1
|
Niu Z, Zhang H, Cai C, Yang T, Ma T, Xu D, Cui D, Tang Y. The mechanisms of tripterygium glycosides-induced reproductive toxicity and detoxification strategies. Reprod Toxicol 2025; 132:108830. [PMID: 39778665 DOI: 10.1016/j.reprotox.2025.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Tripterygium glycosides (TG) is a widely used preparation in the treatment of rheumatoid arthritis (RA), nephrotic syndrome and diabetic nephropathy. Although the clinical efficacy is definite, the side-effects on reproductive system limit its wide application. It is of great significance to take measures to alleviate its reproductive toxicity and expand its clinical use. The mechanism of TG-induced reproductive toxicity involves oxidative stress, inflammation, apoptosis, and metabolism imbalance, which lead to adverse effects on male and female reproductive organs. To mitigate these effects, detoxification strategies including combining TG with other agents have been proved to counteract its toxicity. This review will provide information for the studies of TG-induced reproductive toxicity, and also provide insights for developing novel strategies to alleviate the reproductive side effects of TG.
Collapse
Affiliation(s)
- Zechen Niu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province 712046, China
| | - Huanhuan Zhang
- Shaanxi University of International Trade & Commerce, Xianyang, Shaanxi 712046, China
| | - Chunzhou Cai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province 712046, China
| | - Ting Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province 712046, China
| | - Tian Ma
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province 712046, China
| | - Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province 712046, China
| | - Dongxiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province 712046, China.
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province 712046, China.
| |
Collapse
|
2
|
Liu J, Zuo X, Bi J, Li H, Li Y, Ma J, Wang S. Palliative Effect of Combined Application of Zinc and Selenium on Reproductive Injury Induced by Tripterygium Glycosides in Male Rats. Biol Trace Elem Res 2024; 202:5081-5093. [PMID: 38190060 DOI: 10.1007/s12011-023-04054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
The long-term use of tripterygium glycosides (TG) can lead to male reproductive damage. Research indicates that zinc and selenium exhibit a synergistic effect in the male reproductive system, with the combined preparation demonstrating superior therapeutic effects compared to individual preparations. The purpose of this study was to explore the specific mechanism by which zinc and selenium mitigate reproductive toxicity induced by TG in male rats. Rats were randomly assigned to three groups: control group (C group), model group (M group, receiving TG at 30 mg/kg/day), and model + zinc + selenium group (ZS group). The ZS group was also given TG gavage for the first 4 weeks. Starting from the fifth week until the conclusion of the eighth week, the ZS group received an additional protective treatment of 10 mg/kg/day Zn and 0.1 mg/kg/day Se 4 h after TG administration. Following euthanasia, blood samples, rat testis, and epididymis tissues were collected for further experiments. Combined zinc-selenium treatment corrects the imbalance of zinc-selenium homeostasis in testicular tissue induced by TG. This is achieved by upregulating the expression of metal transcription factor (MTF1) and zinc transporters ZIP8 and ZIP14 and downregulating the expression of ZnT10. Improvement of zinc and selenium homeostasis enhanced the expression of zinc-containing enzymes (ADH, LDH, and ALP) and selenoproteins (GPx1 and SELENOP) in the testis. At the same time, zinc and selenium mitigate TG-induced reproductive damage by promoting the activity of antioxidant enzymes and upregulating the expression of proteins associated with the oxidative stress pathway, including Nrf2, Keap1, HO-1, PI3K, and p-AKT.
Collapse
Affiliation(s)
- Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Xin Zuo
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiajie Bi
- Graduate School of Chengde Medical University, Chengde, 067000, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Yuanjing Li
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Shusong Wang
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.
- Graduate School of Chengde Medical University, Chengde, 067000, China.
