves of rare earth elements (REEs), but widespread mining and application of REEs has led to an increased risk of potential pollution. Yttrium (Y), the first heavy REEs to be discovered, poses a substantial threat to human health. Unfortunately, little attention has been given to the impact of Y on human reproductive health. In this study, we investigated the toxic effects of YCl3 on mouse testes and four types of testicular cells, including Sertoli, Leydig, spermatogonial and spermatocyte cells. The results showed that YCl3 exposure causes substantial damage to mouse testes and induces apoptosis and autophagy, but not pyroptosis or necrosis, in testicular cells. Genome-wide gene expression analysis revealed that YCl3 induced significant changes in gene expression, with Ca2+ and mitochondria-related genes being the most significantly altered. Mechanistically, YCl3 exposure induced mitochondrial dysfunction in testicular cells, triggering the overproduction of reactive oxygen species (ROS) by impairing the Nrf2 pathway, regulating downstream Ho-1 target protein expression, and increasing Ca2+ levels to activate the CamkII/Ampk signaling pathway. Blocking ROS production or Ca2+ signaling significantly attenuates apoptosis and autophagy, while supplementation with Ca2+ reverses the suppression of apoptosis and autophagy by ROS blockade in testicular cells. Notably, apoptosis and autophagy induced by YCl3 treatment are independent of each other. Thus, our study suggests that YCl3 may impair the antioxidant stress signaling pathway and activate the calcium pathway through the ROS-Ca2+ axis, which promotes testicular cell apoptosis and autophagy independently, thus inducing testicular damage and impairing male reproductive function.
Collapse
Affiliation(s)
- Fangpeng Hou
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China; The First School of Clinical Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Junyun Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Furong Qing
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Tianfu Guo
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Sijia Ouyang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Lu Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Yechun Ding
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Jingge Yu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Yanmin Li
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Xia Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Tian-Sheng He
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Xiaona Fan
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Zhiping Liu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
33
|
Costa J, Braga PC, Rebelo I, Oliveira PF, Alves MG. Mitochondria Quality Control and Male Fertility. BIOLOGY 2023; 12:827. [PMID: 37372112 DOI: 10.3390/biology12060827] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Mitochondria are pivotal to cellular homeostasis, performing vital functions such as bioenergetics, biosynthesis, and cell signalling. Proper maintenance of these processes is crucial to prevent disease development and ensure optimal cell function. Mitochondrial dynamics, including fission, fusion, biogenesis, mitophagy, and apoptosis, maintain mitochondrial quality control, which is essential for overall cell health. In male reproduction, mitochondria play a pivotal role in germ cell development and any defects in mitochondrial quality can have serious consequences on male fertility. Reactive oxygen species (ROS) also play a crucial role in sperm capacitation, but excessive ROS levels can trigger oxidative damage. Any imbalance between ROS and sperm quality control, caused by non-communicable diseases or environmental factors, can lead to an increase in oxidative stress, cell damage, and apoptosis, which in turn affect sperm concentration, quality, and motility. Therefore, assessing mitochondrial functionality and quality control is essential to gain valuable insights into male infertility. In sum, proper mitochondrial functionality is essential for overall health, and particularly important for male fertility. The assessment of mitochondrial functionality and quality control can provide crucial information for the study and management of male infertility and may lead to the development of new strategies for its management.
Collapse
Affiliation(s)
- José Costa
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| | - Patrícia C Braga
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
- Laboratory of Physiology, Department of Imuno-Physiology and Pharmacology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco G Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
- Laboratory of Physiology, Department of Imuno-Physiology and Pharmacology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
34
|
Luo X, Liang M, Huang S, Xue Q, Ren X, Li Y, Wang J, Shi D, Li X. iTRAQ-based comparative proteomics reveal an enhancing role of PRDX6 in the freezability of Mediterranean buffalo sperm. BMC Genomics 2023; 24:245. [PMID: 37147584 PMCID: PMC10163707 DOI: 10.1186/s12864-023-09329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/22/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Semen cryopreservation is a critical tool for breed improvement and preservation of biodiversity. However, instability of sperm freezability affects its application. The Mediterranean buffalo is one of the river-type buffaloes with the capacity for high milk production. Until now, there is no specific cryopreservation system for Mediterranean buffalo, which influences the promotion of excellent cultivars. To improve the semen freezing extender used in cryopreservation of Mediterranean buffalo, different protein datasets relating to freezability sperm were analyzed by iTRAQ-based proteomics. This study will be beneficial for further understanding the sperm freezability mechanism and developing new cryopreservation strategy for buffalo semen. RESULTS 2652 quantified proteins were identified, including 248 significantly differentially expressed proteins (DEP). Gene Ontology (GO) analysis indicated that many these were mitochondrial proteins, enriched in the molecular function of phospholipase A2 activity and enzyme binding, and biological processes of regulation of protein kinase A signaling and motile cilium assembly. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis identified 17 significant pathways, including oxidative phosphorylation (OXPHOS). Furthermore, 7 DEPs were verified using parallel reaction monitoring or western blot, which confirmed the accuracy of the iTRAQ data. Peroxiredoxin 6 (PRDX6), which expressed 1.72-fold higher in good freezability ejaculate (GFE) compared to poor freezability ejaculate (PFE) sperms, was selected to explore the function in sperm freezability by adding recombinant PRDX6 protein into the semen freezing extender. The results showed that the motility, mitochondrial function and in vitro fertilization capacity of frozen-thawed sperm were significantly increased, while the oxidation level was significantly decreased when 0.1 mg/L PRDX6 was added compared with blank control. CONCLUSIONS Above results revealed the metabolic pattern of freezability of Mediterranean buffalo sperms was negatively associated with OXPHOS, and PRDX6 had protective effect on cryo-damage of frozen-thawed sperms.
