1
|
Zhao L, Gong F, Lou K, Wang L, Wang J, Sun H, Wang D, Shi Y, Wang Z. Retrotransposon involves in photoperiodic spermatogenesis in Brandt's voles (Lasiopodomys brandtii) by co-transcription with flagellar genes. Int J Biol Macromol 2024; 281:136224. [PMID: 39362423 DOI: 10.1016/j.ijbiomac.2024.136224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Photoperiod is a pivotal factor in affecting spermatogenesis in seasonal-breeding animals. Transposable elements have regulatory functions during spermatogenesis. However, whether it also functions in photoperiodic spermatogenesis in seasonal breeding animals is unknown. To explore this, we first annotated 5,501,822 transposons in the whole genome of Brandt's voles (Lasiopodomys brandtii), and revealed that LINEs were the most abundant, comprising 16.61 % of the genome. Following closely, SINEs accounted for 10.13 %, LTRs for 7.54 %, and DNA transposons for 0.70 %. Subsequently, we exposed male Brandt's voles to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) from their embryonic stages, and obtained testes transcriptome at 4 and 10 weeks after birth. Differential expression and Pearson analysis indicated strongly positive correlations between the expression of differentially expressed retrotransposons and the adjacent genes. KO, KEGG and GSEA results showed that sperm flagellar genes were most enriched nearby the retrotransposons such as Dnah1, Dnah2, Dnah17, Dnali1. RT-PCR results showed that SINE/Alu_1213291 co-transcripted with Dnali1 gene. Our findings first reveal the regulatory function of transposons in photoperiodic spermatogenesis, providing insights into the role of photoperiod in seasonal reproduction in wild animals.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fanglei Gong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kang Lou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji 831100, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji 831100, China.
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
2
|
Bueno LM, Soares EM, Ferraz JF, Santiago CS, Comelis-Martins MT, Taboga SR, Morielle-Versute E, Beguelini MR. Testicular regression and recrudescence in the bat Eptesicus furinalis: Morpho-physiological variations and hormonal signaling pathways. Anat Rec (Hoboken) 2024; 307:2875-2890. [PMID: 38095144 DOI: 10.1002/ar.25369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 07/04/2024]
Abstract
Males of the bat Eptesicus furinalis show at least one process of testicular regression, in which the testes regress and temporarily interrupt the production of sperm, during its annual reproductive cycle. As the process of spermatogenesis is under hormonal control, mainly of pituitary and androgen hormones, our aim was to analyze the morphological variations and the hormonal control of the testes of E. furinalis during the four phases of its reproductive cycle. Testes of 18 adult males, divided into four sample groups (active, regressing, regressed, and recrudescence phases), were submitted to morphological, morphometric, and immunohistochemical analyzes. The results demonstrate that the processes of testicular regression and recrudescence of E. furinalis are under the control of pituitary, androgen and estrogen hormones. The regulation is exerted mainly through the activation and cross signaling of AR and FSHR in Sertoli cells and of LHR in Leydig cells. The testicular regression appears to be activated by an inhibition/reduction of AR expression in Sertoli cells, which inhibits the proliferation and differentiation of new spermatogonia and causes the deactivation of spermatogenesis. Conversely, the testicular recrudescence occurs by the increasing of the expression of LHR in Leydig cells, and AR and FSHR in Sertoli cells, which reactivates the testicular production of androgens and estrogens, the proliferation of spermatogonia and restarts the spermatogenesis.
Collapse
Affiliation(s)
- Larissa Mayumi Bueno
- Department of Zoology and Botany, UNESP-Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Emília M Soares
- Center of Biological and Health Science, UFOB-Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Juliana F Ferraz
- Center of Biological and Health Science, UFOB-Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Cornélio S Santiago
- Center of Biological and Health Science, UFOB-Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | | | | | - Eliana Morielle-Versute
- Department of Zoology and Botany, UNESP-Universidade Estadual Paulista, São José do Rio Preto, Brazil
| | - Mateus Rodrigues Beguelini
- Center of Biological and Health Science, UFOB-Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| |
Collapse
|
3
|
An K, Yao B, Tan Y, Kang Y, Su J. Potential Role of Anti-Müllerian Hormone in Regulating Seasonal Reproduction in Animals: The Example of Males. Int J Mol Sci 2023; 24:5874. [PMID: 36982948 PMCID: PMC10054328 DOI: 10.3390/ijms24065874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Seasonal reproduction is a survival strategy by which animals adapt to environmental changes to improve their fitness. Males are often characterized by a significantly reduced testicular volume, indicating that they are in an immature state. Although many hormones, including gonadotropins, have played a role in testicular development and spermatogenesis, research on other hormones is insufficient. The anti-Müllerian hormone (AMH), which is a hormone responsible for inducing the regression of Müllerian ducts involved in male sex differentiation, was discovered in 1953. Disorders in AMH secretion are the main biomarkers of gonadal dysplasia, indicating that it may play a crucial role in reproduction regulation. A recent study has found that the AMH protein is expressed at a high level during the non-breeding period of seasonal reproduction in animals, implying that it may play a role in restricting breeding activities. In this review, we summarize the research progress on the AMH gene expression, regulatory factors of the gene's expression, and its role in reproductive regulation. Using males as an example, we combined testicular regression and the regulatory pathway of seasonal reproduction and attempted to identify the potential relationship between AMH and seasonal reproduction, to broaden the physiological function of AMH in reproductive suppression, and to provide new ideas for understanding the regulatory pathway of seasonal reproduction.
Collapse
Affiliation(s)
- Kang An
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Baohui Yao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuchen Tan
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yukun Kang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhu Su
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Zhang Y, Zhu Y, Cao X, Zhang G, Liu S. Cell adhesion function was altered during the seasonal regression of the seminiferous epithelium in the mink species Neovison vison. J Anim Sci 2023; 101:skad190. [PMID: 37282598 PMCID: PMC10276646 DOI: 10.1093/jas/skad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023] Open
Abstract
Minks are seasonal breeders whose seminiferous epithelium undergoes regression through massive germ cell death, leaving only Sertoli cells and spermatogonial cells in the tubules. However, the molecular mechanisms that control this biological process remain largely unknown. This study describes a transcriptomic analysis of mink testes at various reproductive stages (active, regressing, and inactive). A comparison of seminiferous epithelium at different stages of reproduction shows that cell adhesion is altered during regression. In addition, genes and proteins involved in forming the blood-testis barrier (BTB) were examined in sexually active and inactive minks. The seminiferous epithelium in the testes of sexually inactive minks expressed occludin, but this expression was not discernibly observed in the testes of sexually active minks. There was no discernible expression of CX43 in the seminiferous epithelium in the testes of sexually inactive minks, but CX43 was expressed in the testes of sexually active minks. During the regression process, we observed a remarkable increase in the expression levels of Claudin-11, which is associated with Sertoli-germ cell junctions. In conclusion, these findings suggest a loss of Sertoli-germ cell adhesion, which may regulate postmeiotic cell shedding during testicular regression in mink.