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China.
| |
Collapse
|
3
|
Ma J, Tan H, Bi J, Sun B, Zhen Y, Lian W, Wang S. Zinc Ameliorates Tripterygium Glycosides-Induced Reproductive Impairment in Male Rats by Regulating Zinc Homeostasis and Expression of Oxidative Stress-Related Genes. Biol Trace Elem Res 2024; 202:2111-2123. [PMID: 37612486 DOI: 10.1007/s12011-023-03815-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Tripterygium glycosides (TG) can seriously damage male reproductive function, and the reproductive system is difficult to restore after stopping the administration of TG in male rats. Zinc (Zn) is one of the most important trace elements in the human body and plays an important role in maintaining male fertility. The aim of this study was to investigate whether zinc supplementation could improve the testicular reproductive damage induced by TG toxicity in rats and to investigate its mechanism of action. The results showed that zinc sulfate (ZnSO4) could improve testicular tissue structure and semen parameters, promote testosterone synthesis, increase zinc-containing enzyme activity, increase zinc concentration in serum and testicular tissues, and maintain zinc homeostasis in male rats induced by TG toxicity. Zinc supplementation activated relevant signalling molecules in the KEAP1-NRF2/ARE pathway and alleviated TG-induced oxidative stress. Therefore, this study concluded that zinc supplementation could improve reproductive damage by regulating zinc homeostasis and the expression of genes related to oxidative stress.
Collapse
Affiliation(s)
- Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China
| | - He Tan
- Hebei General Hospital, Shijiazhuang, 050051, China
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiajie Bi
- Graduate School of Chengde Medical University, Chengde, 067000, China
| | - Bo Sun
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Yingxian Zhen
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China
| | - Weiguang Lian
- Department of Laboratory Animals, The Key Lab of Hebei Provincial Laboratory Animals, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 80 Heping Street, Xinhua District, Shijiazhuang, 050071, China.
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China.
- Graduate School of Chengde Medical University, Chengde, 067000, China.
| |
Collapse
|
4
|
Qian HQ, Wu DC, Li CY, Liu XR, Han XK, Peng Y, Zhang H, Zhao BY, Zhao Y. A systematic review of traditional uses, phytochemistry, pharmacology and toxicity of Epimedium koreanum Nakai. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116957. [PMID: 37544344 DOI: 10.1016/j.jep.2023.116957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/08/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium koreanum Nakai (E. koreanum), a member of the genus Epimedium in the family Berberidaceae, is a well-known and well-liked traditional herb used as a "kidney tonic". For thousands of years, it has been utilized for renal yang deficiency, impotence, spermatorrhea, impotence, weakness of tendons and bones, rheumatic paralysis and discomfort, numbness, and constriction. AIM OF THE STUDY The paper aims to comprehensively in-depth, and methodically review the most recent research on the traditional uses, phytochemistry, pharmacology, and toxicity of E. koreanum. MATERIALS AND METHODS Scientific databases including Web of Science, PubMed, Google Scholar, Elsevier, Springer, ScienceDirect, Baidu Scholar, and CNKI and medicine books in China were searched for relevant information on E. koreanum. RESULTS In traditional uses, E. koreanum is frequently used to treat various diseases like erectile dysfunction, infertility, rheumatoid arthritis, osteoporosis, asthma, kidney-yang deficiency syndrome, etc. To date, more than 379 compounds have been discovered from various parts of E. koreanum, including flavonoids, lignans, organic acids, terpenoids, hydrocarbons, dihydrophenanthrene derivatives, alkaloids, and others. Research has revealed that the compounds and crude extracts have a wide range of pharmacological effects on the reproductive, cardiovascular, and nervous systems, as well as anti-osteoporosis, anti-tumor, antioxidant, anti-inflammatory, immunomodulatory, hepatoprotective, and antiviral properties. Besides, the crude extracts show potential hepatotoxicity. CONCLUSION Based on recent domestic and international research investigations, E. koreanum contains a wealth of chemical components with pronounced pharmacological activities. Its traditional uses are numerous, and the majority of these traditional uses have been supported by contemporary pharmacological investigations. Crude extracts, on the other hand, can result in hepatotoxicity. Therefore, additional in vivo and in vitro experimental research on the pharmacology and toxicology of E. koreanum are required in the future to assess its safety and efficacy. This will give a firmer scientific foundation for its safe application and the development of new drugs in the future.
