1
|
Rajini SV, Sarjan HN, Shivabasavaiah. Ameliorative action of eugenol on nitrate induced reproductive toxicity in male rats. Toxicol Rep 2024; 13:101702. [PMID: 39211010 PMCID: PMC11357871 DOI: 10.1016/j.toxrep.2024.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
There is a great concern for studies to prevent nitrate (NO3) induced male reproductive toxicity as it might lead to infertility. Therefore, the study was aimed to investigate the ameliorative effects of eugenol on NO3 induced male reproductive toxicity in wistar rats. Adult male rats were randomly divided into five groups (n=5). The first group was served as control, the second and third group of rats were treated with 100 mg/kg bw of sodium nitrate (NaNO3) and NO3 contaminated ground water respectively. The fourth and fifth group of rats were orally intubated with eugenol (100 mg/kg bw) and then exposed to NaNO3 and NO3 contaminated ground water respectively. The treatment was continued for 52 days. Nitrate exposure significantly decreased the sperm motility, testicular 3-beta-hydroxysteroid dehydrogenase activity, serum concentration of testosterone, activities of superoxide dismutase and catalase in testis and spermatozoa and different categories of germ cells in stage VII of spermatogenesis. Further, there was significant increase in sperm abnormality and levels of nitrite (NO2) and malondialdehyde in testis and spermatozoa of NO3 treated rats. In addition, NO3 exposure distorted the histological architecture of seminiferous tubules of testis. It was established that NO3 induced high production of NO2 affected spermatogenesis, steroidogenesis and sperm motility. However, in the present study, pretreatment of eugenol prevented NO3 induced reproductive alterations by decreasing the level of NO2. These findings clearly showed the protective action of eugenol against NO3 induced oxidative stress in male reproductive system.
Collapse
Affiliation(s)
| | | | - Shivabasavaiah
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, Karnataka, India
| |
Collapse
|
2
|
Makipour A, Hosseinifar S, Khazaeel K, Tabandeh MR, Jamshidian J. Protective effect of Chlorella vulgaris on testicular damage, sperm parameters, androgen production, apoptosis and oxidative stress index in male rats following doxorubicin administration. Reprod Toxicol 2024; 128:108653. [PMID: 38960208 DOI: 10.1016/j.reprotox.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy agent associated with adverse effects on male reproductive health. Chlorella vulgaris (ChV) is a potent natural antioxidant with promising applications in maintaining health and preventing oxidative stress-related diseases. The present study aimed to investigate the protective effect of ChV on DOX-induced testicular toxicity. Twenty-five Wistar rats (230 ± 20 g) were randomly assigned to five groups (n = 5), including the control group, sham group (received normal saline by oral gavage daily and intraperitoneally (IP) once a week), DOX group (3 mg/kg; once a week; IP), ChV group (300 mg/kg/day; by oral gavage), and DOX (3 mg/kg; once a week; IP) + ChV (300 mg/kg/day; by oral gavage) group. After 8 weeks of treatment, the rats were euthanized and serum testosterone level, testes histomorphometry, gonadosomatic index (GSI), apoptotic gene expression, oxidative stress index, and sperm parameters were assessed. The results showed that DOX led to a significant decrease in histological indexes, testosterone level, GSI, sperm parameters, and Bcl-2 gene expression and increased expression of P-53 and Bax genes, and oxidative stress markers (P<0.05). The administration of ChV in the DOX+ChV group significantly improved testosterone levels, sperm parameters, testicular tissue apoptosis, antioxidant enzymes, and structural integrity of the testes (P<0.05). The findings suggest that the co-administration of ChV can be a promising therapeutic agent to reduce the adverse effects of DOX on male reproductive performance.