Collapse
Affiliation(s)
- Xi Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Mingming Liang
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001, Guangxi, China
| | - Shihai Huang
- College of life science and technology, Guangxi University, Nanning, China
| | - Qingsong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Xuan Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Yanfang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Jinli Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
35
|
Mega OO, Oghenetega OB, Victor E, Faith FY, Uchechukwu JG. Quercetin Protects against Levetiracetam induced gonadotoxicity in rats. Toxicology 2023; 491:153518. [PMID: 37098359 DOI: 10.1016/j.tox.2023.153518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/27/2023]
Abstract
The purpose of this study was to determine whether quercetin may counteract the negative effects of levetiracetam on rat reproductive capabilities by examining its influence on a few reproductive parameters following levetiracetam administration. Twenty (20) experimental rats were employed, with five (n = 5) animals per treatment group. Rats in group 1 received saline (10mL/kg, p.o.) which served as control. Quercetin (20mg/kg, p.o./day) was given to groups 2 and 4 for 28 days starting from 29 to 56 days, respectively. However, animals in groups 3-4 received LEV (300mg/kg) once daily for 56 days with a 30-minute break in between treatments. All rats had their serum sex hormone levels, sperm characteristics, testicular antioxidant capability, and levels of oxido-inflammatory/apoptotic mediators evaluated. Additionally, the expression of proteins associated to BTB, autophagy, stress response was examined in rat testes. LEV increased sperm morphological defects and decreased sperm motility, sperm viability, sperm count body weight and testes weight, MDA and 8OHdG levels in the testis of LEV-treated rats were elevated, while antioxidant enzyme expression was concurrently decreased. Additionally, it reduced the levels of serum gonadotropins, testosterone, mitochondrial membrane potential, and cytochrome C liberation into the cytosol from the mitochondria. Caspase-3 and Caspase-9 activity increased. While Bcl-2, Cx-43, Nrf2, HO-1, mTOR, and Atg-7 levels were lowered, NOX-1, TNF-α, NF-kß, IL-1ß, and tDFI levels increased. Histopathological scoring provided further support for the decreased spermatogenesis. In contrast to all of these gonadotoxic effects of LEV, improvements in LEV-induced gonadal damage were seen through upregulation of Nrf2/ HO-1, Cx-43/NOX-1, mTOR/Atg-7 expression and attenuation of hypogonadism, poor sperm quality, mitochondria-mediated apoptosis, and oxidative inflammation due to quercetin post-treatment. The modulation of Nrf2/HO-1, /mTOR/Atg-7 and Cx-43/NOX-1 levels and the inhibition of mitochondria-mediated apoptosis and oxido-inflammation in LEV-induced gonadotoxicity in rats suggest that quercetin may hold promise as a possible therapeutic treatment.
Collapse
Affiliation(s)
- Oyovwi O Mega
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria; Department of Hunan Physiology, Achievers University, Owo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria.
