1
|
Fan W, Xing Y, Yan S, Liu W, Ning J, Tian F, Wang X, Zhan Y, Luo L, Cao M, Huang J, Cai L. DUSP5 regulated by YTHDF1-mediated m6A modification promotes epithelial-mesenchymal transition and EGFR-TKI resistance via the TGF-β/Smad signaling pathway in lung adenocarcinoma. Cancer Cell Int 2024; 24:208. [PMID: 38872157 DOI: 10.1186/s12935-024-03382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) patients have a dismal survival rate because of cancer metastasis and drug resistance. The study aims to identify the genes that concurrently modulate EMT, metastasis and EGFR-TKI resistance, and to investigate the underlying regulatory mechanisms. METHODS Cox regression and Kaplan-Meier analyses were applied to identify prognostic oncogenes in LUAD. Gene set enrichment analysis (GSEA) was used to indicate the biological functions of the gene. Wound-healing and Transwell assays were used to detect migratory and invasive ability. EGFR-TKI sensitivity was evaluated by assessing the proliferation, clonogenic survival and metastatic capability of cancer cells with treatment with gefitinib. Methylated RNA immunoprecipitation (MeRIP) and RNA immunoprecipitation (RIP) analyses established the level of m6A modification present on the target gene and the protein's capability to interact with RNA, respectively. Single-sample gene set enrichment (ssGSEA) algorithm used to investigate levels of immune cell infiltration. RESULTS Our study identified dual-specificity phosphatase 5 (DUSP5) as a novel and powerful predictor of adverse outcomes for LUAD by using public datasets. Functional enrichment analysis found that DUSP5 was positively enriched in EMT and transforming growth factor-beta (TGF-β) signaling pathway, a prevailing pathway involved in the induction of EMT. As expected, DUSP5 knockdown suppressed EMT via inhibiting the canonical TGF-β/Smad signaling pathway in in vitro experiments. Consistently, knockdown of DUSP5 was first found to inhibit migratory ability and invasiveness of LUAD cells in in vitro and prevent lung metastasis in in vivo. DUSP5 knockdown re-sensitized gefitinib-resistant LUAD cells to gefitinib, accompanying reversion of EMT progress. In LUAD tissue samples, we found 14 cytosine-phosphate-guanine (CpG) sites of DUSP5 that were negatively associated with DUSP5 gene expression. Importantly, 5'Azacytidine (AZA), an FDA-approved DNA methyltransferase inhibitor, restored DUSP5 expression. Moreover, RIP experiments confirmed that YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), a m6A reader protein, could bind DUSP5 mRNA. YTHDF1 promoted DUSP5 expression and the malignant phenotype of LUAD cells. In addition, the DUSP5-derived genomic model revealed the two clusters with distinguishable immune features and tumor mutational burden (TMB). CONCLUSIONS Briefly, our study discovered DUSP5 which was regulated by epigenetic modification, might be a potential therapeutic target, especially in LUAD patients with acquired EGFR-TKI resistance.
Collapse
Affiliation(s)
- Weina Fan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Shi Yan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Jinfeng Ning
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fanglin Tian
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Xin Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Yuning Zhan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Lixin Luo
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China
| | - Mengru Cao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China.
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China.
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, China.
| |
Collapse
|
2
|
Xie L, Zhang X, Xie J, Xu Y, Li XJ, Lin L. Emerging Roles for DNA 6mA and RNA m6A Methylation in Mammalian Genome. Int J Mol Sci 2023; 24:13897. [PMID: 37762200 PMCID: PMC10531503 DOI: 10.3390/ijms241813897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic methylation has been shown to play an important role in transcriptional regulation and disease pathogenesis. Recent advancements in detection techniques have identified DNA N6-methyldeoxyadenosine (6mA) and RNA N6-methyladenosine (m6A) as methylation modifications at the sixth position of adenine in DNA and RNA, respectively. While the distributions and functions of 6mA and m6A have been extensively studied in prokaryotes, their roles in the mammalian brain, where they are enriched, are still not fully understood. In this review, we provide a comprehensive summary of the current research progress on 6mA and m6A, as well as their associated writers, erasers, and readers at both DNA and RNA levels. Specifically, we focus on the potential roles of 6mA and m6A in the fundamental biological pathways of the mammalian genome and highlight the significant regulatory functions of 6mA in neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (L.X.); (X.Z.); (J.X.); (Y.X.); (X.-J.L.)
| |
Collapse
|
3
|
Su T, Liu J, Zhang N, Wang T, Han L, Wang S, Yang M. New insights on the interplays between m 6A modifications and microRNA or lncRNA in gastrointestinal cancers. Front Cell Dev Biol 2023; 11:1157797. [PMID: 37404673 PMCID: PMC10316788 DOI: 10.3389/fcell.2023.1157797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023] Open
Abstract
N6-Methyladenosine (m6A) methylation is one of the most extremely examined RNA modifications. M6A modification evidently impacts cancer development by effecting RNA metabolism. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in multiple essential biological processes by regulating gene expression at the transcriptional and post-transcriptional levels. Accumulated evidences indicated that m6A is involved in regulating the cleavage, stability, structure, transcription, and transport of lncRNAs or miRNAs. Additionally, ncRNAs also play significant roles in modulating m6A levels of malignant cells by participating in the regulation of m6A methyltransferases, the m6A demethylases and the m6A binding proteins. In this review, we systematically summarize the new insight on the interactions between m6A and lncRNAs or miRNAs, as well as their impacts on gastrointestinal cancer progression. Although there are still extensive studies on genome-wide screening of crucial lncRNAs or miRNAs involved in regulating m6A levels of mRNAs and disclosing differences on mechanisms of regulating m6A modification of lncRNAs, miRNAs or mRNAs in cancer cells, we believe that targeting m6A-related lncRNAs and miRNAs may provide novel options for gastrointestinal cancer treatments.
