1
|
McDonald CR. Is Bigger Better? Exploring the Compensatory Versus Pathological Nature of Amygdala Hypertrophy. Epilepsy Curr 2025:15357597251328822. [PMID: 40190793 PMCID: PMC11966622 DOI: 10.1177/15357597251328822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Original Article Citation Zubal R, Velicky Buecheler M, Sone D, Postma T, De Tisi J, Caciagli L, Winston GP, Sidhu MK, Long L, Xiao B, Mcevoy AW, Miserocchi A, Vos SB, Baumann CR, Duncan JS, Koepp MJ, Galovic M. Brain Hypertrophy in Patients With Mesial Temporal Lobe Epilepsy With Hippocampal Sclerosis and Its Clinical Correlates. Neurology. 2025 Jan 28;104(2):e210182. doi: 10.1212/WNL.0000000000210182. Epub 2024 Dec 23. PMID: 39715478; PMCID: PMC11666274. Background and Objectives: Mesial temporal lobe epilepsy (mTLE) is generally associated with focal brain atrophy, but little knowledge exists on possible disease-related hypertrophy of brain structures. We hypothesized that repeated seizures or adaptive plasticity may lead to focal brain hypertrophy and aimed to investigate associated clinical correlates. Methods: In this cohort study, we included patients with mTLE undergoing detailed epilepsy evaluations and matched healthy volunteers (HVs) from 2 tertiary centers (discovery and validation cohorts). We assessed areas of brain hypertrophy and their clinical correlates using whole-brain voxel-based or surface-based morphometry (VBM, SBM), subcortical volumetry, and shape analysis of T1-weighted MRI data by fitting linear models. We evaluated the functional implications of the findings on memory encoding using fMRI. Results: We included 135 patients with mTLE with neuropathology-confirmed hippocampal sclerosis (77 left, 58 right; 82 women; mean age 37 ± 11 years) and 47 HVs (29 women, mean age 36 ± 11 years) in the discovery cohort. VBM detected increased gray matter volume of the contralateral amygdala in patients with both left (t = 8.7, p < .001) and right (t = 7.9, p < .001) mTLE. We confirmed the larger volume of the contralateral amygdala using volumetry (left mTLE 1.74 ± 0.16 mL vs HVs 1.64 ± 0.11, p < .001; right mTLE 1.79 ± 0.18 mL vs HVs 1.70 ± 0.11, p = .002) and shape analysis (left mTLE p ≤ .005; right mTLE p = .006). We validated the hypertrophy of the contralateral amygdala in the validation cohort (mTLE, n = 18, 1.91 ± 0.20 mL; HVs, n = 18, 1.75 ± 0.13; p = .009). In left mTLE, contralateral amygdala hypertrophy was associated with poorer verbal memory and, in right mTLE, with more frequent focal-to-bilateral tonic-clonic seizures. A larger volume of the contralateral amygdala correlated with increased functional activation of the right parietal memory encoding network in a subgroup (44/135 patients with mTLE, 26/47 HVs) receiving fMRI. Discussion: Unilateral mTLE due to hippocampal sclerosis is associated with hypertrophy of the contra-lateral amygdala. This may represent plasticity to compensate for verbal memory deficits or may be the consequence of seizure spread to the contralateral hemisphere.
Collapse
Affiliation(s)
- Carrie R McDonald
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego
| |
Collapse
|
2
|
Ferro M, Ramos JN, Visani E, Bevilacqua M, Garbelli R, Cuccarini V, Biancheri D, Marucci G, Del Sole A, Rizzi M, Villani F, Deleo F, Stabile A, Parente A, Pastori C, Ferrario R, Di Giacomo R, Quintas R, de Curtis M, Doniselli FM, Didato G. Temporal lobe epilepsy with isolated amygdala enlargement: anatomo-electro-clinical features and long-term outcome. J Neurol 2025; 272:130. [PMID: 39812849 DOI: 10.1007/s00415-024-12806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Temporal lobe epilepsy with isolated amygdala enlargement (TLE-AE) still lacks a definite characterization and controversies exist. METHODS We conducted a retrospective study identifying brain MRI scans with isolated AE between 2015 and 2021. We collected clinical and paraclinical data of patients with TLE-AE and evaluated the outcome. RESULTS Forty-one subjects were included (20 males; AE: right 13; left 24; bilateral 4). A strong correlation was found between AE and MRI T2-hyperintensity (right: p < 0.005; left: p < 0.003). There was no history of febrile seizures; 85,4% had focal seizures with impaired awareness, 78,1% reported auras (epigastric sensation, déjà-vu, anxiety), 37% had psychiatric disturbances, 48,6% presented with cognitive impairment. We report that AE correlates with FDG-PET temporomesial hypometabolism (right: p = 0.022; left: p = 0.053), temporal interictal activity on EEG (n = 41), and temporal ictal findings during long-term video-EEG monitoring (n = 23). Epilepsy surgery (n = 17) revealed gliosis (n = 4), inflammatory infiltrates (n = 4), or low-grade epilepsy-associated neuroepithelial tumors (n = 5) in the amygdala. Other treatments were immunotherapy (n = 6) and only antiseizure medications (n = 17), with good prognosis (58,1% seizure-free and 17,1% only with auras at last follow-up). There was no correlation between longitudinal changes in seizure frequency and amygdala size (p = 0.848) and T2-hyperintensity (p = 0.909). CONCLUSIONS AE should be searched in TLE patients with typical aura, psychiatric and/or neurocognitive disturbances. The strong correlations found between AE lateralization and neurophysiological, FDG-PET, and MRI data support involvement of AE in the epileptogenic network. Drug resistance should prompt presurgical study. Inflammation in amygdala specimens and response after immunotherapy suggest an immune-mediated etiology in some TLE-AE cases.