| | - Onome B Oghenetega
- Department of Physiology, School of Basic Medical Science, Babcock University, Illisan- Ogun State; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Emojevwe Victor
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Falajiki Y Faith
- Department of Hunan Physiology, Achievers University, Owo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Joseph Gregory Uchechukwu
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
36
|
Fan Y, Li X, Guo Y, He X, Wang Y, Zhao D, Ma Y, Feng X, Zhang J, Li J, Zi X, Xiong X, Fu W, Xiong Y. TMT-based quantitative proteomics analysis reveals the differential proteins between fresh and frozen-thawed sperm of yak (Bos grunniens). Theriogenology 2023; 200:60-69. [PMID: 36764186 DOI: 10.1016/j.theriogenology.2023.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/29/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Sperm cryopreservation is one of the most effective methods for the conservation of germplasm resources and used of superior sires widely. However, the motility of yak (Bos grunniens) sperm was low after thawing and the proteomics changes in sperm cryopreservation remain unknown. Therefore, the aim of this study was to explore the differences between fresh sperm and frozen sperm of yak through the proteomic analysis and thus improve the understanding of sperm cryodamage. The Tandem Mass Tags (TMT) technology was used to screen differentially expressed proteins (DEPs) before and after freezing. Then, GO and KEGG analysis were conducted to analyze the DEPs enriched signaling pathways. Finally, the DEPs, including superoxide dismutase 1 (SOD1) and NADH ubiquinone oxidoreductase core subunit S8 (NDUFS8) were verified by the immunofluorescence technique. The results showed that there were 229 DEPs between fresh and frozen-thawed yak sperm. Compared with the fresh sperm, 120 proteins were up-regulated and 109 proteins were down-regulated in frozen-thawed sperm. The GO annotation showed that the up-regulated proteins enriched in metabolic and cytoskeleton-related processes, including lipoprotein metabolic process, lipid transport, extracellular region and intermediate filament cytoskeleton organization. In contrast, the down-regulated proteins enriched in biological processes including single fertilization, sperm capacitation and response to unfolded protein. KEGG pathway analysis indicated that freezing and thawing affected the oxidative phosphorylation pathway, the fructose and mannose metabolic pathway and the glycerolipid metabolic pathway of yak sperm. Immunofluorescence results showed that the protein expression level of SOD1 protein in the frozen group was significantly lower than that in the fresh group (P < 0.01), and the protein expression level of NDUFS8 protein was significantly higher in frozen group (P < 0.01). This study revealed the DEPs between fresh and frozen-thawed sperm and provides a theoretical basis to further explore the exertion of normal biological functions of yak sperm after freezing and thawing.
Collapse
Affiliation(s)
- Yilin Fan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaowei Li
- Longri Breeding Stock Farm of Sichuan Province, Dujiangyan, 611800, China
| | - Yu Guo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaoqiang He
- Longri Breeding Stock Farm of Sichuan Province, Dujiangyan, 611800, China
| | - Yanwen Wang
- Longri Breeding Stock Farm of Sichuan Province, Dujiangyan, 611800, China
| | - Dan Zhao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Ma
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Xinxin Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jiyue Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, 610041, China.
| | - Xiangdong Zi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization of Sichuan Province, Southwest Minzu University, Chengdu, 610041, China
| | - Wei Fu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Xiong
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Coenzyme Q10 and Endocrine Disorders: An Overview. Antioxidants (Basel) 2023; 12:antiox12020514. [PMID: 36830072 PMCID: PMC9952344 DOI: 10.3390/antiox12020514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress have been implicated in the pathogenesis of a number of endocrine disorders; this, in turn, suggests a potential role for the vitamin-like substance coenzyme Q10 (CoQ10) in the pathogenesis and treatment of these disorders, on the basis of its key roles in mitochondrial function, and as an antioxidant. In this article we have therefore reviewed the role of CoQ10 deficiency and supplementation in disorders of the thyroid, pancreas, gonads, pituitary and adrenals, with a particular focus on hyperthyroidism, type II diabetes, male infertility and polycystic ovary syndrome.
Collapse
|
38
|
Pintus E, Chinn AF, Kadlec M, García-Vázquez FA, Novy P, Matson JB, Ros-Santaella JL. N-thiocarboxyanhydrides, amino acid-derived enzyme-activated H 2S donors, enhance sperm mitochondrial activity in presence and absence of oxidative stress. BMC Vet Res 2023; 19:52. [PMID: 36797726 PMCID: PMC9933379 DOI: 10.1186/s12917-023-03593-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) donors are crucial tools not only for understanding the role of H2S in cellular function but also as promising therapeutic agents for oxidative stress-related diseases. This study aimed to explore the effect of amino acid-derived N-thiocarboxyanhydrides (NTAs), which release physiological H2S levels in the presence of carbonic anhydrase, on porcine sperm function during short-term incubation with and without induced oxidative stress. For this purpose, we employed two H2S-releasing NTAs with release half-lives (t1/2) in the range of hours that derived from the amino acids glycine (Gly-NTA) or leucine (Leu-NTA). Because carbonic anhydrase is crucial for H2S release from NTAs, we first measured the activity of this enzyme in the porcine ejaculate. Then, we tested the effect of Gly- and Leu-NTAs at 10 and 1 nM on sperm mitochondrial activity, plasma membrane integrity, acrosomal status, motility, motile subpopulations, and redox balance during short-term incubation at 38 °C with and without a reactive oxygen species (ROS)-generating system. RESULTS Our results show that carbonic anhydrase is found both in spermatozoa and seminal plasma, with activity notably higher in the latter. Both Gly- and Leu-NTAs did not exert any noxious effects, but they enhanced sperm mitochondrial activity in the presence and absence of oxidative stress. Moreover, NTAs (except for Leu-NTA 10 nM) tended to preserve the sperm redox balance against the injuries provoked by oxidative stress, which provide further support to the antioxidant effect of H2S on sperm function. Both compounds also increased progressive motility over short-term incubation, which may translate into prolonged sperm survival. CONCLUSIONS The presence of carbonic anhydrase activity in mammalian spermatozoa makes NTAs promising molecules to investigate the role of H2S in sperm biology. For the first time, beneficial effects of NTAs on mitochondrial activity have been found in mammalian cells in the presence and absence of oxidative stress. NTAs are interesting compounds to investigate the role of H2S in sperm mitochondria-dependent events and to develop H2S-related therapeutic protocols against oxidative stress in assisted reproductive technologies.
