1
|
Ribeiro DG, Carvalho JDO, Sartori R, Monteiro PLJ, Fontes W, Castro MDS, de Sousa MV, Dode MAN, Mehta A. The presence of sexed sperm in bovine oviduct epithelial cells alters the protein profile related to stress and immune response. Res Vet Sci 2025; 184:105522. [PMID: 39740501 DOI: 10.1016/j.rvsc.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Although sperm sexing technology has progressed considerably in the last decade, there are still challenges to fully understand the reason for the low fertility of sexed sperm. Thus, we aimed to evaluate the effect of sexed and non-sexed sperm on the proteome of bovine oviduct epithelial cells (BOECs). Semen from six Nellore bulls was used and one ejaculate from each bull was collected and separated into three fractions: non-sexed, sexed for X-sperm and sexed for Y-sperm. Previously synchronized females were artificially inseminated with either a pool of non-sexed sperm from 6 sires (NS), or a pool of sexed X and Y sperm from 6 sires (XY) or saline solution (Control). After insemination, animals were slaughtered and oviducts were collected to obtain BOECs samples, which were used for proteomic analysis. The results revealed that the oviductal response on isthmus region to the presence of sperm is different when sexed and non-sexed sperm are used. Sexed sperm seemed to induced a more intense and imbalanced response to several processes, such as oxidative and heat stress, immune response and movement of the oviduct muscle.
Collapse
Affiliation(s)
- Daiane Gonzaga Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil; Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - José de Oliveira Carvalho
- Postgraduate Program in Veterinary Sciences, Federal University of Espirito Santo, Alegre, ES, Brazil
| | - Roberto Sartori
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | - Pedro Leopoldo Jerônimo Monteiro
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil; Department of Large Animal Clinical Sciences, University of Florida, Gainesville, USA
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia, DF, Brazil
| | - Mariana de Souza Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia, DF, Brazil
| | - Margot Alves Nunes Dode
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil; Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília- UnB, Brazil.
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil.
| |
Collapse
|
2
|
Sheibak N, Zandieh Z, Amjadi F, Aflatoonian R. How sperm protects itself: A journey in the female reproductive system. J Reprod Immunol 2024; 163:104222. [PMID: 38489929 DOI: 10.1016/j.jri.2024.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
Sperm must pass a complex route in the female reproductive tract (FRT) to reach the fertilization site and join the oocyte. Thus, it should employ several mechanisms to survive against the female immune system, fertilize the oocyte, and successfully transmit paternal genes to the next generation. In addition to self-protection, sperm may be involved in the immune tolerance to the developing embryo and regulating the FRT for embryo implantation and subsequent pregnancy. Hence, this review intends to summarize the mechanisms that protect sperm in the FRT: including immunomodulatory factors that are carried by seminal plasma, cell-to-cell and molecular interaction of sperm with epithelial and immune cells of the FRT, high regulated secretions of inflammatory factors such as cytokines, chemokines, and growth factors, inducing immune tolerance to paternal antigens, and specialized expression of cell receptors and binding proteins. In most of these events sperm induces the FRT to protect itself by modulating immune responses for its own benefit. However, not all sperm in the semen are able to trigger the survival mechanisms and only high-quality sperm will overcome this challenge. A clear understanding of the molecular mechanisms that maintain sperm viability and function in the FRT can lead to new knowledge about infertility etiology and a new approach in assisted reproductive technologies for the preparation and selection of the best sperm based on the criteria that physiologically happen in-vivo.
Collapse
Affiliation(s)
- Nadia Sheibak
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Varga I, Csöbönyeiová M, Visnyaiová K, Záhumenský J, Pavlíková L, Feitscherová C, Klein M. Functional Morphology of the Human Uterine Tubes in the 21st Century: Anatomical Novelties and Their Possible Clinical Applications. Physiol Res 2022. [DOI: 10.33549/physiolres.935036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The uterine tube (UT) pathologies account for 25-35 % of female factor infertility. Although these peculiar organs were first studied several hundred years ago, they have become overlooked and neglected mainly due to the successes of reproductive medicine. Nevertheless, reproductive medicine still faces many challenges regarding the fertility outcomes of in vitro fertilization (IVF). Many obstacles and problems can be resolved by a more detailed understanding of the UT morphology and function during normal reproduction. Over the course of the 21st century, many new insights have been obtained: the presence of a population of telocytes in the tubal wall responsible for normal motility and hormone sensory function, the demonstration of lymphatic lacunae of the mucosal folds necessary for oocyte capture and tubal fluid recirculation, or a thorough profiling of the immune makeup of the UT epithelial lining with the discovery of regulatory T cells presumably important for maternal tolerance towards the semi-allogenic embryo. New discoveries also include the notion that the UT epithelium is male sex hormone-sensitive, and that the UT is not sterile, but harbors a complex microbiome. The UT epithelial cells were also shown to be the cells-of-origin of high-grade serous ovarian carcinomas. Finally, yet importantly, several modern morphological directions have been emerging recently, including cell culture, the development of tubal organoids, in silico modelling, tissue engineering and regenerative medicine. All these novel insights and new approaches can contribute to better clinical practice and successful pregnancy outcomes.
Collapse
Affiliation(s)
- I Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|