Collapse
Affiliation(s)
- Margarida Ferro
- Neurology Department, Hospital de S. José, Unidade Local de Saúde São José, Lisbon, Portugal
| | - João Nuno Ramos
- Neuroradiology Department, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
- Imaging Department, Neuroradiology Unit, Centro Hospitalar Vila Nova de Gaia / Espinho, Vila Nova de Gaia, Portugal
| | - Elisa Visani
- Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Margherita Bevilacqua
- Postgraduate School in Radiodiagnostics, Università Degli Studi Di Milano, 20122, Milan, Italy
| | - Rita Garbelli
- Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dalila Biancheri
- Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Del Sole
- Nuclear Medicine Unit, Department of Health Sciences, ASST Santi Paolo E Carlo, University of Milan, Milan, Italy
| | - Michele Rizzi
- Functional Neurosurgery Unit, Department of Neurosurgery Fondazione, IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Flavio Villani
- Division of Neurophysiology and Epilepsy Centre, IRCCS San Martino Policlinic Hospital, Genoa, Italy
| | - Francesco Deleo
- Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Stabile
- Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Annalisa Parente
- Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pastori
- Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rosalba Ferrario
- Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Roberta Di Giacomo
- Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rui Quintas
- Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco de Curtis
- Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Giuseppe Didato
- Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
3
|
You J, Fuchs J, Wang M, Hu Q, Tao X, Krolczyk E, Tirumala T, Bragin A, Liu H, Engel J, Li L. Preventive effects of transcranial photobiomodulation on epileptogenesis in a kainic acid-induced rat epilepsy model. Exp Neurol 2025; 383:115005. [PMID: 39419434 DOI: 10.1016/j.expneurol.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy affects nearly 50 million people worldwide and is a major burden to families and society. A significant portion of patients are living in developing countries with limited access to therapeutic resources. This highlights the urgent need to develop more readily available, noninvasive treatments for seizure control. This research explored the effectiveness of transcranial photobiomodulation (tPBM), a non-invasive method utilizing photon-tissue interactions, for preventing epileptogenesis and controlling seizures. METHODS In a kainic acid (KA)-induced rat model of epilepsy, two different wavelengths of tPBM, 808 nm and 940 nm, were applied separately in two groups of animals (KA+808 and KA+940). The ability of tPBM for seizure control was evaluated by comparing the occurrence rate of interictal epileptiform discharges (IED) and behavioral seizures among three groups: KA, KA+808, KA+940. Prevention of epileptogenesis was assessed by comparing the occurrence rate of high frequency oscillations (HFOs), especially fast ripple (FR) rate, among the three groups. Nissl staining and immunostaining for the apoptosis marker caspase-3 were used as indications of neuroprotection. RESULTS The KA+808 group and the KA+940 group showed significantly lower FR and IED rates compared to the KA group. Weekly FR rates started to drop during the first week of tPBM treatment. The KA+808 and KA+940 groups also displayed milder seizure behaviors and less neuronal loss in hippocampal areas compared to KA rats without tPBM treatment. Similarly, lower caspase-3 levels in the KA+808 and KA+940 compared with the KA group suggested effectiveness of tPBM in reducing cell death. SIGNIFICANCE tPBM of 808 nm/940 nm showed effectiveness in suppressing epileptogenesis and ictogenesis in the KA-induced rat epilepsy model. This effectiveness of tPBM can be linked to the neuroprotection benefits of photon-tissue interactions. Further studies are warranted to elucidate the fundamental mechanism of tPBM protection, determine optimal treatment parameters and validate its effectiveness in other epilepsy models.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Jannon Fuchs
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Miaomiao Wang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Qichan Hu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Xiaoxiao Tao
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Elizabeth Krolczyk
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Tanya Tirumala
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Jerome Engel
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, California, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA; Department of Neurology, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
4
|
Nakagawa Y, Satake Y, Hata M, Ikeda M. Anterograde amnesia recurrence in temporal lobe epilepsy with amygdala-enlargement. BMJ Case Rep 2024; 17:e262302. [PMID: 39730167 DOI: 10.1136/bcr-2024-262302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024] Open
Abstract
Temporal lobe epilepsy (TLE) can cause different types of memory impairments. Here, we report a case of immediate improvement of memory impairment following antiepileptic drug (AED) treatment in a patient with TLE with amygdala enlargement (TLE-AE), who rapidly developed recurrence. The patient was a man in his 60s whose family members complained of his amnesia. Neuropsychological investigations detected obvious recent and remote memory loss and executive function impairments. Our examinations revealed evidence of TLE and bilateral amygdala enlargement without any results suggesting organic diseases, resulting in a diagnosis of TLE-AE. Although treatment with levetiracetam immediately improved recent memory and executive function, the improvement of the former was temporary. His recent memory loss impairments recurred within 3 months, but were recovered again after switching drug treatment to lacosamide and suppressing epileptic seizures. Careful follow-up after starting AED and sufficient AED adjustment is important in the treatment of memory problems in TLE-AE.