Collapse
Affiliation(s)
- Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| | - Abigail F. Chinn
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Martin Kadlec
- grid.15866.3c0000 0001 2238 631XDepartment of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Francisco Alberto García-Vázquez
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Internacional Mare Nostrum, Universidad de Murcia, 30100 Murcia, Spain
| | - Pavel Novy
- grid.15866.3c0000 0001 2238 631XDepartment of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - John B. Matson
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| |
Collapse
|
39
|
Chen K, Wu L, Liu Q, Tan F, Wang L, Zhao D, Fang X, Liu X, Liu J, Han H. Glutathione improves testicular spermatogenesis through inhibiting oxidative stress, mitochondrial damage, and apoptosis induced by copper deposition in mice with Wilson disease. Biomed Pharmacother 2023; 158:114107. [PMID: 36502753 DOI: 10.1016/j.biopha.2022.114107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE There are considerable evidence of reproductive impairment in male organisms with Wilson disease (WD). The purpose of this study was to observe spermatogenesis, mitochondrial damage, apoptosis, and the level of oxidative stress in the testes of Wilson disease model TX mice, and to observe the effect and mechanism of glutathione on testicular spermatogenesis. METHODS Mice were divided into a normal control group (control group), Wilson disease model TX mice group (WD group), penicillamine-treated TX mice group (penicillamine group) and glutathione-treated TX mice group (glutathione group). Testicular coefficient, histomorphology of testis and epididymis, number of spermatozoa, apoptosis of spermatogenic cells and expression of apoptosis-related proteins were observed. Ultrastructural analysis of mitochondria and mitochondrial membrane potential (MMP) monitored using JC-1 dye were used to detect mitochondrial damage. The levels of malondialdehyde (MDA), glutathione (GSH), catalase (CAT), and reactive oxygen species (ROS) in testicular cells were measured to assess oxidative stress. RESULTS Testicular coefficient did not change in mice with Wilson disease. However, the tissue structure of the testicular seminiferous tubules was damaged, and the number of spermatozoa in the epididymal lumen was significantly reduced in WD group. The apoptosis rate in the testes was significantly increased. The protein expression of the pro-apoptotic proteins Bax and Caspase-3 significantly increased, and the expressions of the anti-apoptotic protein Bcl-2 significantly decreased. The levels of ROS and MDA significantly increased, and the levels of CAT and GSH significantly decreased. Mitochondria with abnormal ultrastructure and the rate of JC-1 positive cells were significantly increased in the WD group. After copper chelation by penicillamine, the structure of the testicular seminiferous tubules and the number of spermatozoa in the epididymal lumen were significantly improved. The number of apoptotic cells was significantly reduced. The levels of Bax and Caspase-3 decreased, and the expression of Bcl-2 increased. The contents of CAT and GSH increased, and the levels of ROS and MDA decreased significantly. The abnormal mitochondria and JC-1 positive cells was significantly decreased. The histomorphology of seminiferous tubules, spermatogenic function, apoptosis rate, apoptosis-related proteins, mitochondrial damage, and oxidative stress in Wilson disease TX mice significantly improved after glutathione treatment. CONCLUSION Copper deposition in Wilson disease can lead to oxidative stress injury, mitochondrial damage, and apoptosis in the testis, leading to the impairment of spermatogenesis. Glutathione may improve testicular spermatogenesis in male Wilson disease TX mice by inhibiting copper deposition-induced oxidative stress, mitochondrial damage, and apoptosis.