Collapse
Affiliation(s)
- Tao Su
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong University Cancer Center, Jinan, Shandong, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Teng Wang
- Shandong University Cancer Center, Jinan, Shandong, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Suzhen Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ming Yang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong University Cancer Center, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Shang QX, Kong WL, Huang WH, Xiao X, Hu WP, Yang YS, Zhang H, Yang L, Yuan Y, Chen LQ. Identification of m6a-related signature genes in esophageal squamous cell carcinoma by machine learning method. Front Genet 2023; 14:1079795. [PMID: 36733344 PMCID: PMC9886874 DOI: 10.3389/fgene.2023.1079795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Background: We aimed to construct and validate the esophageal squamous cell carcinoma (ESCC)-related m6A regulators by means of machine leaning. Methods: We used ESCC RNA-seq data of 66 pairs of ESCC from West China Hospital of Sichuan University and the transcriptome data extracted from The Cancer Genome Atlas (TCGA)-ESCA database to find out the ESCC-related m6A regulators, during which, two machine learning approaches: RF (Random Forest) and SVM (Support Vector Machine) were employed to construct the model of ESCC-related m6A regulators. Calibration curves, clinical decision curves, and clinical impact curves (CIC) were used to evaluate the predictive ability and best-effort ability of the model. Finally, western blot and immunohistochemistry staining were used to assess the expression of prognostic ESCC-related m6A regulators. Results: 2 m6A regulators (YTHDF1 and HNRNPC) were found to be significantly increased in ESCC tissues after screening out through RF machine learning methods from our RNA-seq data and TCGA-ESCA database, respectively, and overlapping the results of the two clusters. A prognostic signature, consisting of YTHDF1 and HNRNPC, was constructed based on our RNA-seq data and validated on TCGA-ESCA database, which can serve as an independent prognostic predictor. Experimental validation including the western and immunohistochemistry staining were further successfully confirmed the results of bioinformatics analysis. Conclusion: We constructed prognostic ESCC-related m6A regulators and validated the model in clinical ESCC cohort as well as in ESCC tissues, which provides reasonable evidence and valuable resources for prognostic stratification and the study of potential targets for ESCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Long-Qi Chen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Ren W, Yuan Y, Li Y, Mutti L, Peng J, Jiang X. The function and clinical implication of YTHDF1 in the human system development and cancer. Biomark Res 2023; 11:5. [PMID: 36650570 PMCID: PMC9847098 DOI: 10.1186/s40364-023-00452-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/26/2022] [Indexed: 01/19/2023] Open
Abstract
YTHDF1 is a well-characterized m6A reader protein that is essential for protein translation, stem cell self-renewal, and embryonic development. YTHDF1 regulates target gene expression by diverse molecular mechanisms, such as promoting protein translation or modulating the stability of mRNA. The cellular levels of YTHDF1 are precisely regulated by a complicated transcriptional, post-transcriptional, and post-translational network. Very solid evidence supports the pivotal role of YTHDF1 in embryonic development and human cancer progression. In this review, we discuss how YTHDF1 influences both the physiological and pathological biology of the central nervous, reproductive and immune systems. Therefore we focus on some relevant aspects of the regulatory role played by YTHDF1 as gene expression, complex cell networking: stem cell self-renewal, embryonic development, and human cancers progression. We propose that YTHDF1 is a promising future cancer biomarker for detection, progression, and prognosis. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is associated with tumor resistance to chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Wenjun Ren
- grid.414918.1Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan China
| | - Yixiao Yuan
- grid.452206.70000 0004 1758 417XKey Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongwu Li
- grid.414918.1Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan China
| | - Luciano Mutti
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA ,grid.158820.60000 0004 1757 2611Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2 67100 L’Aquila, Italy
| | - Jun Peng
- grid.414918.1Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan China
| | - Xiulin Jiang
- grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
6
|
Ye J, Chen X, Jiang X, Dong Z, Hu S, Xiao M. RNA demethylase ALKBH5 regulates hypopharyngeal squamous cell carcinoma ferroptosis by posttranscriptionally activating NFE2L2/NRF2 in an m 6 A-IGF2BP2-dependent manner. J Clin Lab Anal 2022; 36:e24514. [PMID: 35689537 PMCID: PMC9279968 DOI: 10.1002/jcla.24514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background Having emerged as the most abundant posttranscriptional internal mRNA modification in eukaryotes, N6‐methyladenosine (m6A) has attracted tremendous scientific interest in recent years. However, the functional importance of the m6A methylation machinery in ferroptosis regulation in hypopharyngeal squamous cell carcinoma (HPSCC) remains unclear. Methods We herein performed bioinformatic analysis, cell biological analyses, transcriptome‐wide m6A sequencing (m6A‐seq, MeRIP‐seq), RNA sequencing (RNA‐seq), and RNA immunoprecipitation sequencing (RIP‐seq), followed by m6A dot blot, MeRIP‐qPCR, RIP‐qPCR, and dual‐luciferase reporter assays. Results The results revealed that ALKBH5‐mediated m6A demethylation led to the posttranscriptional inhibition of NFE2L2/NRF2, which is crucial for the regulation of antioxidant molecules in cells, at two m6A residues in the 3′‐UTR. Knocking down ALKBH5 subsequently increased the expression of NFE2L2/NRF2 and increased the resistance of HPSCC cells to ferroptosis. In addition, m6A‐mediated NFE2L2/NRF2 stabilization was dependent on the m6A reader IGF2BP2. We suggest that ALKBH5 dysregulates NFE2L2/NRF2 expression in HPSCC through an m6A‐IGF2BP2‐dependent mechanism. Conclusion Together, these results have revealed an association between the ALKBH5‐NFE2L2/NRF2 axis and ferroptosis, providing insight into the functional importance of reversible mRNA m6A methylation and its modulators in HPSCC.
Collapse
Affiliation(s)
- Jing Ye
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Chen
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohua Jiang
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhihuai Dong
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sunhong Hu
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mang Xiao
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Song N, Cui K, Zhang K, Yang J, Liu J, Miao Z, Zhao F, Meng H, Chen L, Chen C, Li Y, Shao M, Zhang J, Wang H. The Role of m6A RNA Methylation in Cancer: Implication for Nature Products Anti-Cancer Research. Front Pharmacol 2022; 13:933332. [PMID: 35784761 PMCID: PMC9243580 DOI: 10.3389/fphar.2022.933332] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 12/20/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is identified as the most common, abundant and reversible RNA epigenetic modification in messenger RNA (mRNA) and non-coding RNA, especially within eukaryotic messenger RNAs (mRNAs), which post-transcriptionally directs many important processes of RNA. It has also been demonstrated that m6A modification plays a pivotal role in the occurrence and development of tumors by regulating RNA splicing, localization, translation, stabilization and decay. Growing number of studies have indicated that natural products have outstanding anti-cancer effects of their unique advantages of high efficiency and minimal side effects. However, at present, there are very few research articles to study and explore the relationship between natural products and m6A RNA modification in tumorigenesis. m6A is dynamically deposited, removed, and recognized by m6A methyltransferases (METTL3/14, METTL16, WTAP, RBM15/15B, VIRMA, CBLL1, and ZC3H13, called as “writers”), demethylases (FTO and ALKBH5, called as “erasers”), and m6A-specific binding proteins (YTHDF1/2/3, YTHDC1/2, IGH2BP1/2/3, hnRNPs, eIF3, and FMR1, called as “readers”), respectively. In this review, we summarize the biological function of m6A modification, the role of m6A and the related signaling pathway in cancer, such as AKT, NF-kB, MAPK, ERK, Wnt/β-catenin, STAT, p53, Notch signaling pathway, and so on. Furthermore, we reviewed the current research on nature products in anti-tumor, and further to get a better understanding of the anti-tumor mechanism, thus provide an implication for nature products with anti-cancer research by regulating m6A modification in the future.