Collapse
Affiliation(s)
- Yuta Nakagawa
- Department of Psychiatry, Osaka University, Suita, Osaka, Japan
- Asakayama General Hospital, Sakai, Osaka, Japan
| | - Yuto Satake
- Department of Psychiatry, Osaka University, Suita, Osaka, Japan
- Division of Psychiatry, University College London, London, UK
| | - Masahiro Hata
- Department of Psychiatry, Osaka University, Suita, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Lam HW, Patodia S, Zeicu C, Lim YM, Mrzyglod A, Scott C, Oliveira J, De Tisi J, Legouhy A, Zhang H, Koepp M, Diehl B, Thom M. Quantitative cellular pathology of the amygdala in temporal lobe epilepsy and correlation with magnetic resonance imaging volumetry, tissue microstructure, and sudden unexpected death in epilepsy risk factors. Epilepsia 2024; 65:2368-2385. [PMID: 38837385 DOI: 10.1111/epi.18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE Amygdala enlargement can occur in temporal lobe epilepsy, and increased amygdala volume is also reported in sudden unexpected death in epilepsy (SUDEP). Apnea can be induced by amygdala stimulation, and postconvulsive central apnea (PCCA) and generalized seizures are both known SUDEP risk factors. Neurite orientation dispersion and density imaging (NODDI) has recently provided additional information on altered amygdala microstructure in SUDEP. In a series of 24 surgical temporal lobe epilepsy cases, our aim was to quantify amygdala cellular pathology parameters that could predict enlargement, NODDI changes, and ictal respiratory dysfunction. METHODS Using whole slide scanning automated quantitative image analysis methods, parallel evaluation of myelin, axons, dendrites, oligodendroglia, microglia, astroglia, neurons, serotonergic networks, mTOR-pathway activation (pS6) and phosphorylated tau (pTau; AT8, AT100, PHF) in amygdala, periamygdala cortex, and white matter regions of interest were compared with preoperative magnetic resonance imaging data on amygdala size, and in 13 cases with NODDI and evidence of ictal-associated apnea. RESULTS We observed significantly higher glial labeling (Iba1, glial fibrillary acidic protein, Olig2) in amygdala regions compared to cortex and a strong positive correlation between Olig2 and Iba1 in the amygdala. Larger amygdala volumes correlated with lower microtubule-associated protein (MAP2), whereas higher NODDI orientation dispersion index correlated with lower Olig2 cell densities. In the three cases with recorded PCCA, higher MAP2 and pS6-235 expression was noted than in those without. pTau did not correlate with SUDEP risk factors, including seizure frequency. SIGNIFICANCE Histological quantitation of amygdala microstructure can shed light on enlargement and diffusion imaging alterations in epilepsy to explore possible mechanisms of amygdala dysfunction, including mTOR pathway activation, that in turn may increase the risk for SUDEP.
