1
|
Chen Y, Liu X, Zhang L, Zhu F, Yan L, Tang W, Zhang Z, Liu Q, Jiang H, Qiao J. Deciphering the Molecular Characteristics of Human Idiopathic Nonobstructive Azoospermia from the Perspective of Germ Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206852. [PMID: 37083227 PMCID: PMC10265083 DOI: 10.1002/advs.202206852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Nonobstructive azoospermia (NOA) is one of the most important causes of male infertility, accounting for 10-15% of infertile men worldwide. Among these, more than 70% of cases are idiopathic NOA (iNOA), whose pathogenesis and molecular basis remain unknown. This work profiles 3696 human testicular single-cell transcriptomes from 17 iNOA patients, which are classified into four classes with different arrest periods and variable cell proportions based on the gene expression patterns and pathological features. Genes related to the cell cycle, energy production, and gamete generation show obvious abnormalities in iNOA germ cells. This work identifies several candidate causal genes for iNOA, including CD164, LELP1, and TEX38, which are significantly downregulated in iNOA germ cells. Notably, CD164 knockdown promotes apoptosis in spermatogonia. Cellular communications between spermatogonial stem cells and Sertoli cells are disturbed in iNOA patients. Moreover, BOD1L2, C1orf194, and KRTCAP2 are found to indicate testicular spermatogenic capacity in a variety of testicular diseases, such as Y-chromosome microdeletions and Klinefelter syndrome. In general, this study analyzes the pathogenesis of iNOA from the perspective of germ cell development, transcription factor (TF) regulatory networks, as well as germ cell and somatic cell interactions, which provides new ideas for clinical diagnosis.
Collapse
Affiliation(s)
- Yidong Chen
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijing100191China
- National Clinical Research Center for Obstetrics and GynecologyBeijing100191China
- Key Laboratory of Assisted Reproduction (Peking University)Ministry of EducationBeijing100191China
| | - Xixi Liu
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijing100191China
- National Clinical Research Center for Obstetrics and GynecologyBeijing100191China
- Key Laboratory of Assisted Reproduction (Peking University)Ministry of EducationBeijing100191China
| | - Li Zhang
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijing100191China
- National Clinical Research Center for Obstetrics and GynecologyBeijing100191China
- Key Laboratory of Assisted Reproduction (Peking University)Ministry of EducationBeijing100191China
| | - Feiyin Zhu
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijing100191China
- National Clinical Research Center for Obstetrics and GynecologyBeijing100191China
- Key Laboratory of Assisted Reproduction (Peking University)Ministry of EducationBeijing100191China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Liying Yan
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijing100191China
- National Clinical Research Center for Obstetrics and GynecologyBeijing100191China
- Key Laboratory of Assisted Reproduction (Peking University)Ministry of EducationBeijing100191China
| | - Wenhao Tang
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijing100191China
- National Clinical Research Center for Obstetrics and GynecologyBeijing100191China
- Key Laboratory of Assisted Reproduction (Peking University)Ministry of EducationBeijing100191China
| | - Zhe Zhang
- Department of UrologyPeking University Third HospitalBeijing100191China
| | - Qiang Liu
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijing100191China
- National Clinical Research Center for Obstetrics and GynecologyBeijing100191China
- Key Laboratory of Assisted Reproduction (Peking University)Ministry of EducationBeijing100191China
| | - Hui Jiang
- Department of UrologyPeking University Third HospitalBeijing100191China
| | - Jie Qiao
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third HospitalBeijing100191China
- National Clinical Research Center for Obstetrics and GynecologyBeijing100191China
- Key Laboratory of Assisted Reproduction (Peking University)Ministry of EducationBeijing100191China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive TechnologyBeijing100191China
- Beijing Advanced Innovation Center for GenomicsBeijing100871China
| |
Collapse
|
2
|