Collapse
Affiliation(s)
- Kuiyu Chen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Limin Wu
- Reproductive and genetic branch, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Qianzhuo Liu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Fang Tan
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Luyao Wang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Dan Zhao
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Xinru Fang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Xiang Liu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Jiabo Liu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Hui Han
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
40
|
Abdelnour SA, Sindi RA, Abd El-Hack ME, Khalifa NE, Khafaga AF, Noreldin AE, Samir H, Tufarelli V, Losacco C, Gamal M, Imam MS, Swelum AA. Quercetin: Putative effects on the function of cryopreserved sperms in domestic animals. Reprod Domest Anim 2023; 58:191-206. [PMID: 36337040 DOI: 10.1111/rda.14291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Quercetin is one of the most used antioxidant flavonoids and largely exists in many fruits and vegetables because of its capability to scavenge the free reactive oxygen species (ROSs) by repressing lipid peroxy radical fusion, metal ion chelating through enzyme inhibition, and adopting the repair mechanisms. It also exhibits various biological actions, including antioxidative, anti-inflammatory and antimicrobial activities. Furthermore, it contributes well to sustaining the endogenous cellular antioxidant defence system. The process of cryopreservation is associated with increased oxidative stress, and some steps are potential sources of ROSs, including the method of semen collection, handling, cryopreservation culture media, and thawing, which result in impaired sperm function. Several antioxidants have been proposed to counteract the harmful impact of ROS during semen cryopreservation. The antioxidant capability of quercetin has been verified in different animal species for providing valuable defence to sperm during the cryopreservation process. The beneficial properties of quercetin on various parameters of fresh and post-thaw sperm in different species are clarified in this review. More in-depth investigations are required to clarify quercetin's mechanism of action in different animal species.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ramya A Sindi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | | | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Fuka, Matrouh University, Matrouh, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Caterina Losacco
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed S Imam
- Pharmacy Practice Department, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia.,Clinical Pharmacy Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
41
|
Kumar N. Sperm Mitochondria, the Driving Force Behind Human Spermatozoa Activities: Its Functions and Dysfunctions - A Narrative Review. Curr Mol Med 2023; 23:332-340. [PMID: 35400342 DOI: 10.2174/1566524022666220408104047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Male infertility is a major issue, and numerous factors contribute to it. One of the important organelles involved in the functioning of human spermatozoa is mitochondria. There are 50-75 mitochondria helically arranged in mid-piece bearing one mitochondrial DNA each. Sperm mitochondria play a crucial role in sperm functions, including the energy production required for sperm motility and the production of reactive oxygen species, which in the physiological range helps in sperm maturation, capacitation, and acrosome reaction. It also plays a role in calcium signaling cascades, intrinsic apoptosis, and sperm hyperactivation. Any structural or functional dysfunction of sperm mitochondria results in increased production of reactive oxygen species and, a state of oxidative stress, decreased energy production, all leading to sperm DNA damage, impaired sperm motility and semen parameters, and reduced male fertility. Furthermore, human sperm mitochondrial DNA mutations can result in impaired sperm motility and parameters leading to male infertility. Numerous types of point mutations, deletions, and missense mutations have been identified in mtDNA that are linked with male infertility. Methods: Recent literature was searched from English language peer-reviewed journals from databases including PubMed, Scopus, EMBASE, Scholar, and Web of Science till September 2021. Search terms used were "Sperm mitochondria and male fertility", "Bioenergetics of sperm", "Sperm mitochondria and reactive oxygen species", "Sperm mitochondrial mutations and infertility". Conclusion: Sperm mitochondria is an important organelle involved in various functions of human spermatozoa and sperm mitochondrial DNA has emerged as one of the potent biomarkers of sperm quality and male fertility.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar-508126, Hyderabad Metropolitan Region, Telangana, India
| |
Collapse
|
42
|
Liu C, Chen YJ, Sun B, Chen HG, Mustieles V, Messerlian C, Sun Y, Meng TQ, Lu WQ, Pan XF, Xiong CL, Hou J, Wang YX. Blood trihalomethane concentrations in relation to sperm mitochondrial DNA copy number and telomere length among 958 healthy men. ENVIRONMENTAL RESEARCH 2023; 216:114737. [PMID: 36372149 DOI: 10.1016/j.envres.2022.114737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In animal and human studies, exposure to trihalomethanes (THMs) has been associated with reduced semen quality. However, the underlying mechanisms remain poorly understood. OBJECTIVE To investigate the associations of blood THM concentrations with sperm mitochondrial DNA copy number (mtDNAcn) and telomere length (TL) among healthy men. METHODS We recruited 958 men who volunteered as potential sperm donors. A single blood sample was collected from each participant at recruitment and measured for chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM) concentrations. Within a 90-day follow-up, the last semen sample provided by each participant was quantified for sperm mtDNAcn and TL. We used multivariable linear regression models to assess the associations between blood THM concentrations and sperm mtDNAcn and TL. We also performed stratified analyses according to the time intervals between baseline blood THM determinations and semen collection (i.e., 0-9, 10-14, 15-69, or >69 days) to explore potential windows of susceptibility. RESULTS After adjusting for potential confounders, we found inverse associations between quartiles (or categories) of blood TBM, brominated THM (Br-THM, the sum of BDCM, DBCM, and TBM), and total THM (TTHM, the sum of all four THMs) concentrations and sperm mtDNAcn (all P for trend≤0.03). Besides, we found inverse associations between quartiles of blood TCM, Br-THM, chlorinated THM (Cl-THM, the sum of TCM, BDCM, and DBCM), and TTHM concentrations and sperm TL (all P for trend<0.10). Stratified analyses showed stronger associations between Br-THM concentrations and sperm mtDNAcn determined 15-69 days since baseline exposure determinations, and between blood TCM and TTHM concentrations and sperm TL determined >69 days since baseline exposure determinations. CONCLUSION Exposure to THMs may be associated with sperm mitochondrial and telomeric dysfunction.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Bin Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Heng-Gui Chen
- Clinical Research and Translation Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, PR China
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM); Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Carmen Messerlian
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tian-Qing Meng
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, PR China
| | - Chen-Liang Xiong
- Hubei Province Human Sperm Bank, Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, PR China.