Collapse
Affiliation(s)
- Hou Wang Lam
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Smriti Patodia
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Claudia Zeicu
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Yau Mun Lim
- Division of Neuropathology, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Foundation Trust, London, UK
| | - Alicja Mrzyglod
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Catherine Scott
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Foundation Trust, London, UK
| | - Joana Oliveira
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Foundation Trust, London, UK
| | - Jane De Tisi
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Antoine Legouhy
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Hui Zhang
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Foundation Trust, London, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, University College Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Shakhatreh L, Sinclair B, McLean C, Lui E, Morokoff AP, King JA, Chen Z, Perucca P, O'Brien TJ, Kwan P. Amygdala enlargement in temporal lobe epilepsy: Histopathology and surgical outcomes. Epilepsia 2024; 65:1709-1719. [PMID: 38546705 DOI: 10.1111/epi.17968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVES Amygdala enlargement is detected on magnetic resonance imaging (MRI) in some patients with drug-resistant temporal lobe epilepsy (TLE), but its clinical significance remains uncertain We aimed to assess if the presence of amygdala enlargement (1) predicted seizure outcome following anterior temporal lobectomy with amygdalohippocampectomy (ATL-AH) and (2) was associated with specific histopathological changes. METHODS This was a case-control study. We included patients with drug-resistant TLE who underwent ATL-AH with and without amygdala enlargement detected on pre-operative MRI. Amygdala volumetry was done using FreeSurfer for patients who had high-resolution T1-weighted images. Mann-Whitney U test was used to compare pre-operative clinical characteristics between the two groups. The amygdala volume on the epileptogenic side was compared to the amygdala volume on the contralateral side among cases and controls. Then, we used a two-sample, independent t test to compare the means of amygdala volume differences between cases and controls. The chi-square test was used to assess the correlation of amygdala enlargement with (1) post-surgical seizure outcomes and (2) histopathological changes. RESULTS Nineteen patients with and 19 patients without amygdala enlargement were studied. Their median age at surgery was 38 years for cases and 39 years for controls, and 52.6% were male. There were no statistically significant differences between the two groups in their pre-operative clinical characteristics. There were significant differences in the means of volume difference between cases and controls (Diff = 457.2 mm3, 95% confidence interval [CI] 289.6-624.8; p < .001) and in the means of percentage difference (p < .001). However, there was no significant association between amygdala enlargement and surgical outcome (p = .72) or histopathological changes (p = .63). SIGNIFICANCE The presence of amygdala enlargement on the pre-operative brain MRI in patients with TLE does not affect the surgical outcome following ATL-AH, and it does not necessarily suggest abnormal histopathology. These findings suggest that amygdala enlargement might reflect a secondary reactive process to seizures in the epileptogenic temporal lobe.
Collapse
Affiliation(s)
- Lubna Shakhatreh
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Ben Sinclair
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia
| | - Catriona McLean
- Department of Anatomical Pathology, The Alfred Hospital, Melbourne, Australia
| | - Elaine Lui
- Department of Radiology, University of Melbourne, The Royal Melbourne Hospital, Melbourne, Australia
| | - Andrew P Morokoff
- Department of Surgery, University of Melbourne, The Royal Melbourne Hospital, Melbourne, Australia
| | - James A King
- Department of Surgery, University of Melbourne, The Royal Melbourne Hospital, Melbourne, Australia
| | - Zhibin Chen
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Australia
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Terence J O'Brien
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
- Department of Medicine, University of Melbourne, The Royal Melbourne Hospital, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Neurology, Alfred Health, Melbourne, Australia
- Department of Medicine, University of Melbourne, The Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
7
|
Jiang Y, Li W, Li J, Li X, Zhang H, Sima X, Li L, Wang K, Li Q, Fang J, Jin L, Gong Q, Yao D, Zhou D, Luo C, An D. Identification of four biotypes in temporal lobe epilepsy via machine learning on brain images. Nat Commun 2024; 15:2221. [PMID: 38472252 DOI: 10.1038/s41467-024-46629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Artificial intelligence provides an opportunity to try to redefine disease subtypes based on similar pathobiology. Using a machine-learning algorithm (Subtype and Stage Inference) with cross-sectional MRI from 296 individuals with focal epilepsy originating from the temporal lobe (TLE) and 91 healthy controls, we show phenotypic heterogeneity in the pathophysiological progression of TLE. This study was registered in the Chinese Clinical Trials Registry (number: ChiCTR2200062562). We identify two hippocampus-predominant phenotypes, characterized by atrophy beginning in the left or right hippocampus; a third cortex-predominant phenotype, characterized by hippocampus atrophy after the neocortex; and a fourth phenotype without atrophy but amygdala enlargement. These four subtypes are replicated in the independent validation cohort (109 individuals). These subtypes show differences in neuroanatomical signature, disease progression and epilepsy characteristics. Five-year follow-up observations of these individuals reveal differential seizure outcomes among subtypes, indicating that specific subtypes may benefit from temporal surgery or pharmacological treatment. These findings suggest a diverse pathobiological basis underlying focal epilepsy that potentially yields to stratification and prognostication - a necessary step for precise medicine.
Collapse
Affiliation(s)
- Yuchao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Geriatrics, West China Hospital, Sichuan University, China National Clinical Research Center for Geriatric Medicine, Chengdu, China
| | - Jinmei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiuli Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heng Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiutian Sima
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Luying Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kang Wang
- Epilepsy Center, Department of Neurology, The first affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qifu Li
- Department of Neurology, The first affiliated hospital, Hainan Medical University and the Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, Hainan, China
| | - Jiajia Fang
- Department of Neurology, The fourth affiliated hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Lu Jin
- Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and technology, University of Electronic Science and Technology of China, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and technology, University of Electronic Science and Technology of China, Chengdu, China.