Collapse
Affiliation(s)
- Na Song
- Department of Pathology, Key Laboratory of Clinical Molecular Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Kai Cui
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Zhuang Miao
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Feiyue Zhao
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Hongjing Meng
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Lu Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Chong Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Minglong Shao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jinghang Zhang
- Department of Pathology, Key Laboratory of Clinical Molecular Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Jinghang Zhang, ; Haijun Wang,
| | - Haijun Wang
- Department of Pathology, Key Laboratory of Clinical Molecular Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Jinghang Zhang, ; Haijun Wang,
| |
Collapse
|
8
|
Deng MS, Chen KJ, zhang DD, Li GH, Weng CM, Wang JM. m6A RNA Methylation Regulators Contribute to Predict and as a Therapy Target of Pulmonary Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2425065. [PMID: 35497924 PMCID: PMC9050297 DOI: 10.1155/2022/2425065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/31/2022] [Indexed: 01/04/2023]
Abstract
Background Pulmonary fibrosis is difficult to treat. Early diagnosis and finding potential drug therapy targets of pulmonary fibrosis are particularly important. There were still various problems with existing pulmonary fibrosis markers, so it is particularly important to find new biomarkers and drug treatment targets. m6A (N6,2'-O-dimethyladenosine) RNA methylation was the cause of many diseases, and it is regulated by m6A methylation regulators. So, whether RNA methylation regulators can be a diagnostic marker and potential drug therapy target of early pulmonary fibrosis needs to be explored. Materials and Methods Using GSE110147 and GSE33566 in the GEO database to predict the m6A methylation regulators that may be related to the development of pulmonary fibrosis, we used 10 mg/ml bleomycin to induce mouse pulmonary fibrosis models and human pulmonary fibrosis samples, to confirm whether this indicator can be an early diagnostic marker of pulmonary fibrosis. Results According to the database prediction results, METTL3 can predict the occurrence and development of pulmonary fibrosis, and the results of MASSON and HE staining show that the fibrosis model of mice is successful, and the fibrosis of human samples is obvious. The results of immunohistochemistry showed that the expression of METTL3 was significantly reduced in pulmonary fibrosis. Conclusions The m6A methylation regulator METTL3 can be considered as an important biomarker for diagnosing pulmonary fibrosis occurrence, furthermore it could be considered as a drug target because of its low expression in pulmonary fibrosis.
Collapse
Affiliation(s)
- Meng-Sheng Deng
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Kui-Jun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Dong-Dong zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Guan-Hua Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chang-Mei Weng
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jian-Min Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
9
|
Mo L, Meng L, Huang Z, Yi L, Yang N, Li G. An analysis of the role of HnRNP C dysregulation in cancers. Biomark Res 2022; 10:19. [PMID: 35395937 PMCID: PMC8994388 DOI: 10.1186/s40364-022-00366-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/20/2022] [Indexed: 12/21/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins C (HnRNP C) is part of the hnRNP family of RNA-binding proteins. The relationship between hnRNP C and cancers has been extensively studied, and dysregulation of hnRNP C has been found in many cancers. According to existing public data, hnRNP C could promote the maturation of new heterogeneous nuclear RNAs (hnRNA s, also referred to as pre-mRNAs) into mRNAs and could stabilize mRNAs, controlling their translation. This paper reviews the regulation and dysregulation of hnRNP C in cancers. It interacts with some cancer genes and other biological molecules, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and double-stranded RNAs (dsRNAs). Even directly binds to them. The effects of hnRNP C on biological processes such as alternative cleavage and polyadenylation (APA) and N6-methyladenosine (m6A) modification differ among cancers. Its main function is regulating stability and level of translation of cancer genes, and the hnRNP C is regarded as a candidate biomarker and might be valuable for prognosis evaluation.
Collapse
Affiliation(s)
- Liyi Mo
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lijuan Meng
- Department of Ultrasonography, Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhicheng Huang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Nanyang Yang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guoqing Li
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
Influence of N6-Methyladenosine Modification Gene HNRNPC on Cell Phenotype in Parkinson's Disease. PARKINSON'S DISEASE 2021; 2021:9919129. [PMID: 34966539 PMCID: PMC8712163 DOI: 10.1155/2021/9919129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022]
Abstract
This study aimed to explore the N6-methyladenosine (m6A) modification genes involved in the pathogenesis of Parkinson's disease (PD) through data analysis of the two data sets GSE120306 and GSE22491 in the GEO database and further explore its influence on cell phenotype in PD. We analyzed the differentially expressed genes and function enrichment analysis of the two sets of data and found that the expression of the m6A-modification gene HNRNPC was significantly downregulated in the PD group, and it played an important role in DNA metabolism, RNA metabolism, and RNA processing and may be involved in PD. Then, we constructed the HNRNPC differential expression cell line to study the role of this gene in the pathogenesis of PD. The results showed that overexpression of HNRNPC can promote the proliferation of PC12 cells, inhibit their apoptosis, and inhibit the expression of inflammatory factors IFN-β, IL-6, and TNF-α, suggesting that HNRNPC may cause PD by inhibiting the proliferation of dopaminergic nerve cells, promoting their apoptosis, and causing immune inflammation. Our study also has certain limitations. For example, the data of the experimental group and the validation group come from different cell types, and the data of the experimental group involve individuals with G2019S LRRK2 mutations. In addition, due to the low expression of HNRNPC in PC12 cells, we used the method of overexpressing this gene to study its function. All these factors may cause our conclusions to be biased. Therefore, more research is still needed to corroborate it in the future.
Collapse
|
11
|
Tang J, Zou G, Chen C, Ren J, Wang F, Chen Z. Highly Selective Electrochemical Detection of 5-Formyluracil Relying on (2-Benzimidazolyl) Acetonitrile Labeling. Anal Chem 2021; 93:16439-16446. [PMID: 34813282 DOI: 10.1021/acs.analchem.1c03389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of formylpyrimidines in DNA is crucial for a better understanding of epigenetics. Although many techniques have been explored to detect their content, more accurate methods of formylpyrimidine determination are still required due to the relatively lower sensitivity or lack of selectivity in current methods. Herein, an electrochemical method based on the covalent bonding of the azido derivative of (2-benzimidazolyl) acetonitrile (azi-BIAN) and the aldehyde group of 5-formyluracil (5fU) was proposed for the selective detection of 5fU in the presence of 5-formylcytosine (5fC) and apyrimidinic (AP) sites. Target DNA containing 5fU was first treated with azi-BIAN and then incubated with DBCO-PEG4-Biotin to introduce a biotin group by copper-free click chemistry. Next, the sulfhydryl group was attached to the 5' end of above DNA through T4 polynucleotide kinase-catalyzed reaction. Subsequently, the labeled DNA was assembled onto the AuNPs-modified glassy carbon electrode (AuNPs/GCE) through Au-S bonds, and the streptavidin-horseradish peroxidase conjugate (SA-HRP) was further immobilized onto the surface of the above electrode by specific recognition between biotin and streptavidin. Finally, HRP catalyzed hydroquinone oxidation to benzoquinone to enhance the current signal, which was related to the amount of 5fU in nucleic acids. This method demonstrated a good linear relationship with 5fU concentrations ranging from 0.1 to 10 nM. Moreover, the level of 5fU in γ-irradiated nucleic acids was also successfully detected, indicating that the combination of molecule-depended chemical recognition and electrochemical sensing is a promising method for the selective and sensitive detection of 5fU.