Actin-Binding LIM 1 (ABLIM1) Inhibits Glioblastoma Progression and Serves as a Novel Prognostic Biomarker. DISEASE MARKERS 2022; 2022:9516808. [PMID: 36583064 PMCID: PMC9794427 DOI: 10.1155/2022/9516808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Background Glioma is the most prevalent malignant brain tumor in adult humans, and glioblastoma (GBM) is the most malignant type. The actin-binding LIM 1 (ABLIM1) protein can modulate actin polymerization, which is essential for the cell proliferation and migration. We aim to investigate ABLIM1 expression, function, and clinical significance in GBM. Methods The ABLIM1 mRNA level was extracted from the TCGA and GTEx online databases. The ABLIM1 protein expression level was explored using immunohistochemistry staining in a GBM cohort enrolled in our hospital (n = 104). The patient survival and prognostic factors were determined using the Kaplan-Meier method and multivariate Cox hazard proportional analysis, respectively. Two human GBM cell lines, U87 and U251 cells, were utilized for ABLIM1 overexpression and cell proliferation analyses. A subcutaneous xenograft model was generated using nude mice to validate the tumor-related effect of ABLIM1 in vivo. Results ABLIM1 exhibited a significantly lower mRNA level in GBM than in other glioma or normal brain tissues. Higher ABLIM1 protein level was correlated with smaller GBM tumor size and better cancer-specific survival (CSS). Multivariate analysis identified ABLIM1 as a novel independent prognostic factor for GBM prognosis. ABLIM1 overexpression significantly inhibits U87 and U251 cell proliferation and colony formation. Consistently, ABLIM1 exerted tumor-suppressing functions in mice models. Conclusion ABLIM1 plays antitumor roles in GBM progression and could be served as a novel biomarker to help predict GBM prognosis.
Collapse
|
3
|
Guzmán-Jiménez A, González-Muñoz S, Cerván-Martín M, Rivera-Egea R, Garrido N, Luján S, Santos-Ribeiro S, Castilla JA, Gonzalvo MC, Clavero A, Vicente FJ, Maldonado V, Villegas-Salmerón J, Burgos M, Jiménez R, Pinto MG, Pereira I, Nunes J, Sánchez-Curbelo J, López-Rodrigo O, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Carmona FD, Bossini-Castillo L. Contribution of TEX15 genetic variants to the risk of developing severe non-obstructive oligozoospermia. Front Cell Dev Biol 2022; 10:1089782. [PMID: 36589743 PMCID: PMC9797780 DOI: 10.3389/fcell.2022.1089782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Severe spermatogenic failure (SPGF) represents one of the most relevant causes of male infertility. This pathological condition can lead to extreme abnormalities in the seminal sperm count, such as severe oligozoospermia (SO) or non-obstructive azoospermia (NOA). Most cases of SPGF have an unknown aetiology, and it is known that this idiopathic form of male infertility represents a complex condition. In this study, we aimed to evaluate whether common genetic variation in TEX15, which encodes a key player in spermatogenesis, is involved in the susceptibility to idiopathic SPGF. Materials and Methods: We designed a genetic association study comprising a total of 727 SPGF cases (including 527 NOA and 200 SO) and 1,058 unaffected men from the Iberian Peninsula. Following a tagging strategy, three tag single-nucleotide polymorphisms (SNPs) of TEX15 (rs1362912, rs323342, and rs323346) were selected for genotyping using TaqMan probes. Case-control association tests were then performed by logistic regression models. In silico analyses were also carried out to shed light into the putative functional implications of the studied variants. Results: A significant increase in TEX15-rs1362912 minor allele frequency (MAF) was observed in the group of SO patients (MAF = 0.0842) compared to either the control cohort (MAF = 0.0468, OR = 1.90, p = 7.47E-03) or the NOA group (MAF = 0.0472, OR = 1.83, p = 1.23E-02). The genotype distribution of the SO population was also different from those of both control (p = 1.14E-02) and NOA groups (p = 4.33-02). The analysis of functional annotations of the human genome suggested that the effect of the SO-associated TEX15 variants is likely exerted by alteration of the binding affinity of crucial transcription factors for spermatogenesis. Conclusion: Our results suggest that common variation in TEX15 is involved in the genetic predisposition to SO, thus supporting the notion of idiopathic SPGF as a complex trait.