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, China.
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Miao A, Wang K. Contribution of cerebrospinal fluid antibody titers and sex to acute cerebral blood flow in patients with anti-NMDAR autoimmune encephalitis. Front Immunol 2024; 15:1299898. [PMID: 38495877 PMCID: PMC10940436 DOI: 10.3389/fimmu.2024.1299898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Objective The objective of this study was to elucidate the contribution of cerebrospinal fluid (CSF) antibody titers (AT) and sex to acute cerebral blood flow (CBF) in patients diagnosed with anti-N-methyl-d-aspartate receptor autoimmune encephalitis (NMDAR AE). Methods Forty-five patients diagnosed with NMDAR AE were recruited from December 2016 to January 2023. The acute CBF in patients with NMDAR AE at the early stage of the disease was analyzed using arterial spin labeling. The groups were compared based on CSF AT and sex. The connectivity of the CBF in the region of interest was also compared between groups. Results The patients with different CSF AT exhibited varied brain regions with CBF abnormalities compared to the healthy subjects (p = 0.001, cluster-level FWE corrected). High antibody titers (HAT) in CSF contributed to more brain regions with CBF alterations in female patients than in female patients with low antibody titers (LAT) in CSF (p = 0.001, cluster-level FWE corrected). Female patients with HAT in CSF displayed more decreased CBF in the left post cingulum gyrus, left precuneus, left calcarine, and left middle cingulum gyrus than the male patients with the same AT in CSF (p = 0.001, cluster-level FWE corrected). All patients with NMDAR AE showed increased CBF in the left putamen (Putamen_L) and left amygdala (Amygdala_L) and decreased CBF in the right precuneus (Precuneus_R), which suggests that these are diagnostic CBF markers for NMDAR AE. Conclusion CSF AT and sex contributed to CBF abnormalities in the patients diagnosed with NMDAR AE. Altered CBF might potentially serve as the diagnostic marker for NMDAR AE.
Collapse
Affiliation(s)
- Ailiang Miao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Jiangsu, Nanjing, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Wang X, Luo X, Pan H, Wang X, Xu S, Li H, Lin Z. Performance of hippocampal radiomics models based on T2-FLAIR images in mesial temporal lobe epilepsy with hippocampal sclerosis. Eur J Radiol 2023; 167:111082. [PMID: 37708677 DOI: 10.1016/j.ejrad.2023.111082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Preoperative identification of hippocampal sclerosis (HS) is crucial to successful surgery for mesial temporal lobe epilepsy (MTLE). We aimed to investigate the diagnostic performance of hippocampal radiomics models based on T2 fluid-attenuated inversion recovery (FLAIR) images in MTLE with HS. METHODS We analysed 210 cases, including 172 HS pathology-confirmed cases (100 magnetic resonance imaging [MRI]-positive cases [MRI + HS], 72 MRI-negative HS cases [MRI - HS]), and 38 healthy controls (HC). The hippocampus was delineated slice by slice on an oblique coronal plane by a T2-FLAIR sequence, perpendicular to the hippocampus's long axis, to obtain a three-dimensional region of interest. Radiomics were processed using Artificial Intelligence Kit software; logistic regression radiomics models were constructed. The model evaluation indexes included the area under the curve (AUC), accuracy, sensitivity, and specificity. RESULTS The respective AUC, accuracy, sensitivity, and specificity were 0.863, 81.4%, 78.0%, and 84.6% between the MRI - HS and HC groups in the training set and 0.855, 75.0%, 68.2%, and 81.8% in the test set; 0.975, 95.0%, 92.9%, and 98.0% between the MRI + HS and HC groups in the training set and 0.954, 88.7%, 90.0%, and 87.0% in the test set; and 0.912, 84.3%, 83.3%, and 86.5% between the MTLE and HC groups in the training set and 0.854, 79.7%, 80.8%, and 77.3% in the test set. The AUC values of the comparative radiomics models were > 0.85, indicating good diagnostic efficiency. CONCLUSION The hippocampal radiomics models based on T2-FLAIR images can help diagnose MTLE with HS. They can be used as biological markers for MTLE diagnosis.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Radiology, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian Province, China
| | - Xiaoting Luo
- Department of Radiology, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Haitao Pan
- Department of Radiology, Cangshan Branch of 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian Province, China
| | - Xiaoyang Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Radiology, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian Province, China
| | - Shangwen Xu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Radiology, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian Province, China.