Collapse
Affiliation(s)
- Yufei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaodong Cao
- School of pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonmous Region, China
- School of pharmacy New Drug Safety Evaluation Research Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonmous Region, China
| | - Guanhua Zhang
- Agriculture and Animal Husbandry Comprehensive Inspection and Testing Center of chifeng, Inner Mongolia, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhao Wu Da Road No. 306, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| |
Collapse
|
5
|
Zhao X, Wang S, Xu J, Wang C, Feng Y, Xue H, Wu M, Chen L, Xu L. Effects of short daylight and mild low temperature on mitochondrial degeneration in the testis of
Cricetulus barabensis. Mol Reprod Dev 2022; 89:413-422. [DOI: 10.1002/mrd.23632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Xiang‐Yu Zhao
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Shuo Wang
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Jin‐Hui Xu
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Chuan‐Li Wang
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Yong‐Zhen Feng
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Hui‐Liang Xue
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Ming Wu
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Lei Chen
- College of Life Sciences Qufu Normal University Qufu Shandong China
| | - Lai‐Xiang Xu
- College of Life Sciences Qufu Normal University Qufu Shandong China
| |
Collapse
|
6
|
Beltrán-Frutos E, Seco-Rovira V, Martínez-Hernández J, Ferrer C, Serrano-Sánchez MI, Pastor LM. Cellular Modifications in Spermatogenesis during Seasonal Testicular Regression: An Update Review in Mammals. Animals (Basel) 2022; 12:ani12131605. [PMID: 35804504 PMCID: PMC9265002 DOI: 10.3390/ani12131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The most common form of reproduction in mammals is seasonal reproduction. This ensures that offspring are born at the most suitable time for survival, due to the abundance of food and the optimal temperatures for early postnatal development. In males, one way to achieve this is to decrease or lose fertility over a given period. This loss is associated with a greater or lesser degree of spermatogenesis modification that affects both germ and Sertoli cells. This paper reviews the different cellular mechanisms that have been postulated in recent years to explain how the activity of the seminiferous epithelium decreases during the non-reproductive period. Abstract Testicular regression occurs during the non-breeding season in many mammals. This affects spermatogenesis, resulting in decreased or arrested activity. Both lead to a decrease or cessation in sperm production. In recent years, the cellular mechanisms that lead to infertility in males in non-reproductive periods have been studied in very different species of mammals. At the start of the present century, the main mechanism involved was considered as an increase in the apoptotic activity of germ cells during the regression period. The loss of spermatogonia and spermatocytes causes not only a decrease in spermatogenesis, but an arrest of the seminiferous epithelium activity at the end of regression. Recently, in some mammal species, it was found that apoptosis is the usual mechanism involved in epithelium activity arrest, although it is firstly atrophied by massive desquamation of the germ cells that are released from their binding with the Sertoli cells, and which are shed into the lumen of the seminiferous tubule. In other species, it has been shown that not only germ cell apoptosis, but also Sertoli cell apoptosis, including decreased proliferative activity, spermatophagy or autophagy, are involved in testicular regression. Furthermore, the most recent studies indicate that there are multiple patterns of seminiferous epithelium regression in seasonally breeding animals, which may not only be used by different species, but also by the same ones to reproduce in the best conditions, ensuring their survival. In conclusion, at this time, it is not possible to consider the existence of a paradigmatic cellular mechanism in the involution of the seminiferous epithelium applicable to all male mammals with seasonal reproduction, rather the existence of several mechanisms which participate to a greater or lesser extent in each of the species that have been studied to date.
Collapse
|
7
|
Real FM, Lao-Pérez M, Burgos M, Mundlos S, Lupiáñez DG, Jiménez R, Barrionuevo FJ. Cell adhesion and immune response, two main functions altered in the transcriptome of seasonally regressed testes of two mammalian species. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 340:231-244. [PMID: 35535962 DOI: 10.1002/jez.b.23142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022]
Abstract
In species with seasonal breeding, male specimens undergo substantial testicular regression during the nonbreeding period of the year. However, the molecular mechanisms that control this biological process are largely unknown. Here, we report a transcriptomic analysis on the Iberian mole, Talpa occidentalis, in which the desquamation of live, nonapoptotic germ cells is the major cellular event responsible for testis regression. By comparing testes at different reproductive states (active, regressing, and inactive), we demonstrate that the molecular pathways controlling the cell adhesion function in the seminiferous epithelium, such as the MAPK, ERK, and TGF-β signaling, are altered during the regression process. In addition, inactive testes display a global upregulation of genes associated with immune response, indicating a selective loss of the "immune privilege" that normally operates in sexually active testes. Interspecies comparative analyses using analogous data from the Mediterranean pine vole, a rodent species where testis regression is controlled by halting meiosis entry, revealed a common gene expression signature in the regressed testes of these two evolutionary distant species. Our study advances in the knowledge of the molecular mechanisms associated to gonadal seasonal breeding, highlighting the existence of a conserved transcriptional program of testis involution across mammalian clades.
Collapse
Affiliation(s)
- Francisca M Real
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Miguel Lao-Pérez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Max-Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco J Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| |
Collapse
|
8
|
Xi H, Ren F, Li Y, Du Y, Wang L, Hu J. Changes in histology, protein expression, and autophagy in dairy goat testes during nonbreeding season†. Biol Reprod 2021; 105:1344-1354. [PMID: 34467369 DOI: 10.1093/biolre/ioab164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/08/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Seasonal reproduction contributes to increased chances of offspring survival in some animals. Dairy goats are seasonal breeding mammals. In this study, adult male Guanzhong dairy goats (10-12 months old) were used. Testis size, semen quality, hormone level, apoptosis of germ cells, and autophagy of Sertoli cells were analyzed in dairy goats during the breeding (October) and nonbreeding (April) seasons. We found that, during the nonbreeding season for dairy goats, semen quality, follicle-stimulating hormone (FSH) levels, and testosterone levels were reduced, and the number of apoptotic germ cells increased. The proliferation with decrease activity of germ cells in dairy goat during the nonbreeding season was significantly affected. However, the testis size did not change seasonally. Interestingly, Sertoli cell autophagy was more active during the nonbreeding season. The expression levels of FSH receptor, wilms tumor 1, androgen binding protein, glial cell derived neurotrophic factor, and stem cell factor decreased in dairy goats during the nonbreeding season. In summary, our results indicate that spermatogenesis in dairy goats during the nonbreeding season was not completely arrested. In addition, germ cell apoptosis and the morphology of Sertoli cells considerably changed in dairy goats during the nonbreeding season. Sertoli cell autophagy is involved in the seasonal regulation of spermatogenesis in dairy goats. These findings provide key insights into the fertility and spermatogenesis of seasonal breeding animals.