Collapse
Affiliation(s)
- Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Valencia, Spain,IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain,Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - José A. Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain,CEIFER Biobanco—GAMETIA, Granada, Spain
| | - M. Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain
| | - F. Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,UGC de Urología, HU Virgen de las Nieves, Granada, Spain
| | - Vicente Maldonado
- UGC de Obstetricia y Ginecología, Complejo Hospitalario de Jaén, Jaén, Spain
| | - Javier Villegas-Salmerón
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Maria Graça Pinto
- Centro de Medicina Reprodutiva, Maternidade Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - Isabel Pereira
- Departamento de Obstetrícia, Ginecologia e Medicina da Reprodução, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - Joaquim Nunes
- Departamento de Obstetrícia, Ginecologia e Medicina da Reprodução, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patricia Isabel Marques
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipa Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Alberto Barros
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,ToxOmics—Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M. Lopes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,CGPP-IBMC—Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,*Correspondence: F. David Carmona, ; Lara Bossini-Castillo,
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,*Correspondence: F. David Carmona, ; Lara Bossini-Castillo,
| | | | | |
Collapse
|
4
|
Immune and spermatogenesis-related loci are involved in the development of extreme patterns of male infertility. Commun Biol 2022; 5:1220. [PMID: 36357561 PMCID: PMC9649734 DOI: 10.1038/s42003-022-04192-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
We conducted a genome-wide association study in a large population of infertile men due to unexplained spermatogenic failure (SPGF). More than seven million genetic variants were analysed in 1,274 SPGF cases and 1,951 unaffected controls from two independent European cohorts. Two genomic regions were associated with the most severe histological pattern of SPGF, defined by Sertoli cell-only (SCO) phenotype, namely the MHC class II gene HLA-DRB1 (rs1136759, P = 1.32E-08, OR = 1.80) and an upstream locus of VRK1 (rs115054029, P = 4.24E-08, OR = 3.14), which encodes a protein kinase involved in the regulation of spermatogenesis. The SCO-associated rs1136759 allele (G) determines a serine in the position 13 of the HLA-DRβ1 molecule located in the antigen-binding pocket. Overall, our data support the notion of unexplained SPGF as a complex trait influenced by common variation in the genome, with the SCO phenotype likely representing an immune-mediated condition. A GWAS in a large case-control cohort of European ancestry identifies two genomic regions, the MHC class II gene HLA-DRB1 and an upstream locus of VRK1, that are associated with the most severe phenotype of spermatogenic failure.
Collapse
|
5
|
Kyrgiafini MA, Sarafidou T, Mamuris Z. The Role of Long Noncoding RNAs on Male Infertility: A Systematic Review and In Silico Analysis. BIOLOGY 2022; 11:biology11101510. [PMID: 36290414 PMCID: PMC9598197 DOI: 10.3390/biology11101510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Male infertility is a complex disorder affecting many couples worldwide. Long noncoding RNAs (lncRNAs) regulate important cellular processes; however, a comprehensive understanding of their role in male infertility is limited. This systematic review investigates the differential expressions of lncRNAs in male infertility or variations in lncRNA regions associated with it. The PRISMA guidelines were used to search Pubmed and Web of Science (1 June 2022). Inclusion criteria were human participants, patients diagnosed with male infertility, and English language speakers. We also performed an in silico analysis investigating lncRNAs that are reported in many subtypes of male infertility. A total of 625 articles were found, and after the screening and eligibility stages, 20 studies were included in the final sample. Many lncRNAs are deregulated in male infertility, and interactions between lncRNAs and miRNAs play an important role. However, there is a knowledge gap regarding the impact of variants found in lncRNA regions. Furthermore, eight lncRNAs were identified as differentially expressed in many subtypes of male infertility. After in silico analysis, gene ontology (GO) and KEGG enrichment analysis of the genes targeted by them revealed their association with bladder and prostate cancer. However, pathways involved in general in tumorigenesis and cancer development of all types, such as p53 pathways, apoptosis, and cell death, were also enriched, indicating a link between cancer and male infertility. This evidence, however, is preliminary. Future research is needed to explore the exact mechanism of action of the identified lncRNAs and investigate the association between male infertility and cancer.