Collapse
Affiliation(s)
- Azam Makipour
- Department of Basic Sciences, Division of Histology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Shima Hosseinifar
- Department of Basic Sciences, Division of Histology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Kaveh Khazaeel
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Javad Jamshidian
- Department of Basic Sciences, Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
3
|
Liu H, Du X, Zhang Z, Ge K, Chen X, Losiewicz MD, Guo H, Zhang H. Co-exposure of microcystin and nitrite enhanced spermatogenic disorders: The role of mtROS-mediated pyroptosis and apoptosis. ENVIRONMENT INTERNATIONAL 2024; 188:108771. [PMID: 38805914 DOI: 10.1016/j.envint.2024.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Microcystins (MCs) and nitrites are coexisted in the environment and have reproductive toxicity. The combined toxic effect and mechanism of MCs and nitrite on spermatogenesis remain largely unclear. In the present study, co-exposure to microcystin-leucine arginine (MC-LR) and sodium nitrite (NaNO2) aggravated testicular damage of Balb/c mice and mitochondrial impairment of spermatogonia, Sertoli cells, and sperm. Furthermore, MC-LR and NaNO2 reduced sperm density with a synergistic effect. In addition, MC-LR and NaNO2 synergistically induced oxidative stress in the reproductive system by decreasing superoxide dismutase (SOD) activity and glutathione (GSH) levels and increasing levels of mitochondrial reactive oxygen species (mtROS) and reactive oxygen species (ROS). More importantly, mitoquidone mesylate (MitoQ), an inhibitor of mtROS, blocked MC-LR and NaNO2-induced spermatogonia and Sertoli cell apoptosis by inhibiting high expression of Bax, Fadd, Caspase-8, and cleaved-Caspase-3. On the other hand, MitoQ suppressed pyroptosis of Sertoli cells by inhibiting the expression of NLRP3, N-GSDMD, and cleaved-Caspase-1. Additionally, MitoQ alleviated co-exposure-induced sperm density reduction and organ index disorders in F1 generation mice. Together, co-exposure of MC-LR and NaNO2 can enhance spermatogenic disorders by mitochondrial oxidative impairment-mediated germ cell death. This study emphasizes the potential risks of MC-LR and NaNO2 on reproduction in realistic environments and highlights new insights into the cause and treatment of spermatogenic disorders.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Public Health, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
4
|
Tawfeek WS, Kassab AS, Al-Sokary ET, Abass ME, Sherif AH. Chlorella vulgaris algae ameliorates chlorpyrifos toxicity in Nile tilapia with special reference to antioxidant enzymes and Streptococcus agalactiae infection. Mol Biol Rep 2024; 51:616. [PMID: 38722391 PMCID: PMC11082019 DOI: 10.1007/s11033-024-09535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Chlorpyrifos (CPF) is a widely used pesticide in the production of plant crops. Despite rapid CPF biodegradation, fish were exposed to wastewater containing detectable residues. Recently, medicinal plants and algae were intensively used in aquaculture to replace antibiotics and ameliorate stress impacts. METHODS AND RESULTS An indoor experiment was conducted to evaluate the deleterious impacts of CPF pollution on Nile tilapia health and the potential mitigation role of Chlorella vulgaris algae. Firstly, the median lethal concentration LC50 - 72 h of CPF was determined to be 85.8 µg /L in Nile tilapia (35.6 ± 0.5 g body weight) at a water temperature of 27.5 °C. Secondly, fish were exposed to 10% of LC50 - 72 h for six weeks, and tissue samples were collected and examined every two weeks. Also, Nile tilapia were experimentally infected with Streptococcus agalactiae. Exposed fish were immunosuppressed expressed with a decrease in gene expressions of interleukin (IL) 1β, IL-10, and tumor necrosis factor (TNF)-α. Also, a decline was recorded in glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) gene expression in the head kidney tissue. A high mortality rate (MR) of 100% was recorded in fish exposed to CPF for six weeks and challenged with S. agalactiae. Fish that received dietary C. vulgaris could restore gene expression cytokines and antioxidants compared to the control. After six weeks of CPF exposure, fish suffered from anemia as red blood cell count (RBCs), hemoglobin (Hb), and packed cell volume (PCV) significantly declined along with downregulation of serum total protein (TP), globulin (GLO), and albumin (ALB). Liver enzymes were significantly upregulated in fish exposed to CPF pollution, alanine aminotransferase (ALT) (42.5, 53.3, and 61.7 IU/L) and aspartate aminotransferase (AST) (30.1, 31.2, and 22.8) after 2, 4, and 6 weeks, respectively. On S. agalactiae challenge, high MR was recorded in Nile tilapia exposed to CPF (G3) 60%, 60%, and 100% in week 2, week 4, and week 6, and C. vulgaris provided a relative protection level (RPL) of 0, 14.29, and 20%, respectively. CONCLUSIONS It was concluded that CPF pollution induces immunosuppressed status, oxidative stress, and anemic signs in Nile tilapia. In contrast, C. vulgaris at a 50 g/kg fish feed dose could partially ameliorate such withdrawals, restoring normal physiological parameters.