Collapse
Affiliation(s)
- Huaming Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Fa Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yeqing Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Liqiang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Beltran-Frutos E, Casarini L, Santi D, Brigante G. Seasonal reproduction and gonadal function: A focus on humans starting from animal studies. Biol Reprod 2021; 106:47-57. [PMID: 34718419 DOI: 10.1093/biolre/ioab199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photoperiod impacts reproduction in many species of mammals. Mating occurs at specific seasons to achieve reproductive advantages, such as optimization of offspring survival. Light is the main regulator of these changes during the photoperiod. Seasonally breeding mammals detect and transduce light signals through extraocular photoreceptor, regulating downstream melatonin-dependent peripheral circadian events. In rodents, hormonal reduction and gonadal atrophy occur quickly, and consensually with short-day periods. It remains unclear whether photoperiod influences human reproduction. Seasonal fluctuations of sex hormones have been described in humans, although they seem to not imply adaptative seasonal pattern in human gonads. This review discusses current knowledge about seasonal changes in the gonadal function of vertebrates, including humans. The photoperiod-dependent regulation of hypothalamic-pituitary-gonadal axis, as well as morphological and functional changes of the gonads are evaluated herein. Endocrine and morphological variations of reproductive functions, in response to photoperiod, are of interest as they may reflect the nature of past population selection for adaptative mechanisms that occurred during evolution.
Collapse
Affiliation(s)
- Ester Beltran-Frutos
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca. School of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia. Spain
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| |
Collapse
|
10
|
Martínez-Hernández J, Seco-Rovira V, Beltrán-Frutos E, Ferrer C, Serrano-Sánchez MI, Pastor LM. Proliferation, apoptosis, and number of Sertoli cells in the Syrian hamster during recrudescence after exposure to short photoperiod†‡. Biol Reprod 2021; 102:588-597. [PMID: 31621831 DOI: 10.1093/biolre/ioz198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/17/2019] [Accepted: 10/07/2019] [Indexed: 11/14/2022] Open
Abstract
The Sertoli cell (Sc) has been described as a quiescent cell once the animal has reached sexual maturity. Syrian hamster is an animal that displays testicular regression due to short photoperiod, during which process germ cells and Sc are removed through apoptosis. The aim of this work was to investigate histochemically whether the spontaneous testicular recrudescence processes after exposure to a short photoperiod lead to an increase in Sc proliferative activity in order to restore the normal population. Three spontaneous recrudescence groups were established: initial (IR), advanced (AR), and total (TR) recrudescence, which were compared with animal undergoing the regression process (mild: MRg, strong: SRg, and total: TRg) and animals in long photoperiod (Controls). Histological sections were submitted to histochemical techniques for detecting apoptotic and proliferative Sc with bright-field and fluorescence microscopy. For each group, the proliferative Sc index (PScI) and apoptotic Sc index (AScI), and the total number of Sc were obtained. The results revealed the existence of Vimentin+/TUNEL+ as well as Vimentin+/PCNA+ cells. The PScI was significantly higher in TRg and IR than in the other groups. The AScI was only significantly higher in MRg and SRg with respect to the other groups. The total number of Sc increased among TRg, IR, and AR, reaching values similar to those of the Controls. In conclusion, the increase in Sc proliferation from final regression and recrudescence, accompanied by a similar rate of apoptosis to the Control group, is the cause of the restoration of the Sc population during spontaneous recrudescence.
Collapse
Affiliation(s)
- Jesús Martínez-Hernández
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Vicente Seco-Rovira
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Concepción Ferrer
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - María Isabel Serrano-Sánchez
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Luis Miguel Pastor
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Jeon GH, Lee SH, Cheon YP, Choi D. Blood-Testis Barrier and Sperm Delayed in the Cauda Epididymis of the Reproductively Regressed Syrian Hamsters. Dev Reprod 2021; 25:1-14. [PMID: 33977170 PMCID: PMC8087257 DOI: 10.12717/dr.2021.25.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022]
Abstract
The Syrian (golden) hamsters are seasonal breeders whose reproductive functions
are active in summer and inactive in winter. In experimental facility mimicking
winter climate, short photoperiod (SP) induces gonadal regression. The
blood-testis barrier (BTB) of the sexually involuted animals have been reported
to be permeable, allowing developing germ cells to be engulfed or sloughed off
the epithelium of the seminiferous tubules. The expressions of genes related to
the tight junction composing of BTB were investigated in the reproductive active
and inactive testes. Claudin-11, occludin, and junctional adhesion molecule
(JAM) were definitely expressed in the active testes but not discernably
detected in the inactive testes. And spermatozoa (sperm) were observed in the
whole lengths of epididymides in the active testes. They were witnessed in only
cauda region of the epididymides but not in caput and corpus regions in animals
with the inactive testes. The results imply that the disorganization of BTB is
associated with the testicular regression. The developing germ cells are
swallowed into the Sertoli cells or travel into the lumen, as supported by the
presence of the sperm delayed in the last region of the epididymis. These
outcomes suggest that both apoptosis and desquamation are the processes that
eliminate the germ cells during the regressing stage in the Syrian hamsters.