Collapse
Affiliation(s)
- Hui-Qin Qian
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Dou-Can Wu
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Chun-Yan Li
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Xin-Ran Liu
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Xin-Ke Han
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Yuan Peng
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Han Zhang
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Bing-Yan Zhao
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Yuan Zhao
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
5
|
Yang J, Fan S, Guo M, Xie Z, Cheng Q, Gao P, Cheng C. DNA barcoding and comparative RNA-Seq analysis provide new insights into leaf formation using a novel resource of high-yielding Epimedium koreanum. FRONTIERS IN PLANT SCIENCE 2023; 14:1290836. [PMID: 38170141 PMCID: PMC10760978 DOI: 10.3389/fpls.2023.1290836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Epimedium koreanum Nakai, a well-known traditional Chinese medicinal herb, has been widely used to treat osteoporosis and sexual dysfunction for thousands of years. However, due to the decreasing population of East Asian natural resources, yearly output of Epimedium crude herb has been in low supply year by year. In this study, an unusual variety of E. koreanum was discovered in Dunhua, Jilin Province, the northernmost area where this variety was found containing 6 individuals, with three branches that had 27 leaflets, which is much more than the typical leaflet number of 9. Firstly, the novel E. koreanum varety was identified using DNA barcodes. Then, 1171 differentially expressed genes (DEGs) were discovered through parallel RNA-seq analysis between the newly discovered variety and wild type (WT) E. koreanum plant. Furthermore, the results of bioinformatics investigation revealed that 914 positively and 619 negatively correlated genes associated with the number of leaflets. Additionally, based on RNA-Seq and qRT-PCR analysis, two homologous hub TCP genes, which were commonly implicated in plant leaf development, and shown to be up regulated and down regulated in the discovered newly variety, respectively. Thus, our study discovered a novel wild resource for leaf yield rewarding medicinal Epimedium plant breeding, provided insights into the relationship between plant compound leaf formation and gene expression of TCPs transcription factors and other gene candidates, providing bases for creating high yield cultivated Epimedium variety by using further molecular selection and breeding techniques in the future.
Collapse
Affiliation(s)
- Jiaxin Yang
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Siqing Fan
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Min Guo
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Zhaoqi Xie
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Qiqing Cheng
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Chunsong Cheng
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Simultaneous determination of multiple constituents of Qi-Lin pill by UPLC-MS/MS: Applications to pharmacokinetics and testicular tissue distribution in rats. J Pharm Biomed Anal 2022; 223:115157. [DOI: 10.1016/j.jpba.2022.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
|
7
|
Zhang C, Chen J, Wei X, Zhao L, Zhao P, Li X, Cui J, Ma S, Sun Z, Wang Z. Transcriptomics and proteomics analysis to explore the mechanism of Yishen Tongluo formula repairing sperm DNA damage in rats. Andrologia 2022; 54:e14582. [PMID: 36068021 DOI: 10.1111/and.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
The sperm DNA fragmentation index (DFI) is an objective indicator of male fertility. Currently, effective treatments for high sperm DFI are limited and traditional Chinese medicine (TCM) has certain advantages in this aspect. Yishen Tongluo formula (YSTL), a TCM formula, has been found to reduce DFI in patients. To better understand the mechanisms underlying its activity, we used transcriptomics and proteomics to analyse the potential target gene YSTL repairing tripterygium glycosides (TGs)-mediated sperm DNA damage in rats, followed by validation analyses using RT-qPCR and western blotting, which showed that relative to the control group, DFI was markedly elevated in the TGs group, but markedly lower in the YSTL group relative to the TGs group. KEGG pathway analysis of 119 differentially expressed genes and 158 DEPs identified using trend analysis revealed that they were enriched for apoptosis and base excision repair at the transcriptomic level and for microRNAs in cancer and complement and coagulation cascades at the proteomic level. Ttr and Pnpla2 were identified as potential target genes for YSTL. Our data show that YSTL can protect rat sperm DNA from TGs-induced damage, which may be related to apoptosis, DNA repair and other pathways, and the possible target genes are Ttr and Pnpla2.
Collapse
Affiliation(s)
- Chenming Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Jianshe Chen
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People's Republic of China
| | - Xiao Wei
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People's Republic of China
| | - Lina Zhao
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People's Republic of China
| | - Peipei Zhao
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Xun Li
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People's Republic of China
| | - Jiaxin Cui
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People's Republic of China
| | - Sicheng Ma
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Zixue Sun
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People's Republic of China
| | - Zulong Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| |
Collapse
|