Collapse
Affiliation(s)
- Jing Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology, Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100080, China
| | - Guangrong Zou
- Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, School of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology, Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Ren
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology, Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Fang Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology, Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100080, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology, Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
12
|
Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1270-1279. [PMID: 34853726 PMCID: PMC8609105 DOI: 10.1016/j.omtn.2021.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
YTHDF1 is the most versatile and powerful reader protein of N6-methyladenosine (m6A)-modified RNA, and it can recognize both G(m6A)C and A(m6A)C RNAs as ligands without sequence selectivity. YTHDF1 regulates target gene expression by different mechanisms, such as promoting translation or regulating the stability of mRNA. Numerous studies have shown that YTHDF1 plays an important role in tumor biology and nontumor lesions by mediating the protein translation of important genes or by affecting the expression of key factors involved in many important cell signaling pathways. Therefore, in this review we focus on some of the roles of YTHDF1 in tumor biology and diseases.
Collapse
Affiliation(s)
- Zuyao Chen
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Xiaolin Zhong
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Min Xia
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Jing Zhong
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| |
Collapse
|
13
|
Miranda-Gonçalves V, Lobo J, Guimarães-Teixeira C, Barros-Silva D, Guimarães R, Cantante M, Braga I, Maurício J, Oing C, Honecker F, Nettersheim D, Looijenga LHJ, Henrique R, Jerónimo C. The component of the m 6A writer complex VIRMA is implicated in aggressive tumor phenotype, DNA damage response and cisplatin resistance in germ cell tumors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:268. [PMID: 34446080 PMCID: PMC8390281 DOI: 10.1186/s13046-021-02072-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
Abstract
Background Germ cell tumors (GCTs) are developmental cancers, tightly linked to embryogenesis and germ cell development. The recent and expanding field of RNA modifications is being increasingly implicated in such molecular events, as well as in tumor progression and resistance to therapy, but still rarely explored in GCTs. In this work, and as a follow-up of our recent study on this topic in TGCT tissue samples, we aim to investigate the role of N6-methyladenosine (m6A), the most abundant of such modifications in mRNA, in in vitro and in vivo models representative of such tumors. Methods Four cell lines representative of GCTs (three testicular and one mediastinal), including an isogenic cisplatin resistant subline, were used. CRISPR/Cas9-mediated knockdown of VIRMA was established and the chorioallantoic membrane assay was used to study its phenotypic effect in vivo. Results We demonstrated the differential expression of the various m6A writers, readers and erasers in GCT cell lines representative of the major classes of these tumors, seminomas and non-seminomas, and we evidenced changes occurring upon differentiation with all-trans retinoic acid treatment. We showed differential expression also among cells sensitive and resistant to cisplatin treatment, implicating these players in acquisition of cisplatin resistant phenotype. Knockdown of VIRMA led to disruption of the remaining methyltransferase complex and decrease in m6A abundance, as well as overall reduced tumor aggressiveness (with decreased cell viability, tumor cell proliferation, migration, and invasion) and increased sensitivity to cisplatin treatment, both in vitro and confirmed in vivo. Enhanced response to cisplatin after VIRMA knockdown was related to significant increase in DNA damage (with higher γH2AX and GADD45B levels) and downregulation of XLF and MRE11. Conclusions VIRMA has an oncogenic role in GCTs confirming our previous tissue-based study and is further involved in response to cisplatin by interfering with DNA repair. These data contribute to our better understanding of the emergence of cisplatin resistance in GCTs and support recent attempts to therapeutically target elements of the m6A writer complex. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02072-9.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584, CS, Utrecht, The Netherlands
| | - Catarina Guimarães-Teixeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rita Guimarães
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Mariana Cantante
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Isaac Braga
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Christoph Oing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, Mildred Scheel Cancer Career Center HaTriCs4, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Friedemann Honecker
- Tumour and Breast Center ZeTuP St. Gallen, Rorschacher Strasse 150, 9006, St. Gallen, Switzerland
| | - Daniel Nettersheim
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Leendert H J Looijenga
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584, CS, Utrecht, The Netherlands
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal. .,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal.
| |
Collapse
|
14
|
Luo Y, Sun Y, Li L, Mao Y. METTL3 May Regulate Testicular Germ Cell Tumors Through EMT and Immune Pathways. Cell Transplant 2021; 29:963689720946653. [PMID: 32749150 PMCID: PMC7563025 DOI: 10.1177/0963689720946653] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are highly prevalent in young men aged 20–40
years and are one of the most common lethal solid tumors in men of this age. Due
to the current unclear mechanism of tumor development, there is a lack of
effective treatment, and therefore in-depth research of the molecular mechanism
of the occurrence and development of TGCT and the search for suitable and
effective therapeutic targets and molecular markers are of great significance
for achieving effective treatment. METTL3 is a very important methylase, which
has been implicated in the progression of many cancers, but the role of METTL3
in TGCT has not been fully elucidated. In this article, we found that METTL3
expression was significantly downregulated in TGCT tissues, and patients with
low expression levels had lower overall survival and relapse-free survival
rates. After overexpressing METTL3, cell proliferation, invasion, and migration
ability significantly increased, while influencing the expression of
epithelial–mesenchymal transition (EMT)-related proteins. In addition, we
observed that the expression level of METTL3 positively correlated with
molecular markers and infiltration level of CD8+ and CD4+ T cells and natural
killer cells. In sum, our findings identified that METTL3 can be used as an
independent prognostic marker in patients with TGCT. METTL3 participates in the
proliferation, migration, and invasion of TGCT cells by regulating the
expression of EMT-related genes and may also play a role in activating the tumor
immune response in TGCT.