Collapse
Affiliation(s)
- Geon Hyung Jeon
- Dept. of Life Science, College of Public Health and Welfare Sciences, Yong-In University, Yongin 17092, Korea
| | - Sung-Ho Lee
- Dept. of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Dept. of Biotechnology, Sungshin University, Seoul 02844, Korea
| | - Donchan Choi
- Dept. of Life Science, College of Public Health and Welfare Sciences, Yong-In University, Yongin 17092, Korea
| |
Collapse
|
12
|
Chen Q, Holt WV. Extracellular vesicles in the male reproductive tract of the softshell turtle. Reprod Fertil Dev 2021; 33:519-529. [PMID: 33715768 DOI: 10.1071/rd20214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles that originate from the endosomal system or are shed from the plasma membrane respectively. As mediators of cell communication, EVs are present in biological fluids and are involved in many physiological and pathological processes. The role of EVs has been extensively investigated in the mammalian male reproductive tract, but the characteristics and identification of EVs in reptiles are still largely unknown. In this review we focus our attention on EVs and their distribution in the male reproductive tract of the Chinese softshell turtle Pelodiscus sinensis , mainly discussing the potential roles of EVs in intercellular communication during different phases of the reproductive process. In softshell turtles, Sertoli-germ cell communication via multivesicular bodies can serve as a source of EVs during spermatogenesis, and these EVs interact with epithelia of the ductuli efferentes and the principal cells of the epididymal epithelium. These EVs are involved in sperm maturation, transport and storage. EVs are also shed by telocytes, which contact and exchange information with other, as well as distant interstitial cells. Overall, EVs play an indispensable role in the normal reproductive function of P. sinensis and can be used as an excellent biomarker for understanding male fertility.
Collapse
Affiliation(s)
- Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; and Corresponding author
| | - William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
13
|
Boufermes R, Belhocine M, Amirat Z, Khammar F. Assessment of Testicular Lhcgr mRNA Expression Correlated with Testis and Seminal Vesicle Activities in the Libyan jird ( Meriones libycus, Rodentia: Muridae) during Breeding Season Compared with Nonbreeding Season. Animals (Basel) 2021; 11:ani11020320. [PMID: 33514013 PMCID: PMC7912399 DOI: 10.3390/ani11020320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/06/2022] Open
Abstract
Simple Summary The breeding periods of desert rodents should be favorable to the survival of small young, conditioned by the availability of food that occurs in the Libyan jird biotope during the long photoperiod and the high temperatures. The Libyan jird (Meriones libycus) were caught in their natural biotope in the Saharan desert in Algeria and showed a seasonal cycle of the testis activity, characterized by the highest peak during spring (the breeding season) and the lowest activity was registered during autumn and winter (nonbreeding season). Lhcgr mRNA expression is increased in autumn and decreased in spring. This expression varied in an opposite manner to testicular and seminal vesicle structures. Abstract The Libyan jird (Meriones libycus, 1823) is a wild desert rodent that is a seasonal breeder species adapted to breed when the environmental conditions can satisfy the energy and hydrous requirements of pregnant and nursing females to ensure that births occur at the most favorable time of the year. We assessed gene expression of testicular luteinizing hormone receptor (Lhcgr) correlated to testis activity. The expression of Lhcgr was evaluated using quantitative Real Time-Polymerase Chain Reaction (qRT-PCR and the testis activity by a histological method in adult male Libyan jirds during the nonbreeding and breeding seasons. Our results showed that Lhcgr mRNA expression increased in autumn during the nonbreeding season and decreased in spring during the breeding season. This expression varied in contrast to testicular structure or function and plasma testosterone levels. These results help to elucidate this desert rodent’s seasonal sexual activity, which is correlated with central regulation.
Collapse
Affiliation(s)
- Radia Boufermes
- Biochemistry Department, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria
- Correspondence: ; Tel.: +213-559-853-861
| | - Mansouria Belhocine
- Laboratory of Sciences and Technology of Animal Production, Department of Biology, Faculty of Nature and Life Sciences, Abdelhamid Ibn Badis University of Mostaganem, Mostaganem 27000, Algeria;
| | - Zaina Amirat
- Arid Lands Research Laboratory, Department of Population and Organisms Biology, Faculty of Biology, Houari Boumediene University of Sciences and Technology (USTHB), Algiers 16111, Algeria; (Z.A.); (F.K.)
- Department of Biology, Faculty of Sciences, Benyoucef Benkhedda University of Algiers I, Algiers 16000, Algeria
| | - Farida Khammar
- Arid Lands Research Laboratory, Department of Population and Organisms Biology, Faculty of Biology, Houari Boumediene University of Sciences and Technology (USTHB), Algiers 16111, Algeria; (Z.A.); (F.K.)
- Department of Biology, Faculty of Sciences, Benyoucef Benkhedda University of Algiers I, Algiers 16000, Algeria
| |
Collapse
|
14
|
Massoud D, Lao-Pérez M, Ortega E, Burgos M, Jiménez R, Barrionuevo FJ. Divergent Seasonal Reproductive Patterns in Syntopic Populations of Two Murine Species in Southern Spain, Mus spretus and Apodemus sylvaticus. Animals (Basel) 2021; 11:ani11020243. [PMID: 33498171 PMCID: PMC7908971 DOI: 10.3390/ani11020243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/16/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary In temperate zones of the Earth, most species reproduce in seasons providing the most favourable environmental conditions. Producing gametes is expensive in energetical terms, so both males and females either reduce or abolish gametogenesis during the non-breeding period. We thoroughly studied the testes of sexually inactive males of two rodents, the wood mouse, Apodemus sylvaticus, and the Algerian mouse, Mus spretus, in southern Iberian peninsula. These populations are syntopic, that is, animals of the two species share their territories and resources, so one would expect them to show similar or identical seasonal reproduction patterns. Contrarily, we found that both species reproduce during most of the year, but wood mice stop breeding in the summer whereas Algerian mice do it in winter. These divergent seasonal breeding patterns imply that either very subtle animal features and/or environmental cues operate to determine reproduction timing and support the notion that multiple models of circannual reproduction patterns are possible for different populations of the same species, showing that the mechanisms controlling seasonal reproduction are in fact very plastic and fast evolving. Hence, small mammals probably have multiple ways available to get adapted to the unstable environmental conditions derived from the ongoing global climate change. Abstract In most mammals with seasonal reproduction, males undergo testis regression during the non-breeding period. We performed a morphological, hormonal, functional, and molecular study of the testes of sexually inactive males of two species of murine rodents, the wood mouse, Apodemus sylvaticus, and the Algerian mouse, Mus spretus, in syntopic populations of southern Iberian peninsula. Both species reproduce during most of the year, but wood mice stop breeding in the summer whereas Algerian mice do it in winter. Sexually inactive males of A. sylvaticus show complete testis regression with reduced levels of serum testosterone and abnormal distribution of cell-adhesion molecules. Contrarily, inactive males of M. spretus maintain almost normal spermotogenesis despite a significant reduction of androgenic function. The lack of an evident explanation for the divergent seasonal breeding patterns found in southern populations of A. sylvaticus and M. spretus, compared with northern ones, implies that very subtle species/population-specific features and/or non-conspicuous environmental cues probably operate to determine their seasonal breeding pattern. These results also support the notion that multiple models of circannual testis variation are possible for different populations of the same species, showing that the mechanisms controlling seasonal reproduction are in fact very plastic and fast evolving.