| | - Hui Li
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Radiology, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian Province, China
| | - Zhiping Lin
- GE Healthcare, Guangzhou, Guangdong Province, China
| |
Collapse
|
10
|
Legouhy A, Allen LA, Vos SB, Oliveira JFA, Kassinopoulos M, Winston GP, Duncan JS, Ogren JA, Scott C, Kumar R, Lhatoo SD, Thom M, Lemieux L, Harper RM, Zhang H, Diehl B. Volumetric and microstructural abnormalities of the amygdala in focal epilepsy with varied levels of SUDEP risk. Epilepsy Res 2023; 192:107139. [PMID: 37068421 DOI: 10.1016/j.eplepsyres.2023.107139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Although the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure. The study included 53 healthy subjects and 143 patients with epilepsy, the latter separated into two groups according to whether TCS occur in years before scan. We used amygdala volumetry, derived from structural MRI, and tissue microstructure, derived from diffusion MRI, to identify differences between the groups. The diffusion metrics were obtained by fitting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. The analyses were performed at the whole amygdala level and at the scale of amygdaloid nuclei. Patients with epilepsy showed larger amygdala volumes and lower neurite density indices (NDI) than healthy subjects; the left amygdala volumes were especially enhanced. Microstructural changes, reflected by NDI differences, were more prominent on the left side and localized in the lateral, basal, central, accessory basal and paralaminar amygdala nuclei; basolateral NDI lowering appeared bilaterally. No significant microstructural differences appeared between epilepsy patients with and without current TCS. The central amygdala nuclei, with prominent interactions from surrounding nuclei of that structure, project to cardiovascular regions and respiratory phase switching areas of the parabrachial pons, as well as to the periaqueductal gray. Consequently, they have the potential to modify blood pressure and heart rate, and induce sustained apnea or apneusis. The findings here suggest that lowered NDI, indicative of reduced dendritic density, could reflect an impaired structural organization influencing descending inputs that modulate vital respiratory timing and drive sites and areas critical for blood pressure control.
Collapse
Affiliation(s)
- Antoine Legouhy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK.
| | - Luke A Allen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK; The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK; Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, UCL, London, UK; Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Joana F A Oliveira
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Michalis Kassinopoulos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK; Division of Neurology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
| | - Jennifer A Ogren
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Catherine Scott
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Rajesh Kumar
- Brain Research Institute, UCLA, Los Angeles, CA, USA; Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Bioengineering, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Samden D Lhatoo
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
| | - Ronald M Harper
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Brain Research Institute, UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hui Zhang
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK; The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
11
|
Legouhy A, Allen LA, Vos SB, Oliveira JFA, Kassinopoulos M, Winston GP, Duncan JS, Ogren JA, Scott C, Kumar R, Lhatoo SD, Thom M, Lemieux L, Harper RM, Zhang H, Diehl B. Volumetric and microstructural abnormalities of the amygdala in focal epilepsy with varied levels of SUDEP risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.13.23287045. [PMID: 36993394 PMCID: PMC10055456 DOI: 10.1101/2023.03.13.23287045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Although the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure. The study included 53 healthy subjects and 143 patients with epilepsy, the latter separated into two groups according to whether TCS occur in years before scan. We used amygdala volumetry, derived from structural MRI, and tissue microstructure, derived from diffusion MRI, to identify differences between the groups. The diffusion metrics were obtained by fitting diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. The analyses were performed at the whole amygdala level and at the scale of amygdaloid nuclei. Patients with epilepsy showed larger amygdala volumes and lower neurite density indices (NDI) than healthy subjects; the left amygdala volumes were especially enhanced. Microstructural changes, reflected by NDI differences, were more prominent on the left side and localized in the lateral, basal, central, accessory basal and paralaminar amygdala nuclei; basolateral NDI lowering appeared bilaterally. No significant microstructural differences appeared between epilepsy patients with and without current TCS. The central amygdala nuclei, with prominent interactions from surrounding nuclei of that structure, project to cardiovascular regions and respiratory phase switching areas of the parabrachial pons, as well as to the periaqueductal gray. Consequently, they have the potential to modify blood pressure and heart rate, and induce sustained apnea or apneusis. The findings here suggest that lowered NDI, indicative of reduced dendritic density, could reflect an impaired structural organization influencing descending inputs that modulate vital respiratory timing and drive sites and areas critical for blood pressure control.