Collapse
Affiliation(s)
- Yang Luo
- Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Reproductive Medicine of Guangdong Province, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Yuan Sun
- Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Reproductive Medicine of Guangdong Province, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Lei Li
- Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Reproductive Medicine of Guangdong Province, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| | - Yuling Mao
- Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Reproductive Medicine of Guangdong Province, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China
| |
Collapse
|
15
|
Liu S, Lao Y, Wang Y, Li R, Fang X, Wang Y, Gao X, Dong Z. Role of RNA N6-Methyladenosine Modification in Male Infertility and Genital System Tumors. Front Cell Dev Biol 2021; 9:676364. [PMID: 34124065 PMCID: PMC8190709 DOI: 10.3389/fcell.2021.676364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022] Open
Abstract
Epigenetic alterations, particularly RNA methylation, play a crucial role in many types of disease development and progression. Among them, N6-methyladenosine (m6A) is the most common epigenetic RNA modification, and its important roles are not only related to the occurrence, progression, and aggressiveness of tumors but also affect the progression of many non-tumor diseases. The biological effects of RNA m6A modification are dynamically and reversibly regulated by methyltransferases (writers), demethylases (erasers), and m6A binding proteins (readers). This review summarized the current finding of the RNA m6A modification regulators in male infertility and genital system tumors and discussed the role and potential clinical application of the RNA m6A modification in spermatogenesis and male genital system tumors.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Nephro-Urological Clinical Center, Institute of Urology, Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yongfeng Lao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Nephro-Urological Clinical Center, Institute of Urology, Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Nephro-Urological Clinical Center, Institute of Urology, Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Rongxin Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Nephro-Urological Clinical Center, Institute of Urology, Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuefeng Fang
- Department of Urology, People's Hospital of Jinchang, Jinchang, China
| | - Yunchang Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolong Gao
- Department of Urology, People's Hospital of Jinchang, Jinchang, China
| | - Zhilong Dong
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China.,Gansu Nephro-Urological Clinical Center, Institute of Urology, Department of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
16
|
Chen H, Xiang Y, Yin Y, Peng J, Peng D, Li D, Kitazawa R, Tang Y, Yang J. The m6A methyltransferase METTL3 regulates autophagy and sensitivity to cisplatin by targeting ATG5 in seminoma. Transl Androl Urol 2021; 10:1711-1722. [PMID: 33968659 PMCID: PMC8100844 DOI: 10.21037/tau-20-1411] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Our previous work shows Autophagy enhanced resistance to cisplatin in seminoma. The expression of the N6-methyladenosine (m6A) methyltransferases METTL3 was significantly increased in the cisplatin-resistant TCam-2 cell line of seminoma. We aimed to investigate the role of m6A methylation in autophagy and the chemosensitivity of seminoma cells. Methods Plasmid and siRNA were used to overexpress and knockdown METTL3. Autophagy was detected by western blot and immunofluorescence, respectively. The expression of downstream targets of METTL3 was detected by quantitative real-time PCR (qRT-PCR) and western blot, and the m6A level of them was detected by MeRIP-qPCR. Chemosensitivity of the TCam-2 cell line was identified through MTT assay. Results Upon METTL3 overexpression, autophagy of TCam-2 cell line was enhanced and its sensitivity to cisplatin was decreased. The use of autophagy inhibitors 3-methyladenine (3-MA) could reverse the protective effect of METTL3 on TCam-2 cells. We found that the up-regulation of METTL3 could increase the m6A modification level of ATG5 transcript, thus increased expression of ATG5. Moreover, knockdown of ATG5 reduced METTL3-induced autophagy, suggesting that ATG5 was a potential target for METTL3 to promote autophagy. Conclusions In summary, our research unveiled the unique mechanism by which m6A methylation regulates autophagy and chemosensitivity of the TCam-2 cell line and METTL3 was a potential target to overcome the cisplatin resistance of seminoma.
Collapse
Affiliation(s)
- Hanfei Chen
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yali Xiang
- Health Management Center, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yinghao Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingxuan Peng
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dongyi Peng
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dongjie Li
- Xiangya International Medical Center, Department of Geriatric Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Riko Kitazawa
- Department of Diagnostic Pathology, Ehime University Hospital, Toon, Japan
| | - Yuxin Tang
- Department of Urology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jianfu Yang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
17
|
Cong R, Ji C, Zhang J, Zhang Q, Zhou X, Yao L, Luan J, Meng X, Song N. m6A RNA methylation regulators play an important role in the prognosis of patients with testicular germ cell tumor. Transl Androl Urol 2021; 10:662-679. [PMID: 33718069 PMCID: PMC7947426 DOI: 10.21037/tau-20-963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background N6-methyladenosine (m6A) is found to be associated with promoting tumorigenesis in different types of cancers, however, the function of m6A-related genes in testicular germ cell tumors (TGCT) development remains to be illuminated. This study aimed to investigated the prognostic value of m6A RNA methylation regulators in TGCT. Methods We collected TGCT patients’ information about clinicopathologic parameters and twenty-two m6A regulatory genes expression from The Cancer Genome Atlas (TCGA) database and Genotype-Tissue Expression (GTEx). We analyzed the differentially expressed m6A RNA methylation regulators between tumor tissues and normal tissues, as well as the correlation of m6A RNA methylation regulators. By using Cox univariate analysis, last absolute shrinkage and selection operator (LASSO) Cox regression algorithm and Cox multivariate proportional hazards regression analysis, a risk score was constructed based on a TCGA training cohort, and further verified in the TCGA testing cohort. Then, univariate and multivariate Cox regression analyses were used to evaluate the relationship between risk score and progression-free survival (PFS) in TGCT. Finally, the six-gene risk score was further verified by two gene expression profiles (GSE3218 and GSE10783) as an independent external validation cohort. Results Distinct expression patterns of m6A regulatory genes were identified between TGCT tissues and normal tissues in TCGA and GTEx datasets. To predict prognosis of TGCT patients, a risk score was calculated based on six selected m6A RNA methylation regulators (YTHDF1, RBM15, IGF2BP1, ZC3H13, METTL3, and FMR1). Additionally, we found significant differences between the high-risk and low-risk groups in serum marker study levels and histologic subtype. Univariate and multivariate analysis indicated that high risk score was associated with unfavorable PFS. Ultimately, the risk score was further verified by two gene expression profiles (GSE3218 and GSE10783). Conclusions Based on six selected m6A RNA methylation regulators, we developed a m6A methylation related risk score that can independently predict the prognosis of TGCT patients, and verify the prediction efficiency in TCGA and GEO datasets. Patients in high-risk group were associated with serum tumor marker study levels beyond the normal limits, non-seminoma, and unfavorable survival time. However, further prospective experiments should be carried out to verify our results.
Collapse
Affiliation(s)
- Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengjian Ji
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayi Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qijie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liangyu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianghu Meng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Artux, China
| |
Collapse
|
18
|
Bayoumi M, Munir M. Structural Insights Into m6A-Erasers: A Step Toward Understanding Molecule Specificity and Potential Antiviral Targeting. Front Cell Dev Biol 2021; 8:587108. [PMID: 33511112 PMCID: PMC7835257 DOI: 10.3389/fcell.2020.587108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The cellular RNA can acquire a variety of chemical modifications during the cell cycle, and compelling pieces of evidence highlight the importance of these modifications in determining the metabolism of RNA and, subsequently, cell physiology. Among myriads of modifications, methylation at the N6-position of adenosine (m6A) is the most important and abundant internal modification in the messenger RNA. The m6A marks are installed by methyltransferase complex proteins (writers) in the majority of eukaryotes and dynamically reversed by demethylases such as FTO and ALKBH5 (erasers). The incorporated m6A marks on the RNA transcripts are recognized by m6A-binding proteins collectively called readers. Recent epigenetic studies have unequivocally highlighted the association of m6A demethylases with a range of biomedical aspects, including human diseases, cancers, and metabolic disorders. Moreover, the mechanisms of demethylation by m6A erasers represent a new frontier in the future basic research on RNA biology. In this review, we focused on recent advances describing various physiological, pathological, and viral regulatory roles of m6A erasers. Additionally, we aim to analyze structural insights into well-known m6A-demethylases in assessing their substrate binding-specificity, efficiency, and selectivity. Knowledge on cellular and viral RNA metabolism will shed light on m6A-specific recognition by demethylases and will provide foundations for the future development of efficacious therapeutic agents to various cancerous conditions and open new avenues for the development of antivirals.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom.,Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
19
|
Wang LC, Chen SH, Shen XL, Li DC, Liu HY, Ji YL, Li M, Yu K, Yang H, Chen JJ, Qin CZ, Luo MM, Lin QX, Lv QL. M6A RNA Methylation Regulator HNRNPC Contributes to Tumorigenesis and Predicts Prognosis in Glioblastoma Multiforme. Front Oncol 2020; 10:536875. [PMID: 33134160 PMCID: PMC7578363 DOI: 10.3389/fonc.2020.536875] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma with a high death rate. N6-methyladenosine (m6A) RNA methylation plays an increasingly important role in tumors. The current study aimed to determine the function of the regulators of m6A RNA methylation in GBM. We evaluated the difference, interaction, and correlation of these regulators with TCGA database. HNRNPC, WTAP, YTHDF2 and, YTHDF1 were significantly upregulated in GBM. To explore the expression characteristics of regulators in GBM, we defined two subgroups through consensus cluster. HNRNPC, WTAP, and YTHDF2 were significantly upregulated in the cluster2 which had a good overall survival (OS). To investigate the prognostic value of regulators, we used lasso cox regression algorithm to screen an independent prognostic risk characteristic based on the expression of HNRNPC, ZC3H13, and YTHDF2. The prognostic feature between the low and high-risk groups was significantly different (P < 0.05), which could predict significance of prognosis (area under the curve (AUC) = 0.819). Moreover, we used western blot, RT-PCR, and immunohistochemical staining to verify the expression of HNRNPC was associated with malignancy and development of gliomas. Similarly, the high expression of HNRNPC had a good prognosis. In conclusion, HNRNPC is a vital participant in the malignant progression of GBM and might be valuable for prognosis.