Collapse
Affiliation(s)
- Diaa Massoud
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Avenida del Conocimiento S/N, 18016 Armilla, Granada, Spain; (D.M.); (M.L.-P.); (M.B.); (F.J.B.)
- Department of Zoology, Faculty of Science, Fayoum University, Gamma St., Keman Square, Fayoum 63514, Egypt
| | - Miguel Lao-Pérez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Avenida del Conocimiento S/N, 18016 Armilla, Granada, Spain; (D.M.); (M.L.-P.); (M.B.); (F.J.B.)
| | - Esperanza Ortega
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, Avenida de la Investigación 11, 18071 Granada, Spain;
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Avenida del Conocimiento S/N, 18016 Armilla, Granada, Spain; (D.M.); (M.L.-P.); (M.B.); (F.J.B.)
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Avenida del Conocimiento S/N, 18016 Armilla, Granada, Spain; (D.M.); (M.L.-P.); (M.B.); (F.J.B.)
- Correspondence:
| | - Francisco J. Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Avenida del Conocimiento S/N, 18016 Armilla, Granada, Spain; (D.M.); (M.L.-P.); (M.B.); (F.J.B.)
| |
Collapse
|
15
|
Nakata H, Yoshiike M, Nozawa S, Sato Y, Iseki S, Iwamoto T, Mizokami A. Three-dimensional structure of seminiferous tubules in the Syrian hamster. J Anat 2021; 238:86-95. [PMID: 33189084 PMCID: PMC7754951 DOI: 10.1111/joa.13287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/31/2020] [Accepted: 07/03/2020] [Indexed: 01/03/2023] Open
Abstract
The hamster is useful for the study of male reproductive biology. However, unlike in the mouse and rat, the gross structure of seminiferous tubules in the hamster is largely unknown. The aim of the present study was to clarify the precise 3-dimensional (3D) structure of seminiferous tubules in hamsters. We reconstructed all seminiferous tubules in 3 and 1 testes from 0-day (P0) and 10-week (adult) Syrian hamsters, respectively, using serial paraffin sections and high-performance 3D reconstruction software. In P0 hamsters, the average numbers of seminiferous tubules, terminating points, branching points, and blind ends per testis were 9.0, 89.7, 93.0, and 0.7, respectively. There were two types of tubules: shorter and dominant ones. The dominant tubules, 2-4 in number per testis and accounting for 86% of the total tubule length, had many terminating and branching points and appeared to be derived from the anastomosis of many shorter tubules. In an adult hamster, there were 11 seminiferous tubules with a total length of 22 m, 98 terminating points, 88 branching points, and 2 blind ends per testis. Three of the 11 tubules were dominant ones, accounting for 83% of the total length, and occupied the testis from the surface over the circumference to the center, while the others were short and occupied only one side of the testis. The amplitude and direction of the curves of tubules were random, and there were no funnel-shaped networks of tubules present, in contrast to the mouse testis. The present study revealed the 3D structure of seminiferous tubules in developing and adult Syrian hamsters, which is different from that in mice and rats.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Histology and Cell BiologyGraduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Miki Yoshiike
- Department of UrologySt Marianna University School of MedicineKawasakiJapan
| | - Shiari Nozawa
- Department of UrologySt Marianna University School of MedicineKawasakiJapan
| | - Yoko Sato
- Department of BiologySchool of Biological SciencesTokai UniversitySapporoJapan
| | - Shoichi Iseki
- Department of Clinical EngineeringFaculty of Health SciencesKomatsu UniversityKomatsuJapan
| | - Teruaki Iwamoto
- Division of Male InfertilitySanno HospitalCenter for Human Reproduction for IVFInternational University of Health and WelfareNasushiobaraJapan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and UrologySchool of Medical SciencesKanazawa UniversityKanazawaJapan
| |
Collapse
|
16
|
Profaska-Szymik M, Galuszka A, Korzekwa AJ, Hejmej A, Gorowska-Wojtowicz E, Pawlicki P, Kotula-Balak M, Tarasiuk K, Tuz R. Implication of Membrane Androgen Receptor (ZIP9) in Cell Senescence in Regressed Testes of the Bank Vole. Int J Mol Sci 2020; 21:E6888. [PMID: 32961828 PMCID: PMC7554751 DOI: 10.3390/ijms21186888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/10/2023] Open
Abstract
Here, we studied the impact of exposure to short daylight conditions on the expression of senescence marker (p16), membrane androgen receptor (ZIP9) and extracellular signal-regulated kinase (ERK 1/2), as well as cyclic AMP (cAMP) and testosterone levels in the testes of mature bank voles. Animals were assigned to groups based on an analysis of testis diameter, weight, seminiferous tubule diameter and the interstitial tissue area: group 1, not fully regressed (the highest parameters); group 2 (medium parameters); or group 3, regressed (the lowest parameters). Cells positive for p16 were observed only in the seminiferous tubule epithelium. However, in groups 1 and 2, these were mostly cells sloughed into the tubule lumen. In group 3, senescent cells resided in between cells of the seminiferous epithelium. Staining for ZIP9 was found in Sertoli cells. Western blot analysis showed a trend towards a decreased expression of p16 and ZIP9 in the testes of the voles in groups 2 and 3, compared to group 1. In addition, a trend towards an increased expression of ERK, as well as an increase of cAMP and testosterone levels, was revealed in group 2. In the regressed testes, a functional link exists between senescence and androgen levels with implication of ZIP9 and cAMP/ERK signaling pathways.