| | - Jian Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, PR China.
| | - Yi-Xin Wang
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
43
|
Abramczyk H, Sobkiewicz B, Walczak-Jędrzejowska R, Marchlewska K, Surmacki J. Decoding the role of cytochrome c in metabolism of human spermatozoa by Raman imaging. Front Cell Dev Biol 2022; 10:983993. [PMID: 36506104 PMCID: PMC9732575 DOI: 10.3389/fcell.2022.983993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
The normal functioning of sperm cells requires cytochrome c in the redox balanced forms: reduced and oxidized. The oxidized form of cytochrome c is localized in the mitochondrial intermembrane space and is a part of the electron transport chain. This ensures that electron shuttling between the complex III, cytochrome c, and complex IV can occur leading to controlled effective oxidative phosphorylation (respiration) and ATP production needed for most steps in spermatozoal maturation, motility, hyperactivation and fertilization. We studied the biochemical composition of specific organelles in sperm cells by Raman imaging. The structures of the head consisting of the nucleus and acrosome, the midpiece representing mitochondria, and the tail characterized by the sperm axoneme surrounded by outer dense fiber and covered by the membrane were measured. Metabolic biochemical analysis of mitochondria, head and tail of sperm cells, and seminal plasma by using Raman imaging combined with chemometric classification method of Cluster Analysis has been obtained. Our results show that cytochrome c, which is a key protein that is needed to maintain life (respiration) and cell death (apoptosis), is located in sperm mitochondria in the oxidized or reduced form of the heme group. This work demonstrated that an application of Raman micro-spectroscopy can be extended to monitoring the redox state of mitochondrial cytochrome c in sperm cells.
Collapse
Affiliation(s)
- Halina Abramczyk
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz, Poland,*Correspondence: Halina Abramczyk, ; Jakub Surmacki,
| | | | | | - Katarzyna Marchlewska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Jakub Surmacki
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz, Poland,*Correspondence: Halina Abramczyk, ; Jakub Surmacki,
| |
Collapse
|
44
|
Lin X, Li Q, Li H, Li C, Ye P, Chen S, Lu Y, Yuan Z, Qin G. Jujing Zhuyu decoction inhibits apoptosis in rats with asthenozoospermia by regulating the mitochondrial apoptosis pathway. Andrologia 2022; 54:e14632. [DOI: 10.1111/and.14632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Xuyao Lin
- The First Clinical College of Chinese Medicine Yunnan University of Chinese Medicine Kunming China
| | - Qingrui Li
- Department of Traditional Chinese Medicine Aerospace Central Hospital Beijing China
| | - Hongying Li
- The First Clinical College of Chinese Medicine Yunnan University of Chinese Medicine Kunming China
| | - Chenxi Li
- The First Clinical College of Chinese Medicine Yunnan University of Chinese Medicine Kunming China
| | - Pule Ye
- The First Clinical College of Chinese Medicine Yunnan University of Chinese Medicine Kunming China
| | - Shuhui Chen
- Clinical College of Chinese Medicine Hubei University of Chinese Medicine Wuhan China
| | - Yu Lu
- Department of Dermatology Kunming Municipal Hospital of Traditional Chinese Medicine Kunming China
| | - Zhuojun Yuan
- Department of Andrology/Reproductive Medicine Yunnan Provincial Hospital of Chinese Medicine/The First Affiliated Hospital of Yunnan University of Chinese Medicine Kunming China
| | - Guozheng Qin
- Department of Andrology/Reproductive Medicine Yunnan Provincial Hospital of Chinese Medicine/The First Affiliated Hospital of Yunnan University of Chinese Medicine Kunming China
| |
Collapse
|
45
|
Gonzalez-Castro RA, Peña FJ, Herickhoff LA. Validation of a new multiparametric protocol to assess viability, acrosome integrity and mitochondrial activity in cooled and frozen thawed boar spermatozoa. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:400-408. [PMID: 35099118 DOI: 10.1002/cyto.b.22058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Motility, morphology, membrane integrity and DNA fragmentation are sperm characteristics routinely used to assess quality of boar spermatozoa. However, the evaluation of individual parameters has intrinsic restrictions in the estimation of potential fertility. Therefore, we aimed to validate a new multiparametric protocol to assess fertility potential through the evaluation of viability, acrosome integrity and mitochondrial activity within the same sperm population for cooled and frozen-thawed boar spermatozoa. METHOD Three multicolor protocols to assess viability, acrosome integrity and/or mitochondrial activity were compared for agreement containing two dyes (HM-panel; Hoechst 33342, MitoTracker™ Deep Red), three dyes (3-panel; SYBR®14, propidium iodide and lectin PNA-Alexa™ 647) or four dyes (4-panel; Hoechst 33342, lectin PNA-Alexa™ 488, propidium iodide and MitoTracker™ Deep Red). Cooled (n = 132) and frozen-thawed (n = 254) samples of boar spermatozoa were assessed by flow cytometry. RESULTS 4-Panel enabled the detection of several sperm subpopulations based on plasma membrane integrity, acrosome status and mitochondrial activity in cooled and frozen-thawed spermatozoa. No significant differences were observed between 3-panel and 4-panel for the percentage of live, live-acrosome intact, and dead-acrosome reacted spermatozoa. However, the percentage of acrosome-intact spermatozoa was significantly higher in cooled samples when stained by 3-panel than 4-panel. Percentages of sperm parameters between protocols were strongly correlated, and agreement analysis demonstrated that both assays resulted in similar values for both sperm sample type. CONCLUSION Our results indicate that a four-color protocol is a practical, simple and reliable procedure to simultaneously evaluate boar sperm viability, acrosome integrity and mitochondrial activity under clinical conditions.