Collapse
Affiliation(s)
- Li-Chong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Xiao-Li Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dang-Chi Li
- Jiangxi University of Technology High School, Nanchang, China
| | - Hai-Yun Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yu-Long Ji
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Min Li
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Kai Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun-Jun Chen
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Chong-Zhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming-Ming Luo
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Qian-Xia Lin
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
20
|
Wei J, Yin Y, Zhou J, Chen H, Peng J, Yang J, Tang Y. METTL3 potentiates resistance to cisplatin through m 6 A modification of TFAP2C in seminoma. J Cell Mol Med 2020; 24:11366-11380. [PMID: 32857912 PMCID: PMC7576266 DOI: 10.1111/jcmm.15738] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/23/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Testicular germ cell tumours (TGCTs) rank as the most common malignancy in men aged 20‐34 years, and seminomas are the most type of TGCTs. As a crucial anti‐tumour agent with explicit toxicity, cisplatin may render resistance through intertwined mechanisms, even in disease entities with high curative ratio, such as seminoma. Previously, we established cisplatin‐resistant seminoma TCam‐2 (TCam‐2/CDDP) cells and showed that epigenetic regulations, such as non‐coding RNA (ncRNA) interactions, might orchestrate cell fate decisions in the cisplatin treatment context in seminoma. N6‐methyladenosine (m6A) is the most prevalent internal modification in mRNA. In the present study, we assessed cisplatin resistance in seminoma from the perspective of m6A, another manner of epigenetic modification. The global m6A enrichment of TCam‐2 and TCam‐2/CDDP was depicted. Then, we elucidated whether transcription factor‐activating enhancer‐binding protein 2C (TFAP2C) was functionally m6A‐modified by methyltransferase‐like protein 3 (METTL3), which acted as an m6A ‘writer’, and insulin‐like growth factor 2 mRNA‐binding protein 1 (IGF2BP1), which acted as an m6A ‘reader’. Enhanced stability of TFAP2C mRNA promoted seminoma cell survival under cisplatin treatment burden probably through up‐regulation of DNA repair‐related genes. Hopefully, this study will help improve our understanding of the subtleties of the tumour cellular coping strategy in response to chemotherapy. Targeting factors that are involved in m6A methylation may be an effective strategy for circumventing cisplatin resistance in seminoma.
Collapse
Affiliation(s)
- Jingchao Wei
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghao Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun Zhou
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hanfei Chen
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingxuan Peng
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianfu Yang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
21
|
A novel N6-methyladenosine (m6A)-dependent fate decision for the lncRNA THOR. Cell Death Dis 2020; 11:613. [PMID: 32792482 PMCID: PMC7426843 DOI: 10.1038/s41419-020-02833-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Previous studies have revealed the critical roles of the N6-methyladenosine (m6A) modification of long non-coding RNAs (lncRNAs) in cancers, but the relationship between the oncogenic role of the lncRNA THOR (a representative of cancer/testis lncRNAs) and m6A modification remains unclear. Here, we show that the internal m6A modification of the lncRNA THOR via an m6A-reader-dependent modality regulates the proliferation of cancer cells. Our findings demonstrated that the loss of the lncRNA THOR inhibits the proliferation, migration, and invasion of cancer cells in vitro and in vivo. In addition, m6A is highly enriched on lncRNA THOR transcripts, which contain GA (m6A) CA, GG (m6A) CU, and UG (m6A) CU sequence motifs. RIP-qRT-PCR and RNA pull-down assay results revealed that the specific m6A readers YTHDF1 and YTHDF2 can read the m6A motifs and regulate the stability of the lncRNA THOR (stabilization and decay). These m6A-dependent RNA-protein interactions can maintain the oncogenic role of the lncRNA THOR. Collectively, these findings highlight the critical role of the m6A modification in oncogenic lncRNA THOR and reveal a novel long non-coding RNA regulatory mechanism, providing a new way to explore RNA epigenetic regulatory patterns in the future.
Collapse
|
22
|
Cardoso AR, Lobo J, Miranda-Gonçalves V, Henrique R, Jerónimo C. Epigenetic alterations as therapeutic targets in Testicular Germ Cell Tumours : current and future application of 'epidrugs'. Epigenetics 2020; 16:353-372. [PMID: 32749176 DOI: 10.1080/15592294.2020.1805682] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Testicular germ cell tumours (TGCTs) are heterogeneous neoplasms mostly affecting young-adult men. Despite high survival rates, some patients with disseminated disease acquire cisplatin resistance, entailing the need for less toxic therapies. Epigenetic alterations constitute an important feature of TGCTs, which are also implicated in resistance mechanism(s). These alterations might be used as potential targets to design epigenetic drugs. To date, several compounds have been explored and evaluated regarding therapeutic efficacy, making use of pre-clinical studies with in vitro and in vivo models, and some have already been explored in clinical trials. This review summarizes the several epigenetic mechanisms at play in these neoplasms, the current challenges in the field of TGCTs and critically reviews available data on 'epidrugs' in those tumours.
Collapse
Affiliation(s)
- Ana Rita Cardoso
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513, Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513, Porto, Portugal
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513, Porto, Portugal
| |
Collapse
|
23
|
Wang J, Wang J, Gu Q, Ma Y, Yang Y, Zhu J, Zhang Q. The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell Int 2020; 20:347. [PMID: 32742194 PMCID: PMC7388453 DOI: 10.1186/s12935-020-01450-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022] Open
Abstract
Human AlkB homolog H5 (ALKBH5) is a primary m6A demethylase, which is dysregulated and acts as a biological and pharmacological role in human cancers or non-cancers. ALKBH5 plays a dual role in various cancers through regulating kinds of biological processes, such as proliferation, migration, invasion, metastasis and tumor growth. In addition, it takes a great part in human non-cancer, including reproductive system diseases. The underlying regulatory mechanisms of ALKBH5 that relys on m6A-dependent modification are implicated with long non-coding RNA, cancer stem cell, autophagy and hypoxia. ALKBH5 is also an independent prognostic indicator in various cancers. In this review, we summarized the current evidence on ALKBH5 in diverse human cancers or non-cancers and its potential as a prognostic target.