Collapse
Affiliation(s)
- Magdalena Profaska-Szymik
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (M.P.-S.); (A.G.); (P.P.); (K.T.)
| | - Anna Galuszka
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (M.P.-S.); (A.G.); (P.P.); (K.T.)
| | - Anna J. Korzekwa
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland; (A.H.); (E.G.-W.)
| | - Ewelina Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland; (A.H.); (E.G.-W.)
| | - Piotr Pawlicki
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (M.P.-S.); (A.G.); (P.P.); (K.T.)
| | - Małgorzata Kotula-Balak
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (M.P.-S.); (A.G.); (P.P.); (K.T.)
| | - Kazimierz Tarasiuk
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (M.P.-S.); (A.G.); (P.P.); (K.T.)
| | - Ryszard Tuz
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland;
| |
Collapse
|
17
|
Wang PT, Sudirman S, Hsieh MC, Hu JY, Kong ZL. Oral supplementation of fucoxanthin-rich brown algae extract ameliorates cisplatin-induced testicular damage in hamsters. Biomed Pharmacother 2020; 125:109992. [PMID: 32084700 DOI: 10.1016/j.biopha.2020.109992] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress is recognized as a common pathology that affects up to half of all men infertile. Fucoxanthin possesses antioxidant activity, and several investigators have reported anti-inflammatory action. This study extracted powder of Sargassum glaucescens by acetone to obtained fucoxanthin rich-brown algae extract (FXE). The objective of this study was to evaluate the ameliorative effects of fucoxanthin extract from Sargassum glaucescens on lipopolysaccharide-induced inflammation in RAW264.7 macrophage cells and its protective effects of against Cisplatin (CP)-induced reproductive damage in hamsters. Eighty male Syrian hamsters were injected with and without CP, then daily oral gavage with various concentrations of fucoxanthin for 5 days. Treatment with FXE reduced the level of reactive oxygen species and malondialdehyde in RAW 264.7 cells and the rats' testis as well as protective effects on mitochondrial membrane potential. The FXE administration also improved testosterone level and alpha-glucosidase activity. The sperm count also increased after treated with FXE, whereas sperm abnormality was reduced. Histopathological analysis showed that FXE successfully improved the seminiferous tubules morphology. According to these findings, fucoxanthin extract from Sargassum glaucescens can be used as an alternative for the treatment of testicular damage.
Collapse
Affiliation(s)
- Pei-Tzu Wang
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| | - Sabri Sudirman
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| | - Ming-Chou Hsieh
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| | - Jia-Yuan Hu
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| |
Collapse
|
18
|
Ito J, Meguro K, Komatsu K, Ohdaira T, Shoji R, Yamada T, Sugimura S, Fujishima Y, Nakata A, Fukumoto M, Miura T, Yamashiro H. Seasonal changes in the spermatogenesis of the large Japanese field mice (Apodemus speciosus) controlled by proliferation and apoptosis of germ cells. Anim Reprod Sci 2020; 214:106288. [PMID: 32087913 DOI: 10.1016/j.anireprosci.2020.106288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the proliferation and apoptosis of male germ cells during the seasonal reproductive cycle of the large Japanese field mice (Apodemus speciosus). Male mice residing in their natural habitat were captured in Niigata, Japan. Testis sections were stained with haematoxylin and eosin, and mitotic male germ cells were identified using immunofluorescence staining for proliferating cell nuclear antigen (PCNA). Apoptosis was analysed using terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labelling (TUNEL) assay. The phases of spermatogenesis during the seasonal reproductive cycle were classified as active, transitional, and inactive based on the diameter of the seminiferous tubules. The number of PCNA-positive germ cells was less during the inactive than other phases. The percentage of TUNEL-positive germ cells per seminiferous tubule was greater during the inactive than active and transitional phases. Spermatogenesis during the seasonal reproductive cycle is controlled by proliferation and apoptosis in male germ cells. This species of undomesticated mice could be used as an animal model to study spermatogenesis as a valuable indicator of the effects of ecological and anthropogenic factors on animal reproduction.
Collapse
Affiliation(s)
- Jun Ito
- Graduate School of Science and Technology, Niigata University, Niigata, 959-2181, Japan
| | - Kanna Meguro
- Graduate School of Science and Technology, Niigata University, Niigata, 959-2181, Japan
| | - Kazuki Komatsu
- Graduate School of Science and Technology, Niigata University, Niigata, 959-2181, Japan
| | - Takuya Ohdaira
- Graduate School of Science and Technology, Niigata University, Niigata, 959-2181, Japan
| | - Rina Shoji
- Graduate School of Science and Technology, Niigata University, Niigata, 959-2181, Japan
| | - Takahisa Yamada
- Graduate School of Science and Technology, Niigata University, Niigata, 959-2181, Japan
| | - Satoshi Sugimura
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Yohei Fujishima
- Graduate School of Health Sciences, Hirosaki University, Aomori, 036-8564, Japan
| | - Akifumi Nakata
- Faculty of Pharmaceutical Science, Hokkaido University of Science, Hokkaido, 006-8585, Japan
| | - Manabu Fukumoto
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Tomisato Miura
- Graduate School of Health Sciences, Hirosaki University, Aomori, 036-8564, Japan
| | - Hideaki Yamashiro
- Graduate School of Science and Technology, Niigata University, Niigata, 959-2181, Japan.
| |
Collapse
|
19
|
Matzkin M, Valchi P, Riviere E, Rossi S, Tavalieri Y, Muñoz de Toro M, Mayerhofer A, Bartke A, Calandra R, Frungieri M. Aging in the Syrian hamster testis: Inflammatory-oxidative status and the impact of photoperiod. Exp Gerontol 2019; 124:110649. [DOI: 10.1016/j.exger.2019.110649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/30/2019] [Indexed: 12/16/2022]
|
20
|
Pal S, Verma R, Kumar J, Haldar C. Photoperiod modulates oestrogen status, insulin interposed glucose uptake and connexin-43 in testes of golden hamster, Mesocricetus auratus. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1548874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sriparna Pal
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Rakesh Verma
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Jitendra Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Chandana Haldar
- Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
21
|
Martínez-Hernández J, Seco-Rovira V, Beltrán-Frutos E, Ferrer C, Serrano-Sánchez MI, Pastor LM. Lectin-binding pattern of glycoconjugates during spontaneous testicular recrudescence in Syrian hamster (Mesocricetus auratus) after exposure to short photoperiod. Andrologia 2018; 51:e13148. [PMID: 30246471 DOI: 10.1111/and.13148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/26/2018] [Accepted: 08/21/2018] [Indexed: 01/19/2023] Open
Abstract
Lectin histochemistry was used to characterise glycoconjugates and cellular apoptosis in the seminiferous epithelium and interstitium of hamster testis during spontaneous recrudescence. An increase in the LTA lectin affinity was observed in spermatids in the Golgi phase. An increase in labelling of PNA and Con-A lectin in acrosome of spermatids (acrosome phase) as well as increased labelling with Con-A in spermatids (cap phase) was observed. Spermatocytes showed decreased affinity with PNA and AAA lectins and an increase in positivity for LTA and GNA lectins. Spermatogonia showed a slight decrease in positivity to WGA and an increase in labelling with Con-A and a decreased affinity for the AAA lectin. At the end of recrudescence, all these germinal cells showed a similar pattern to the control. The Sertoli cells showed a gradual decrease in labelling with the GNA lectin and the Leydig cells an increase in labelling with Con-A and GNA. Particularly unusual was the observation of apoptotic spermatocytes and spermatids positive for PNA, GNA, AAA and Con-A, together with spermatocytes positive to LTA. In conclusion, the normal lectin pattern is recovered during testis recrudescence and germ cell apoptotic activity is low, as is observed by specific lectins for germ cells in apoptosis.