Collapse
Affiliation(s)
- Walaa S Tawfeek
- Fish Disease Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Dokki, Kafrelsheikh, 12619, Egypt
| | - Amina S Kassab
- Fish Disease Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Dokki, Kafrelsheikh, 12619, Egypt
| | - Eman T Al-Sokary
- Biochemistry, Nutritional Deficiency Diseases and Toxicology Unit, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, 12619, Egypt
| | - Mona E Abass
- Biochemistry, Nutritional Deficiency Diseases and Toxicology Unit, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, 12619, Egypt
| | - Ahmed H Sherif
- Fish Disease Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Dokki, Kafrelsheikh, 12619, Egypt.
| |
Collapse
|
5
|
Simón L, Mariotti-Celis MS. Bioactive compounds as potential alternative treatments to prevent cancer therapy-induced male infertility. Front Endocrinol (Lausanne) 2024; 14:1293780. [PMID: 38303979 PMCID: PMC10831851 DOI: 10.3389/fendo.2023.1293780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
About 8-12% of couples experience infertility, with male infertility being the cause in 50% of cases. Several congenital and acquired conditions, including chronic diseases and their treatments, can contribute to male infertility. Prostate cancer incidence increases annually by roughly 3%, leading to an increment in cancer treatments that have adverse effects on male fertility. To preserve male fertility post-cancer survival, conventional cancer treatments use sperm cryopreservation and hormone stimulation. However, these techniques are invasive, expensive, and unsuitable in prepubertal patients lacking mature sperm cells. Alternatively, nutritional therapies enriched with bioactive compounds are highlighted as non-invasive approaches to prevent male infertility that are easily implementable and cost-effective. In fact, curcumin and resveratrol are two examples of bioactive compounds with chemo-preventive effects at the testicular level. In this article, we summarize and discuss the literature regarding bioactive compounds and their mechanisms in preventing cancer treatment-induced male infertility. This information may lead to novel opportunities for future interventions.
Collapse
Affiliation(s)
- Layla Simón
- Nutrition and Dietetic School, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | | |
Collapse
|
6
|
Mansour AT, Amen RM, Mahboub HH, Shawky SM, Orabi SH, Ramah A, Hamed HS. Exposure to oxyfluorfen-induced hematobiochemical alterations, oxidative stress, genotoxicity, and disruption of sex hormones in male African catfish and the potential to confront by Chlorella vulgaris. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109583. [PMID: 36828347 DOI: 10.1016/j.cbpc.2023.109583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
The present study evaluated the effect of chronic exposure to oxyfluorfen (OXY) on different physiological responses of male African catfish, Clarias gariepinus, and the ameliorative effect of Chlorella vulgaris. The fish (160 ± 5.10 g) were exposed to 1/20 LC50 of OXY (0.58 mg/L) for 60 consecutive days with or without co-administration of C. vulgaris (25 g/kg diet) in triplicate groups. The results revealed that chronic exposure to a sublethal level of OXY induced severe anemia and leukopenia. OXY-exposed fish experienced hypoproteinemia, marked lower AchE levels, and a significant increase in glucose, liver, and kidney function biomarkers. The DNA fragmentation of the liver increased by 15 % in fish compared to the control. On the other hand, lipid peroxidation, superoxide dismutase, and catalase activities were markedly increased in the liver and testes homogenates of the OXY-exposed fish. Meanwhile, total antioxidant capacity and glutathione S-transferase levels declined in the same tissues. Exposure to OXY induced a significant reduction in testosterone and luteinizing hormone levels and a significant increase in follicle stimulating hormone and estradiol. Meanwhile, C. vulgaris dietary supplementation succeeded in alleviating the negative impact of OXY on hematobiochemical parameters and restoring the antioxidant balance in the liver and testes. Furthermore, it ameliorated endocrine disruption and repaired sex hormone levels. In conclusion, exposure to OXY could induce systemic stress, oxidative stress, and endocrine disruption in male C. gariepinus. The dietary supplementation of C. vulgaris could be a potential protective strategy against the toxicity of OXY.