Collapse
Affiliation(s)
- Jinyan Wang
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210000 China.,Department of Oncology, The Affiliated Jiangning Hospital of Jiangsu Health Vocational College, Nanjing, 210000 China
| | - Jinqiu Wang
- Department of Oncology, Dafeng People's Hospital, Yancheng, 224000 China
| | - Quan Gu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210000 China
| | - Yajun Ma
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210000 China
| | - Yan Yang
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210000 China
| | - Jing Zhu
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210000 China
| | - Quan'an Zhang
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210000 China
| |
Collapse
|
24
|
Tao Z, Zhao Y, Chen X. Role of methyltransferase-like enzyme 3 and methyltransferase-like enzyme 14 in urological cancers. PeerJ 2020; 8:e9589. [PMID: 32765970 PMCID: PMC7382367 DOI: 10.7717/peerj.9589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) modifications can be found in eukaryotic messenger RNA (mRNA), long non-coding RNA (lncRNA), and microRNA (miRNA). Several studies have demonstrated a close relationship between m6A modifications and cancer cells. Methyltransferase-like enzyme 3 (METTL3) and methyltransferase-like enzyme 14 (METTL14) are two major enzymes involved in m6A modifications that play vital roles in various cancers. However, the roles and regulatory mechanisms of METTL3 and METTL14 in urological cancers are largely unknown. In this review, we summarize the current research results for METTL3 and METTL14 and identify potential pathways involving these enzymes in kidney, bladder, prostate, and testicular cancer. We found that METTL3 and METTL14 have different expression patterns in four types of urological cancers. METTL3 is highly expressed in bladder and prostate cancer and plays an oncogenic role on cancer cells; however, its expression and role are opposite in kidney cancer. METTL14 is expressed at low levels in kidney and bladder cancer, where it has a tumor suppressive role. Low METTL3 or METTL14 expression in cancer cells negatively regulates cell growth-related pathways (e.g., mTOR, EMT, and P2XR6) but positively regulates cell death-related pathways (e.g., P53, PTEN, and Notch1). When METTL3 is highly expressed, it positively regulates the NF-kB and SHH-GL1pathways but negatively regulates PTEN. These results suggest that although METTL3 and METTL14 have different expression levels and regulatory mechanisms in urological cancers, they control cancer cell fate via cell growth- and cell death-related pathways. These findings suggest that m6A modification may be a potential new therapeutic target in urological cancer.
Collapse
Affiliation(s)
- Zijia Tao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiqiao Zhao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
25
|
Decreased Peripheral Blood ALKBH5 Correlates with Markers of Autoimmune Response in Systemic Lupus Erythematosus. DISEASE MARKERS 2020; 2020:8193895. [PMID: 32685056 PMCID: PMC7334764 DOI: 10.1155/2020/8193895] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Although it has been proved that the epigenetic modification of DNA and histones is involved in the pathogenesis of systemic lupus erythematosus (SLE), there is no study to explore whether the modification of N6-methyladenosine (m6A) in RNA is involved. In this study, the mRNA levels of m6A "writers" (METTL3, MTEEL14, and WTAP), "erasers" (FTO and ALKBH5), and "readers" (YTHDF2) in peripheral blood were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The results demonstrated that the mRNA levels of METTL3, WTAP, FTO, ALKBH5, and YTHDF2 in peripheral blood from SLE patients were significantly decreased. The levels of ALKBH5 mRNA in SLE patients were associated with anti-dsDNA, antinucleosome, rash, and ulceration. Multivariate logistic regression analysis showed that the level of ALKBH5 mRNA in peripheral blood is a risk factor of SLE (P < 0.001). Moreover, our results suggested that there was a positive correlation between m6A"writers" (METTL3 and WTAP), "erasers" (FTO and ALKBH5), and "readers" (YTHDF2) in SLE patients. This study suggests that the mRNA level of ALKBH5 in peripheral blood may be involved in the pathogenesis of SLE.
Collapse
|
26
|
Yang J, Chen J, Fei X, Wang X, Wang K. N6-methyladenine RNA modification and cancer. Oncol Lett 2020; 20:1504-1512. [PMID: 32724392 DOI: 10.3892/ol.2020.11739] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
N6-methyladenosine (m6A) in messenger RNA (mRNA) is regulated by m6A methyltransferases and demethylases. Modifications of m6A are dynamic and reversible, may regulate gene expression levels and serve vital roles in numerous life processes, such as cell cycle regulation, cell fate decision and cell differentiation. In recent years, m6A modifications have been reported to exhibit functions in human cancers via regulation of RNA stability, microRNA processing, mRNA splicing and mRNA translation, including lung cancer, breast tumor and acute myeloid leukemia. In the present review, the roles of m6A modifications in the onset and progression of cancer were summarized. These modifications display an oncogenic role in certain types of cancer, whereas in other types of cancer they exhibit a tumor suppressor role. Therefore, understanding the biological functions performed by m6A in different types of tumors and identifying pivotal m6A target genes to deduce the potential mechanisms underlying the progression of cancer may assist in the development of novel therapeutics.
Collapse
Affiliation(s)
- Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Junwen Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
27
|
Müller MR, Skowron MA, Albers P, Nettersheim D. Molecular and epigenetic pathogenesis of germ cell tumors. Asian J Urol 2020; 8:144-154. [PMID: 33996469 PMCID: PMC8099689 DOI: 10.1016/j.ajur.2020.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/24/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
The development of germ cell tumors (GCTs) is a unique pathogenesis occurring at an early developmental stage during specification, migration or colonization of primordial germ cells (PGCs) in the genital ridge. Since driver mutations could not be identified so far, the involvement of the epigenetic machinery during the pathogenesis seems to play a crucial role. Currently, it is investigated whether epigenetic modifications occurring between the omnipotent two-cell stage and the pluripotent implanting PGCs might result in disturbances eventually leading to GCTs. Although progress in understanding epigenetic mechanisms during PGC development is ongoing, little is known about the complete picture of its involvement during GCT development and eventual classification into clinical subtypes. This review will shed light into the current knowledge of the complex epigenetic and molecular contribution during pathogenesis of GCTs by emphasizing on early developmental stages until arrival of late PGCs in the gonads. We questioned how misguided migrating and/or colonizing PGCs develop to either type I or type II GCTs. Additionally, we asked how pluripotency can be regulated during PGC development and which epigenetic changes contribute to GCT pathogenesis. We propose that SOX2 and SOX17 determine either embryonic stem cell-like (embryonal carcinoma) or PGC-like cell fate (seminoma). Finally, we suggest that factors secreted by the microenvironment, i.e. BMPs and BMP inhibiting molecules, dictate the fate decision of germ cell neoplasia in situ (into seminoma and embryonal carcinoma) and seminomas (into embryonal carcinoma or extraembryonic lineage), indicating an important role of the microenvironment on GCT plasticity.