Collapse
Affiliation(s)
- Raul A Gonzalez-Castro
- Membrane Protective Technologies Inc., Fort Collins, Colorado, USA
- Deparment of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Fernando J Peña
- Department of Animal Medicine, Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Caceres, Spain
| | | |
Collapse
|
46
|
Ribeiro JC, Nogueira-Ferreira R, Amado F, Alves MG, Ferreira R, Oliveira PF. Exploring the Role of Oxidative Stress in Sperm Motility: A Proteomic Network Approach. Antioxid Redox Signal 2022; 37:501-520. [PMID: 34847748 DOI: 10.1089/ars.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Infertility is a major global health problem, with nearly half of the cases being associated with male factors. Although reactive oxygen species (ROS) are crucial for sperm cell normal physiological processes, an imbalance between ROS production and antioxidants can lead to oxidative stress that can impair sperm function. Indeed, high semen ROS levels are reported in 30%-80% of infertile men. Recent Advances: Male oxidative stress infertility is an uprising classification for idiopathic infertility. Proteomic approaches, including quantitative mass spectrometry (MS)-based proteomics, are being utilized to explore the molecular mechanisms associated with oxidative stress in male infertility. Critical Issues: In this review, proteome data were collected from articles available on PubMed centered on MS-based proteomic studies, performed in seminal plasma and sperm cell samples, and enrolling men with impaired semen parameters. The bioinformatic analysis of proteome data with Cytoscape (ClueGO+CluePedia) and STRING tools allowed the identification of the biological processes more prevalent in asthenozoospermia, with focus on the ones related to oxidative stress. Future Directions: The identification of the antioxidant proteins in seminal plasma and sperm cells that can protect sperm cells from oxidative stress is crucial not only for a better understanding of the molecular mechanisms associated with male infertility but specially to guide new therapeutic possibilities. Antioxid. Redox Signal. 37, 501-520.
Collapse
Affiliation(s)
- João C Ribeiro
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Nogueira-Ferreira
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Amado
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
47
|
Qing H, Hu J, Fu H, Zhao Z, Nong W, Wang J, Yang F, Zhao S. Activation of thermogenesis pathways in testis of diet-induced obesity mice. Reprod Biol 2022; 22:100652. [DOI: 10.1016/j.repbio.2022.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
|
48
|
Irigoyen P, Pintos-Polasky P, Rosa-Villagran L, Skowronek MF, Cassina A, Sapiro R. Mitochondrial metabolism determines the functional status of human sperm and correlates with semen parameters. Front Cell Dev Biol 2022; 10:926684. [PMID: 36111336 PMCID: PMC9468643 DOI: 10.3389/fcell.2022.926684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
The diagnosis of male infertility is based essentially on the patient’s medical history and a standard semen analysis. However, the latter rarely provides information on the causes of a possible infertility, emphasizing the need to extend the analysis of the sperm function. Mitochondrial function has been associated with sperm function and dysfunction, the latter primarily through the production of excessive amounts of reactive oxygen species (ROS). We hypothesized that analysis of sperm mitochondrial metabolism together with sperm ROS production could be an additional tool to improve routine semen analysis, after appropriate validations. To test our hypothesis, we performed several experiments using a non-routine method (high-resolution respirometry, HRR) to access mitochondrial function. First, we investigated whether mitochondrial function is related to human sperm motility and morphology. When mitochondrial metabolism was challenged, sperm motility decreased significantly. Additionally, morphological abnormalities in the sperm mid-piece and mitochondria were associated with global sperm defects evaluated by routine methods. Subsequently, sperm mitochondrial function was assessed by HRR. Respiratory control ratio (RCR) was determined and evaluated in the context of classical sperm analysis. In parallel, sperm hydrogen peroxide (H2O2) production and seminal plasma (SP) antioxidant capacity were measured. The percentage of sperm with progressive motility correlated positively with RCR, SP antioxidant capacity, and negatively with the concentration of extracellular H2O2 production ([H2O2]). The percentage of normal sperm morphology correlated positively with RCR and negatively with [H2O2]. Sperm morphology did not correlate with seminal plasma antioxidant capacity. Furthermore, Receiver Operating Characteristic curves were used for the first time to test the diagnostic ability of RCR, [H2O2], and SP antioxidant capacity as binary classifiers. An RCR cut off value of 3.2 was established with a sensitivity of 73% and a specificity of 61%, using reference values considered normal or abnormal in routine semen analysis. The cut off value for [H2O2] was 0.2 μM/106 sperm (sensitivity = 65%, specificity = 60%). There were no reference values for SP antioxidant capacity that distinguished between abnormal and normal sperm samples. We conclude that sperm mitochondrial function indices in combination with [H2O2] may be useful tools to complement the routine semen analysis.