Collapse
Affiliation(s)
- Jesús Martínez-Hernández
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Vicente Seco-Rovira
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Concepción Ferrer
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - María Isabel Serrano-Sánchez
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Luis Miguel Pastor
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
22
|
Martínez-Hernández J, Seco-Rovira V, Beltrán-Frutos E, Ferrer C, Canteras M, Sánchez-Huertas MDM, Pastor LM. Testicular histomorphometry and the proliferative and apoptotic activities of the seminiferous epithelium in Syrian hamster during spontaneous recrudescence after exposure to short photoperiod. Reprod Domest Anim 2018; 53:1041-1051. [DOI: 10.1111/rda.13201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Jesús Martínez-Hernández
- Department of Cell Biology and Histology, Medical School; IMIB-Arrixaca; Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia; Murcia Spain
| | - Vicente Seco-Rovira
- Department of Cell Biology and Histology, Medical School; IMIB-Arrixaca; Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia; Murcia Spain
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, Medical School; IMIB-Arrixaca; Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia; Murcia Spain
| | - Concepción Ferrer
- Department of Cell Biology and Histology, Medical School; IMIB-Arrixaca; Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia; Murcia Spain
| | - Manuel Canteras
- Department of Statistics, Medical School; University of Murcia; Murcia Spain
| | - María del Mar Sánchez-Huertas
- Department of Cell Biology and Histology, Medical School; IMIB-Arrixaca; Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia; Murcia Spain
| | - Luis Miguel Pastor
- Department of Cell Biology and Histology, Medical School; IMIB-Arrixaca; Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia; Murcia Spain
| |
Collapse
|
23
|
Beltrán-Frutos E, Seco-Rovira V, Martínez-Hernández J, Ferrer C, Pastor LM. Loss of hamster Leydig cells during regression after exposure to a short photoperiod. Reprod Fertil Dev 2018; 30:1137-1144. [DOI: 10.1071/rd17409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 01/10/2018] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to evaluate the changes that occur in hamster Leydig cells during regression. Animals were divided into control, mild regression (MR), strong regression (SR) and total regression (TR) groups. Leydig cells were characterised by light and electron microscopy. Terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL) and proliferating cell nuclear antigen (PCNA) antibodies were used to detect apoptosis and proliferation respectively. Three types of Leydig cells (A, B and C) could be differentiated. Type A cells were small in size compared with Leydig cells from animals exposed to a long photoperiod, which was a result of a decreased cytoplasm and nucleus. Type B cells were even smaller than Type A cells in regression groups. Type C exhibited cytoplasm vacuolisation. The percentage of Type C cells from the control group was much lower than in the MR, SR and TR groups. (P < 0.05). In the SR and TR groups, there was a significant decrease in the percentage of Type B cells compared with the control and MR groups (P < 0.05). The total number of Leydig cells decreased during testicular regression (P < 0.05). The total number of Type A and B cells was significantly lower in the MR, SR and TR groups compared with the control group (P < 0.05). There were no significant differences in the proliferation and apoptosis index in the groups studied. The findings of the present study indicate that there are three types of Leydig cells (A, B and C) in all hamsters studied and that regression causes an increase in the number of Type C cells, so that the reduction in the number Leydig cells during the phases of regression studied must be the result of necrosis and/or necroptosis.
Collapse
|
24
|
Wang J, Wang Y, Zhu M, Zhang F, Sheng X, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expression of luteinizing hormone receptor and follicle stimulating hormone receptor in testes of the wild ground squirrels (Citellus dauricus Brandt). Acta Histochem 2017; 119:727-732. [PMID: 28912046 DOI: 10.1016/j.acthis.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/25/2022]
Abstract
The objective of this study was to evaluate whether luteinizing hormone (LH), follicle stimulating hormone (FSH) and their receptors luteinizing hormone receptor (LHR) and follicle stimulating hormone receptor (FSHR) play roles in the seasonal spermatogenesis of the wild ground squirrels. To that end, we characterized the testicular immunolocalization of LHR and FSHR, their expression on both mRNA and protein levels, as well as serum concentrations of LH and FSH in male wild ground squirrels throughout the annual reproductive cycle. Histologically, all types of spermatogenic cells including mature spermatozoa were identified in the breeding season (April), while spermatogonia and primary spermatocytes were observed in the non-breeding season (June), and spermatogonia, primary spermatocytes and secondary spermatocytes were found in pre-hibernation (September). LHR was present in Leydig cells during the whole periods with more intense staining in the breeding season; Stronger immunostaining of FSHR was observed in Sertoli cells during the breeding season compared to the non-breeding season and pre-hibernation. Consistently, the mRNA and protein levels of LHR and FSHR were higher in testes of the breeding season, and then decreased to a relatively lower level in the non-breeding season and pre-hibernation. Meanwhile, serum LH and FSH concentrations were significantly higher in the breeding season than those in the non-breeding season and pre-hibernation. These results suggested that gonadotropins and its receptors, LHR and FSHR may be involved in the regulation of seasonal changes in testicular functions of the wild ground squirrels.