Collapse
Affiliation(s)
- Melanie R Müller
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Margaretha A Skowron
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Peter Albers
- Department of Urology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Zhu ZM, Huo FC, Pei DS. Function and evolution of RNA N6-methyladenosine modification. Int J Biol Sci 2020; 16:1929-1940. [PMID: 32398960 PMCID: PMC7211178 DOI: 10.7150/ijbs.45231] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) is identified as the most prevalent and abundant internal RNA modification, especially within eukaryotic mRNAs, which has attracted much attention in recent years since its importance for regulating gene expression and deciding cell fate. m6A modification is installed by RNA methyltransferases METTL3, METTL14 and WTAP (Writers), removed by the demethylases FTO and ALKBH5 (Erasers) and recognized by m6A binding proteins, such as YT521-B homology YTH domain-containing proteins (Readers). Accumulating evidence shows that m6A RNA methylation participates in almost all aspects of RNA processing, implying an association with important bioprocesses. In this review, we mainly summarize and discuss the functional relevance and importance of m6A modification in cellular processes.
Collapse
Affiliation(s)
- Zhi-Man Zhu
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
29
|
Deciphering N 6-Methyladenosine-Related Genes Signature to Predict Survival in Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2514230. [PMID: 32258108 PMCID: PMC7066421 DOI: 10.1155/2020/2514230] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/08/2019] [Accepted: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer-related death. Among these, lung adenocarcinoma (LUAD) accounts for most cases. Due to the improvement of precision medicine based on molecular characterization, the treatment of LUAD underwent significant changes. With these changes, the prognosis of LUAD becomes diverse. N6-methyladenosine (m6A) is the most predominant modification in mRNAs, which has been a research hotspot in the field of oncology. Nevertheless, little has been studied to reveal the correlations between the m6A-related genes and prognosis in LUAD. Thus, we conducted a comprehensive analysis of m6A-related gene expressions in LUAD patients based on The Cancer Genome Atlas (TCGA) database by revealing their relationship with prognosis. Different expressions of the m6A-related genes in tumor tissues and non-tumor tissues were confirmed. Furthermore, their relationship with prognosis was studied via Consensus Clustering Analysis, Principal Components Analysis (PCA), and Least Absolute Shrinkage and Selection Operator (LASSO) Regression. Based on the above analyses, a m6A-based signature to predict the overall survival (OS) in LUAD was successfully established. Among the 479 cases, we found that most of the m6A-related genes were differentially expressed between tumor and non-tumor tissues. Six genes, HNRNPC, METTL3, YTHDC2, KIAA1429, ALKBH5, and YTHDF1 were screened to build a risk scoring signature, which is strongly related to the clinical features pathological stages (p < 0.05), M stages (p < 0.05), T stages (p < 0.05), gender (p = 0.04), and survival outcome (p = 0.02). Multivariate Cox analysis indicated that risk value could be used as an independent prognostic factor, revealing that the m6A-related genes signature has great predictive value. Its efficacy was also validated by data from the Gene Expression Omnibus (GEO) database.
Collapse
|
30
|
Zhuang J, Lin C, Ye J. m 6 A RNA methylation regulators contribute to malignant progression in rectal cancer. J Cell Physiol 2020; 235:6300-6306. [PMID: 32043594 DOI: 10.1002/jcp.29626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022]
Abstract
N6,2'-O-dimethyladenosine (m6 A) RNA methylation, which is correlated with cancer initiation and progression, is dynamically regulated by m6 A RNA methylation regulators, including writers, erasers, and readers. Two subgroups of rectal cancer, including cluster1 and cluster2, were identified based on consensus clustering to m6 A RNA methylation regulators. A protein-protein interaction network was constructed and hub genes were identified. The results demonstrated that the expression of WTAP was significantly associated with YTHDC1 and YTHDF2. The principal component analysis was used to compare the transcriptional profile between cluster1 and cluster2 subgroups. By using two identified m6 A RNA methylation regulators, we constructed a risk signature to predict the survival outcomes of rectal cancer. The results revealed that YTHDC2 and YTHDF2 were protective genes with HR < 1. The coefficients obtained from the least absolute shrinkage and selection operator algorithm were used to calculate the risk score. Patients were then divided into low- and high-risk groups based on the median risk score. The survival analysis demonstrated that there were significant differences in overall survival between these two groups (p < .05). The results of the univariate analysis showed that the risk score, AJCC stage, M stage, and age were associated with overall survival. The results of the multivariate Cox regression analysis showed that the risk score and age were still significantly associated with the overall survival (p < .05). To conclude, m6 A RNA methylation regulators can be regarded as potentially useful biomarkers for predicting the prognosis and designing a treatment strategy in rectal cancer.
Collapse
Affiliation(s)
- Jinfu Zhuang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
31
|
Liu T, Yang S, Sui J, Xu SY, Cheng YP, Shen B, Zhang Y, Zhang XM, Yin LH, Pu YP, Liang GY. Dysregulated N6-methyladenosine methylation writer METTL3 contributes to the proliferation and migration of gastric cancer. J Cell Physiol 2019; 235:548-562. [PMID: 31232471 DOI: 10.1002/jcp.28994] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022]
Abstract
Accumulating evidence implies that N6-methyladenosine (m6A) methylation participated in the tumorigenesis of gastric cancer (GC). Here we synthetically analyzing the prognostic value and expression profile of seven m6A methylation-relevant genes through silico analysis of sequencing data downloaded from The Cancer Genome Atlas, Kaplan-Meier plotter, and Gene Expression Omnibus database. We explored the methyltransferase-like 3 (METTL3) expression in GC cell line and tumor tissues by reverse transcription quantitative polymerase chain reaction and western blot analysis. The m6A methylation status of total RNA was measured by m6A RNA methylation quantification kit. Small interfering RNA was used to establish METTL3 knockdown cell lines. We also measure the proliferation and migration capability GC cell. Furthermore, we detect the epithelial cell mesenchymal transition marker and m6A methylation level after METTL3 knock down. Our result revealed that METTL3 was significantly increased in GC tissues compared with control in big crowd data sets. Survival analysis showed that METTL3 serve as a poor prognostic factor for GC patients. The expression level of METTL3 gradually increased with the progress of tumor stage and grade. GFI1 is an important transcription factor associated with METTL3. We verified the up-trend of METTL3 in messenger RNA and protein expression and observed a significant increase in the m6A methylation status of total RNA in the GC cells and tissues. METTL3 knockdown inhibited total RNA m6A methylation level, as well as cell proliferation and migration capacity. Moreover, METTL3 knockdown decreased α-smooth muscle actin. Taken together, our finding revealed that m6A methylation writer METTL3 serve as an oncogene in tumorigenesis of GC.
Collapse
Affiliation(s)
- Tong Liu
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Sheng Yang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Jing Sui
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Si-Yi Xu
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Yan-Ping Cheng
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Yan Zhang
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Xiao-Mei Zhang
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Li-Hong Yin
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Yue-Pu Pu
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Ge-Yu Liang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|