Collapse
Affiliation(s)
- Antoine Legouhy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Luke A Allen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, UCL, London, UK
- Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Joana F A Oliveira
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Michalis Kassinopoulos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
- Division of Neurology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
| | - Jennifer A Ogren
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Catherine Scott
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Rajesh Kumar
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Bioengineering, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Samden D Lhatoo
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Maria Thom
- Department of Neuropathology, Institute of Neurology, University College London, London, UK
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
| | - Ronald M Harper
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Brain Research Institute, UCLA, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hui Zhang
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, Buckinghamshire, UK
- The Center for SUDEP Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
12
|
Potegal M, Nordman JC. Non-angry aggressive arousal and angriffsberietschaft: A narrative review of the phenomenology and physiology of proactive/offensive aggression motivation and escalation in people and other animals. Neurosci Biobehav Rev 2023; 147:105110. [PMID: 36822384 DOI: 10.1016/j.neubiorev.2023.105110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Human aggression typologies largely correspond with those for other animals. While there may be no non-human equivalent of angry reactive aggression, we propose that human proactive aggression is similar to offense in other animals' dominance contests for territory or social status. Like predation/hunting, but unlike defense, offense and proactive aggression are positively reinforcing, involving dopamine release in accumbens. The drive these motivational states provide must suffice to overcome fear associated with initiating risky fights. We term the neural activity motivating proactive aggression "non-angry aggressive arousal", but use "angriffsberietschaft" for offense motivation in other animals to acknowledge possible differences. Temporal variation in angriffsberietschaft partitions fights into bouts; engendering reduced anti-predator vigilance, redirected aggression and motivational over-ride. Increased aggressive arousal drives threat-to-attack transitions, as in verbal-to-physical escalation and beyond that, into hyper-aggression. Proactive aggression and offense involve related neural activity states. Cingulate, insular and prefrontal cortices energize/modulate aggression through a subcortical core containing subnuclei for each aggression type. These proposals will deepen understanding of aggression across taxa, guiding prevention/intervention for human violence.
Collapse
Affiliation(s)
| | - Jacob C Nordman
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| |
Collapse
|
13
|
Ohseto H, Soga T, Kakisaka Y, Jin K, Ukishiro K, Konomatsu K, Kubota T, Fujimori J, Nakasato N. Ictal chest discomfort in a patient with temporal lobe seizures and amygdala enlargement. Epilepsy Behav Rep 2022; 21:100578. [PMID: 36606273 PMCID: PMC9807991 DOI: 10.1016/j.ebr.2022.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Chest discomfort is the representative symptom of dangerous coronary artery disease (CAD), but rarely occurs in patients with seizures. We treated a 74-year-old man with right mesial temporal lobe epilepsy and amygdala enlargement, who was initially suspected of CAD and underwent repeated cardiac angiography because of recurrent episodes of paroxysmal chest discomfort starting from 68 years old. He visited an epileptologist and underwent long-term video electroencephalography monitoring (LTVEM), which confirmed right temporal seizure onset during a habitual episodes of "chest discomfort," stereotyped movement of chest rubbing with the right hand, followed by impaired conscousness. Brain magnetic resonance imaging revealed right amygdala enlargement. The present case emphasizes the importance of the wide range of symptoms, such as chest discomfort, which may associated with epielpsy and result in a delayed diagnosis. LTVEM is useful for diagnosis of epilepsy with unusual seizure semiology by recording ictal EEG changes during chest discomfort.
Collapse
Key Words
- AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
- Amygdala enlargement
- CAD, coronary artery disease
- CAG, coronary angiography
- CASPAR2, contactin-associated-protein-receptor-2
- Chest discomfort
- EEG, electroencephalography
- GABABR, γ-aminobutyric acid-B receptor
- LGI-1, leucine-rich glioma-inactivated ptotein-1
- LTVEM, long-term video electroencephalography monitoring
- MRI, magnetic resonance imaging
- Mesial temporal lobe epilepsy
- NMDA, N-methyl-D-aspartate receptor
- TLE, temporal lobe epilepsy
- mTLE, mesial temporal lobe epilepsy
Collapse
Affiliation(s)
- Hisashi Ohseto
- Department of Graduate Medical Education Center, Tohoku University Hospital, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Temma Soga
- Department of Epileptology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan,Department of Neurology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan,Corresponding author at: Department of Epileptology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan.