Collapse
|
25
|
Han Y, Zhan J, Xu Y, Zhang F, Yuan Z, Weng Q. Proliferation and apoptosis processes in the seasonal testicular development of the wild Daurian ground squirrel (Citellus dauricus Brandt, 1844). Reprod Fertil Dev 2017; 29:1680-1688. [DOI: 10.1071/rd16063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/15/2016] [Indexed: 01/21/2023] Open
Abstract
The aim of the present study was to elucidate the regulatory role of cell proliferation and apoptosis in testicular development of wild Daurian ground squirrels during the breeding season (April), the non-breeding season (June) and before hibernation (September). Gross mass and hormonal analysis showed that the testis : body mass ratio and plasma testosterone concentration fluctuated seasonally, with a peak in April and lowest values in June. Similarly, spermatogenesis was fully developed in April but suppressed in June and September. Testicular decellularisation and vacuolisation was seen during the transition from the breeding to the non-breeding season. Furthermore, testicular levels of proliferating cell nuclear antigen, cyclin D2 and caspase-3 protein were significantly increased in June and September. Intriguingly, positive terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling staining and nuclear translocation of caspase-3 in testicular germ cells appeared only during the prehibernation period, whereas accumulation of cyclin D2 in spermatocyte nuclei occurred in September. These findings demonstrate, for the first time, that both cell proliferation and apoptosis are stimulated during the prehibernation period, indicating that a hormonal-regulated balance of testicular germ cell proliferation and apoptosis may play a pivotal role in preparing for testicular recrudescence of wild Daurian ground squirrels.
Collapse
|
26
|
Verma R, Haldar C. Photoperiodic modulation of thyroid hormone receptor (TR-α), deiodinase-2 (Dio-2) and glucose transporters (GLUT 1 and GLUT 4) expression in testis of adult golden hamster, Mesocricetus auratus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:351-358. [DOI: 10.1016/j.jphotobiol.2016.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
|
27
|
Effect of human recombinant granulocyte colony-stimulating factor on rat busulfan-induced testis injury. J Mol Histol 2015; 47:59-67. [DOI: 10.1007/s10735-015-9647-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/15/2015] [Indexed: 02/08/2023]
|
28
|
Abstract
The testis provides not just one but several models of temporal organization. The complexity of its rhythmic function arises in part from its compartmentalization and diversity of cell types: not only does the testis produce gametes, but it also serves as the major source of circulating androgens. Within the seminiferous tubules, the germ cells divide and differentiate while in intimate contact with Sertoli cells. The tubule is highly periodic: a spermatogenic wave travels along its length to determine the timing of the commitment of spermatogonia to differentiate, the phases of meiotic division, and the rate of differentiation of the postmeiotic germ cells. Recent evidence indicates that oscillations of retinoic acid play a major role in determining periodicity of the seminiferous epithelium. In the interstitial space, Leydig cells produce the steroid hormones required both for the completion of spermatogenesis and the development and maintenance of male sexual characteristics throughout the body. This endocrine output also oscillates; although the pulse generator lies outside the gonad, the steroidogenic function of Leydig cells is tuned to a regular episodic input. While the oscillations of the intratubular and interstitial cells have multihour (ultradian) and multiday (infradian) periodicities, respectively, the functions of both compartments also display dramatic seasonal rhythms. Furthermore, circadian rhythms are evident in some of the cell types, although their amplitude and pervasiveness are not as great as in many other tissues of the same organism, and their detection may require methods that recognize the heterogeneity of the testis. This review examines the periodicity of testicular function along multiple time scales.
Collapse
Affiliation(s)
- Eric L Bittman
- Department of Biology and Program in Neuroscience, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
29
|
Beltrán-Frutos E, Seco-Rovira V, Ferrer C, Martínez-Hernández J, Madrid JF, Sáez FJ, Canteras M, Pastor LM. Changes in Testicular Interstitial Connective Tissue of Hamsters (Mesocricetus auratus) During Ageing and After Exposure to Short Photoperiod. Reprod Domest Anim 2015; 51:47-53. [PMID: 26602183 DOI: 10.1111/rda.12644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022]
Abstract
The testicular interstitium of Syrian hamster (Mesocricetus auratus) was studied during ageing and in testicular regression after exposure to a short photoperiod, in relation to the interstitial cells and their connective tissue. This tissue was assessed histochemically using Masson's trichrome technique and the expression of Heat Shock Protein 47 (HSP-47) and collagen IV (α5) was assessed in Leydig cells. Finally, an ultrastructural analysis of some cells of the testicular interstitium was made. Leydig cells were positive for HSP-47 and collagen IV (α5). Ageing did not change the parameters studied while the short photoperiod altered the synthetic activity of Leydig cells. The positivity index of these cells for HSP-47 was significantly higher in the regressed testis, but was lower for collagen IV (α5). During ageing no change were observed. Ultrastructural Leydig cells showed a discontinuous basal lamina that did not change during ageing. The basal lamina was not identified in Leydig cells regressed by exposure to a short photoperiod. In conclusion; the intertubular connective tissue suffers little change with age. By contrast, in the testis regressed after exposure to a short photoperiod the studied parameters related to the intertubular connective tissue were altered. These changes are probably related with the low synthetic activity of regressed Leydig cell.
Collapse
Affiliation(s)
- E Beltrán-Frutos
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - V Seco-Rovira
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - C Ferrer
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - J Martínez-Hernández
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - J F Madrid
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - F J Sáez
- Department of Cell Biology and Histology UFI11/44, School of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - M Canteras
- Department of Statistic, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - L M Pastor
- Department of Cell Biology and Histology, Aging Institute, IMIB-Arrixaca, School of Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| |
Collapse
|
30
|
Jiménez R, Burgos M, Barrionuevo FJ. Circannual Testis Changes in Seasonally Breeding Mammals. Sex Dev 2015; 9:205-15. [PMID: 26375035 DOI: 10.1159/000439039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
In the non-equatorial zones of the Earth, species concentrate their reproductive effort in the more favorable season. A consequence of seasonal breeding is seasonal testis regression, which implies the depletion of the germinative epithelium, permeation of the blood-testis barrier, and reduced androgenic function. This process has been studied in a number of vertebrates, but the mechanisms controlling it are not yet well understood. Apoptosis was assumed for years to be an important effector of seasonal germ cell depletion in all vertebrates, including mammals, but an alternative mechanism has recently been reported in the Iberian mole as well as in the large hairy armadillo. It is based on the desquamation of meiotic and post-meiotic germ cells as a consequence of altered Sertoli-germ cell adhesion molecule expression and distribution. Desquamated cells are either discarded alive through the epididymis, as in the mole, or subsequently die by apoptosis, as in the armadillo. Also, recent findings on the reproductive cycle of the greater white-toothed shrew at the meridional limits of its distribution area have revealed that the mechanisms controlling seasonal breeding are in fact far more plastic and versatile than initially suspected. Perhaps these higher adaptive capacities place mammals in a better position to face the ongoing climate change.
Collapse
Affiliation(s)
- Rafael Jiménez
- Departamento de Genx00E9;tica e Instituto de Biotecnologx00ED;a, Universidad de Granada, Granada, Spain
| | | | | |
Collapse
|