Collapse
|
6
|
Cerván-Martín M, Bossini-Castillo L, Guzmán-Jiménez A, Rivera-Egea R, Garrido N, Lujan S, Romeu G, Santos-Ribeiro S, Group I, Group LC, Castilla JA, Gonzalvo MC, Clavero A, Maldonado V, Vicente FJ, Burgos M, Jiménez R, González-Muñoz S, Sánchez-Curbelo J, López-Rodrigo O, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Larriba S, Lopes AM, Palomino-Morales RJ, Carmona FD. Common genetic variation in KATNAL1 non-coding regions is involved in the susceptibility to severe phenotypes of male infertility. Andrology 2022; 10:1339-1350. [PMID: 35752927 PMCID: PMC9546047 DOI: 10.1111/andr.13221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022]
Abstract
Background Previous studies in animal models evidenced that genetic mutations of KATNAL1, resulting in dysfunction of its encoded protein, lead to male infertility through disruption of microtubule remodelling and premature germ cell exfoliation. Subsequent studies in humans also suggested a possible role of KATNAL1 single‐nucleotide polymorphisms in the development of male infertility as a consequence of severe spermatogenic failure. Objectives The main objective of the present study is to evaluate the effect of the common genetic variation of KATNAL1 in a large and phenotypically well‐characterised cohort of infertile men because of severe spermatogenic failure. Materials and methods A total of 715 infertile men because of severe spermatogenic failure, including 210 severe oligospermia and 505 non‐obstructive azoospermia patients, as well as 1058 unaffected controls were genotyped for three KATNAL1 single‐nucleotide polymorphism taggers (rs2077011, rs7338931 and rs2149971). Case–control association analyses by logistic regression assuming different models and in silico functional characterisation of risk variants were conducted. Results Genetic associations were observed between the three analysed taggers and different severe spermatogenic failure groups. However, in all cases, the haplotype model (rs2077011*C | rs7338931*T | rs2149971*A) better explained the observed associations than the three risk alleles independently. This haplotype was associated with non‐obstructive azoospermia (adjusted p = 4.96E‐02, odds ratio = 2.97), Sertoli‐cell only syndrome (adjusted p = 2.83E‐02, odds ratio = 5.16) and testicular sperm extraction unsuccessful outcomes (adjusted p = 8.99E‐04, odds ratio = 6.13). The in silico analyses indicated that the effect on severe spermatogenic failure predisposition could be because of an alteration of the KATNAL1 splicing pattern. Conclusions Specific allelic combinations of KATNAL1 genetic polymorphisms may confer a risk of developing severe male infertility phenotypes by favouring the overrepresentation of a short non‐functional transcript isoform in the testis.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Valencia, Spain.,IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Nicolás Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Lujan
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Gema Romeu
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | | | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain.,CEIFER Biobanco - NextClinics, Granada, Spain
| | - M Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Vicente Maldonado
- UGC de Obstetricia y Ginecología, Complejo Hospitalario de Jaén, Jaén, Spain
| | - F Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC de Urología, HU Virgen de las Nieves, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patricia I Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipa Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Alberto Barros
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal.,ToxOmics - Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, de Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
7
|
Common Variation in the PIN1 Locus Increases the Genetic Risk to Suffer from Sertoli Cell-Only Syndrome. J Pers Med 2022; 12:jpm12060932. [PMID: 35743717 PMCID: PMC9225465 DOI: 10.3390/jpm12060932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
We aimed to analyze the role of the common genetic variants located in the PIN1 locus, a relevant prolyl isomerase required to control the proliferation of spermatogonial stem cells and the integrity of the blood–testis barrier, in the genetic risk of developing male infertility due to a severe spermatogenic failure (SPGF). Genotyping was performed using TaqMan genotyping assays for three PIN1 taggers (rs2287839, rs2233678 and rs62105751). The study cohort included 715 males diagnosed with SPGF and classified as suffering from non-obstructive azoospermia (NOA, n = 505) or severe oligospermia (SO, n = 210), and 1058 controls from the Iberian Peninsula. The allelic frequency differences between cases and controls were analyzed by the means of logistic regression models. A subtype specific genetic association with the subset of NOA patients classified as suffering from the Sertoli cell-only (SCO) syndrome was observed with the minor alleles showing strong risk effects for this subset (ORaddrs2287839 = 1.85 (1.17–2.93), ORaddrs2233678 = 1.62 (1.11–2.36), ORaddrs62105751 = 1.43 (1.06–1.93)). The causal variants were predicted to affect the binding of key transcription factors and to produce an altered PIN1 gene expression and isoform balance. In conclusion, common non-coding single-nucleotide polymorphisms located in PIN1 increase the genetic risk to develop SCO.