| | - Yosuke Kakisaka
- Department of Epileptology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Kazushi Ukishiro
- Department of Epileptology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Kazutoshi Konomatsu
- Department of Epileptology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan,Department of Neurology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Takafumi Kubota
- Department of Neurology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| |
Collapse
|
14
|
Micalizzi E, Vaudano AE, Ballerini A, Talami F, Giovannini G, Turchi G, Cioclu MC, Giunta L, Meletti S. Ictal apnea: A prospective monocentric study in patients with epilepsy. Eur J Neurol 2022; 29:3701-3710. [PMID: 36057450 PMCID: PMC9826458 DOI: 10.1111/ene.15547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE Ictal respiratory disturbances have increasingly been reported, in both generalized and focal seizures, especially involving the temporal lobe. Recognition of ictal breathing impairment has gained importance for the risk of sudden unexpected death in epilepsy (SUDEP). The aim of this study was to evaluate the incidence of ictal apnea (IA) and related hypoxemia during seizures. METHODS We collected and analyzed electroclinical data from consecutive patients undergoing long-term video-electroencephalographic (video-EEG) monitoring with cardiorespiratory polygraphy. Patients were recruited at the epilepsy monitoring unit of the Civil Hospital of Baggiovara, Modena Academic Hospital, from April 2020 to February 2022. RESULTS A total of 552 seizures were recorded in 63 patients. IA was observed in 57 of 552 (10.3%) seizures in 16 of 63 (25.4%) patients. Thirteen (81.2%) patients had focal seizures, and 11 of 16 patients showing IA had a diagnosis of temporal lobe epilepsy; two had a diagnosis of frontal lobe epilepsy and three of epileptic encephalopathy. Apnea agnosia was reported in all seizure types. Hypoxemia was observed in 25 of 57 (43.9%) seizures with IA, and the severity of hypoxemia was related to apnea duration. Apnea duration was significantly associated with epilepsy of unknown etiology (magnetic resonance imaging negative) and with older age at epilepsy onset (p < 0.001). CONCLUSIONS Ictal respiratory changes are a frequent clinical phenomenon, more likely to occur in focal epilepsies, although detected even in patients with epileptic encephalopathy. Our findings emphasize the need for respiratory polygraphy during long-term video-EEG monitoring for diagnostic and prognostic purposes, as well as in relation to the potential link of ictal apnea with the SUDEP risk.
Collapse
Affiliation(s)
- Elisa Micalizzi
- Clinical and Experimental Medicine PhD ProgramUniversity of Modena and Reggio EmiliaModenaItaly,Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly
| | - Anna Elisabetta Vaudano
- Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly,Department of Biomedical, Metabolic, and Neural ScienceUniversity of Modena and Reggio EmiliaModenaItaly
| | - Alice Ballerini
- Department of Biomedical, Metabolic, and Neural ScienceUniversity of Modena and Reggio EmiliaModenaItaly
| | - Francesca Talami
- Department of Biomedical, Metabolic, and Neural ScienceUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giada Giovannini
- Clinical and Experimental Medicine PhD ProgramUniversity of Modena and Reggio EmiliaModenaItaly,Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly
| | - Giulia Turchi
- Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly
| | - Maria Cristina Cioclu
- Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly,Department of Biomedical, Metabolic, and Neural ScienceUniversity of Modena and Reggio EmiliaModenaItaly
| | - Leandra Giunta
- Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly
| | - Stefano Meletti
- Neurology Unit, Civil Hospital of BaggiovaraModena Academic HospitalModenaItaly,Department of Biomedical, Metabolic, and Neural ScienceUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
15
|
Wang YF, Luo Y, Hou GL, He RJ, Zhang HY, Yi YL, Zhang Y, Cui ZQ. Pretreatment with Methylene Blue Protects Against Acute Seizure and Oxidative Stress in a Kainic Acid-Induced Status Epilepticus Model. Med Sci Monit 2021; 27:e933469. [PMID: 34628461 PMCID: PMC8513497 DOI: 10.12659/msm.933469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The aim of the present study was to investigate the potential anticonvulsant effect of methylene blue (MB) in a kainic acid (KA)-induced status epilepticus (SE) model. The effects of MB on levels of oxidative stress and glutamate (Glu) also were explored. Material/Methods Sixty C57BL/6 mice were randomly divided into 5 equal-sized groups: (1) controls; (2) KA; (3) MB 0.5 mg/kg+KA; (4) MB 1 mg/kg+KA; and (5) vehicle+KA. The SE model was established by intra-amygdala microinjection of KA. Behavioral observations and simultaneous electroencephalographic records of the seizures in different groups were analyzed to determine the potential anticonvulsant effect of MB. The influences of MB on oxidative stress markers and glutamate were also detected to explore the possible mechanism. Results MB afforded clear protection against KA-induced acute seizure, as measured by the delayed latency of onset of generalized seizures and SE, decreased percentage of SE, and increased survival rate in mice with acute epilepsy. MB markedly increased the latency to first onset of epileptiform activity and decreased the average duration of epileptiform events, as well as the percentage of time during which the epileptiform activity occurred. Administration of MB prevented KA-induced deterioration of oxidative stress markers and Glu. Conclusions MB is protective against acute seizure in SE. This beneficial effect may be at least partially related to its potent antioxidant ability and influence on Glu level.
Collapse
Affiliation(s)
- Yong-Feng Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| | - Yan Luo
- Department of Reproductive Genetic, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Gao-Lei Hou
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| | - Rui-Jing He
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| | - Hao-Yun Zhang
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| | - Yan-Li Yi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| | - Ying Zhang
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| | - Zhi-Qiang Cui
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| |
Collapse
|