Collapse
Affiliation(s)
- Pilar Irigoyen
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Paula Pintos-Polasky
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucia Rosa-Villagran
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Maria Fernanda Skowronek
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rossana Sapiro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Rossana Sapiro,
| |
Collapse
|
49
|
Natural Astaxanthin Improves Testosterone Synthesis and Sperm Mitochondrial Function in Aging Roosters. Antioxidants (Basel) 2022; 11:antiox11091684. [PMID: 36139758 PMCID: PMC9495865 DOI: 10.3390/antiox11091684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Spermatogenesis, sperm motility, and apoptosis are dependent on the regulation of glandular hormones and mitochondria. Natural astaxanthin (ASTA) has antioxidant, anti-inflammatory, and anti-apoptotic properties. The present study evaluates the effects of ASTA on testosterone synthesis and mitochondrial function in aging roosters. Jinghong No. 1 layer breeder roosters (n = 96, 53-week old) were fed a corn−soybean meal basal diet containing 0, 25, 50, or 100 mg/kg ASTA for 6 weeks. The levels of plasma reproductive hormones and the mRNA and protein levels of molecules related to testosterone synthesis were significantly improved (p < 0.05) in the testes of the ASTA group roosters. In addition, antioxidant activities and free radical scavenging abilities in roosters of the ASTA groups were higher than those of the control group (p < 0.05). Mitochondrial electron transport chain complexes activities and mitochondrial membrane potential in sperm increased linearly with dietary ASTA supplementation (p < 0.05). The levels of reactive oxygen species and apoptosis factors decreased in roosters of the ASTA groups (p < 0.05). Collectively, these results suggest that dietary ASTA may improve testosterone levels and reduce sperm apoptosis, which may be related to the upregulation of the testosterone synthesis pathway and the enhancement of mitochondrial function in aging roosters.
Collapse
|
50
|
Susilowati S, Mustofa I, Wurlina W, Hernawati T, Oktanella Y, Soeharsono S, Purwanto DA. Green Tea Extract in the Extender Improved the Post-Thawed Semen Quality and Decreased Amino Acid Mutation of Kacang Buck Sperm. Vet Sci 2022; 9:vetsci9080403. [PMID: 36006318 PMCID: PMC9413626 DOI: 10.3390/vetsci9080403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study was the first to combine the addition of antioxidants to a skim milk–egg yolk (SM–EY) extender and different equilibration periods to obtain higher quality post-thawed Kacang buck semen. This study aimed to determine the effects of green tea extract (GTE) on the quality of frozen Kacang goat sperm equilibrated for one and two hours. The pool of Kacang buck ejaculate was equally divided into four portions and was diluted in an SM–EY extender that contained four doses of 0, 0.05, 0.10, and 0.15 mg of GTE/100 mL for T0, T1, T2, and T3 groups, respectively. The aliquots were treated for an equilibration period of 1–2 h before further processing as frozen semen. Post-thawed semen quality was evaluated for sperm quality. The Sanger method was used for DNA sequencing, and the amino acid sequence was read using MEGA v.7.0. The post-thawed semen of the T2 group that was equilibrated for one hour had the highest semen quality. Pre-freezing motility had the highest determination coefficient compared to post-thawed sperm motility. This study is the first to report amino acid mutation due to freeze–thawing. The frequency of amino acid mutations revealed that T2 was the least mutated amino acid. Glycine, valine, leucine, serine, and asparagine strongly correlated to post-thawed sperm motility. It can be concluded that a combination of 0.1 mg GTE/100 mL extender as an antioxidant and one-hour equilibration period resulted in the best post-thawed Kacang buck semen quality.
Collapse
Affiliation(s)
- Suherni Susilowati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia; (S.S.); (W.W.); (T.H.)
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia; (S.S.); (W.W.); (T.H.)
- Correspondence: ; Tel.: +62-812-356-1540; Fax: +62-31-599-3015
| | - Wurlina Wurlina
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia; (S.S.); (W.W.); (T.H.)
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia; (S.S.); (W.W.); (T.H.)
| | - Yudit Oktanella
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Brawijaya University, Malang City 65145, Indonesia;
| | - Soeharsono Soeharsono
- Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Djoko Agus Purwanto
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
| |
Collapse
|