Collapse
|
8
|
Shi S, Wang T, Wang L, Wang M. Nomogram based on a circular RNA biomarker for predicting the likelihood of successful sperm retrieval via microdissection testicular sperm extraction in patients with idiopathic non-obstructive azoospermia. Front Endocrinol (Lausanne) 2022; 13:1109807. [PMID: 36733803 PMCID: PMC9886672 DOI: 10.3389/fendo.2022.1109807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Many circular RNAs (circRNAs) are specifically expressed in the testes and seminal plasma of patients with non-obstructive azoospermia (NOA), highlighting them as potential predictors of microdissection testicular sperm extraction (micro-TESE) outcomes. Although research has indicated that circular RNA monoglyceride lipase (circ_MGLL) is highly expressed in the testicular tissues of patients with NOA, the association between circ_MGLL expression and sperm retrieval outcomes (SROs) in patients with idiopathic non-obstructive azoospermia (iNOA) receiving micro-TESE remains unclear. METHODS This single-center, retrospective cohort study enrolled 114 patients with iNOA who underwent micro-TESE at Northwest Women's and Children's Hospital from January 2017 to November 2021. A logistic regression model was used to examine associations between SRO and circ_MGLL expression in testicular tissues, the results of which were used in conjunction with previous findings to establish a nomogram. The predictive performance of the circ_MGLL-based nomogram was evaluated via calibration curves, receiver operating characteristic curves, and decision curve analysis (DCA) using an internal validation method. RESULTS The generalized additive model indicated that the probability of successful SRO for micro-TESE decreased as circ_MGLL expression increased in testicular tissues. Across the entire cohort, univariate logistic regression analysis revealed that circ_MGLL expression was inversely associated with SRO in patients with NOA. This trend did not change after stratification according to age, body mass index, testicular volume, follicle-stimulating hormone (FSH) level, luteinizing hormone (LH) level, testosterone (T) level, or pathological type (or after adjusting for these confounders) (odds ratio <1, P < 0.001). A nomogram was then generated by integrating circ_MGLL, pathological types, and FSH, LH, and T levels. The circ_MGLL-based predictive model achieved satisfactory discrimination, with an area under the curve of 0.857, and the calibration curves demonstrated impressive agreement. The DCA indicated that the net clinical benefit of the circ_MGLL-based predictive model was greater than that of circ_MGLL alone. CONCLUSION circ_MGLL is significantly associated with the SRO of micro-TESE in patients with iNOA. The circ_MGLL-based nomogram developed in the current study can predict successful SRO with high accuracy.
Collapse
Affiliation(s)
- Shengjia Shi
- Reproductive Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Tianwei Wang
- Reproductive Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Lei Wang
- Reproductive Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Mingjuan Wang
- Department of Pathology, Northwest Women’s and Children’s Hospital, Xi’an, China
- *Correspondence: Mingjuan Wang,
| |
Collapse
|
9
|
Schlegel PN. Human Spermatogenesis: Insights From the Clinical Care of Men With Infertility. Front Endocrinol (Lausanne) 2022; 13:889959. [PMID: 35663331 PMCID: PMC9159388 DOI: 10.3389/fendo.2022.889959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Human spermatogenesis is a qualitatively and quantitatively different process than that observed for most other mammals. In contrast with most other mammals, human spermatogenesis is characterized by reduced quantitative production and more abnormal sperm morphology. Until recently, direct evaluation and observations of human sperm production has been limited and the majority of scientific knowledge regarding spermatogenesis was derived from rodent models of study. Unique opportunities to observe human spermatogenesis have occurred as a consequence of the treatment of severe male infertility. These patients have sperm production so limited that no sperm reach the ejaculate so their fertility treatment involves surgical sperm retrieval from the testis, coupled with use of those sperm with advanced assisted reproductive techniques. Treatment of men with severe male infertility has enhanced identification of new genetic abnormalities that may cause this condition, since they now seek medical care. Three key novel concepts have resulted: (a) spermatogenesis is spatially heterogeneous in the human male, especially when sperm production is compromised, (b) genetic abnormalities are common in men with severe male infertility, particularly in men with diffuse maturation arrest and (c) rodent studies may not be an ideal model for understanding human male infertility. Scientific understanding of human spermatogenesis has been enhanced by these clinical observations.
Collapse
|