Collapse
Affiliation(s)
- Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt.
| | - Rehab M Amen
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Sherif M Shawky
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt
| | - Sahar H Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt
| | - Amany Ramah
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Heba S Hamed
- Department of Zoology, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt..
| |
Collapse
|
7
|
Ranjbar A, Satari M, Mohseni R, Tavilani A, Ghasemi H. Chlorella vulgaris ameliorates testicular toxicity induced by carbon tetrachloride in male rats via modulating oxidative stress. Andrologia 2022; 54:e14495. [PMID: 35671993 DOI: 10.1111/and.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022] Open
Abstract
This study was aimed to evaluate the protective effects of Chlorella Vulgaris (CVE) (50 and 100 mg/kg doses) on sperm DNA fragmentation, testis oxidative stress in Carbon tetrachloride (CCL4)-exposed rats. Thirty healthy male Wistar rats were divided into five groups (n = 6): Control; CCl4; CVE; CCl4 + CVE50; CCl4 + CVE100. At the end of the experiment, the testicular oxidative stress parameters were estimated. The Chromomycin A3 (CMA3) and Acridine orange (AO) staining were performed to examine the sperm DNA fragmentation status. CCl4 treatment showed a significant decrease in antioxidant markers and sperm count, viability, normal morphology and motility as well as significantly increased the testicular oxidative stress markers, and the percentage of CMA3 and AO positive sperms in normal rats (p < 0.05). While CVE supplementation has revealed a significant decrease in the percentage of CMA3 and AO positive sperms as well as testicular oxidative stress markers and considerably improved the testis antioxidant status (p < 0.05). CVE has also increased the number of sperms with forwarding movement, normal morphology and viability (p < 0.05). Taken together, our analyses suggest that CVE may play a critical role in attenuating the CCl4-induced oxidative stress in the testis, thereby protecting the sperm membrane and DNA against oxidative damage.
Collapse
Affiliation(s)
- Akram Ranjbar
- Department of Toxicology and Pharmacology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahtab Satari
- Department Department of Midwifery, Hamadan university of Medical Sciences, Hamadan, Iran
| | - Roohollah Mohseni
- Department of Biochemistry, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadi Ghasemi
- Department of Clinical Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
El-Din H. Sayed A, Hamed M, Ismail RF. Natural Antioxidants can Improve Microplastics-Induced Male Reproductive Impairment in the African Catfish (Clarias Gariepinus). FRONTIERS IN ENVIRONMENTAL SCIENCE 2022; 9. [DOI: 10.3389/fenvs.2021.811466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
This study was conducted to explore the protective potential of three different antioxidant supplements, lycopene, citric acid, andChlorella, against reproductive injuries induced by microplastics (MPs) in freshwater mature male catfish. A total of 150 mature male African catfish (Clarias gariepinus) were assigned to five treatment groups as follows: control group fish were fed with control diet, the second group fish were fed with 500 mg/kg MP diet, and the remaining three groups of fish were fed with 500 mg/kg MP diet plus lycopene (500 mg/kg diet), citric acid (30 g/kg diet), andChlorella(50 g/kg diet), respectively, for 15 days. Ingestion of MPs significantly decreased serum luteinizing hormone, follicle-stimulating hormone, sex steroid (testosterone and estradiol) levels and sperm count, spermatocrit, motility, and viability. It also induced histological alterations and degenerative changes in testicular tissues. Administration of lycopene andChlorellawith MP diets maintained hormone levels comparable to those in the control group, enhanced sperm quality, and decreased testicular histological damage.Chlorellawas more effective in enhancing sperm quality, and lycopene was more efficient in alleviating testicular tissue damage. Citric acid supplementation was irrelevant in mitigating MP-induced injury. This study indicated that both lycopene andChlorellaameliorated the MP-induced reproductive dysfunction by improving reproductive hormonal levels, sperm parameters, and histological configuration, whereas the citric acid dose used in this study was not effective in ameliorating the MP-induced reproductive stress. Additional research and monitoring of MP-induced pollution in freshwater ecosystems are required to avoid the severity of reproductive toxicity in freshwater fish.
Collapse
|