1
|
Lin S, Zeng H, Wang C, Chai Z, Zhang X, Yang B, Chi J, Zhang Y, Hu Z. Discovery of novel natural cardiomyocyte protectants from a toxigenic fungus Stachybotrys chartarum. Bioorg Chem 2024; 148:107461. [PMID: 38788363 DOI: 10.1016/j.bioorg.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Stachybatranones A-F (1a/1b and 2-6) and three known analogues, namely methylatranones A and B (7 and 8) and atranone B (9), were isolated and identified from a toxigenic fungus Stachybotrys chartarum. Their structures and absolute configurations were elucidated via the extensive spectroscopic data, comparison of the experimental electronic circular dichroism (ECD) data, and single-crystal X-ray diffraction analyses. Structurally, compounds 2-6 belonged to a rare class of C-alkylated dolabellanes, featuring a unique five-membered hemiketal ring and a γ-butyrolactone moiety both fused to an 11-membered carbocyclic system, while compound 1 (1a/1b) represented the first example of a 5-11-6-fused atranone possessing a 2,3-butanediol moiety. The cardiomyocyte protective activity assay revealed that compounds 1-9 ameliorated cold ischemic injury at 24 h post cold ischemia (CI), with compounds 1 and 4 acting in a dose-dependent manner. Moreover, compound 1 prevented cold ischemia induced dephosphorylation of PI3K and AKT acting in a dose-dependent manner. In this study, a new class of natural products were found to protect cardiomyocytes against cold ischemic injury, providing a potential option for the development of novel cardioprotectants in heart transplant medicine.
Collapse
Affiliation(s)
- Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Hanxiao Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chenyang Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zixue Chai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xueke Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jiangyang Chi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
2
|
Kraft CJ, Namsrai BE, Tobolt D, Etheridge ML, Finger EB, Bischof JC. CPA toxicity screening of cryoprotective solutions in rat hearts. Cryobiology 2024; 114:104842. [PMID: 38158172 DOI: 10.1016/j.cryobiol.2023.104842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In clinical practice, donor hearts are transported on ice prior to transplant and discarded if cold ischemia time exceeds ∼5 h. Methods to extend these preservation times are critically needed, and ideally, this storage time would extend indefinitely, enabling improved donor-to-patient matching, organ utilization, and immune tolerance induction protocols. Previously, we demonstrated successful vitrification and rewarming of whole rat hearts without ice formation by perfusion-loading a cryoprotective agent (CPA) solution prior to vitrification. However, these hearts did not recover any beating even in controls with CPA loading/unloading alone, which points to the chemical toxicity of the cryoprotective solution (VS55 in Euro-Collins carrier solution) as the likely culprit. To address this, we compared the toxicity of another established CPA cocktail (VEG) to VS55 using ex situ rat heart perfusion. The CPA exposure time was 150 min, and the normothermic assessment time was 60 min. Using Celsior as the carrier, we observed partial recovery of function (atria-only beating) for both VS55 and VEG. Upon further analysis, we found that the VEG CPA cocktail resulted in 50 % lower LDH release than VS55 (N = 4, p = 0.017), suggesting VEG has lower toxicity than VS55. Celsior was a better carrier solution than alternatives such as UW, as CPA + Celsior-treated hearts spent less time in cardiac arrest (N = 4, p = 0.029). While we showed substantial improvement in cardiac function after exposure to vitrifiable concentrations of CPA by improving both the CPA and carrier solution formulation, further improvements will be required before we achieve healthy cryopreserved organs for transplant.
Collapse
Affiliation(s)
- Casey J Kraft
- Department of Biomedical Engineering, University of Minnesota, USA
| | | | - Diane Tobolt
- Department of Surgery, University of Minnesota, USA
| | | | - Erik B Finger
- Department of Surgery, University of Minnesota, USA.
| | - John C Bischof
- Department of Biomedical Engineering, University of Minnesota, USA; Department of Mechanical Engineering, University of Minnesota, USA; Institute for Engineering in Medicine, University of Minnesota, USA.
| |
Collapse
|
3
|
Suarez-Pierre A, Iguidbashian J, Kirsch MJ, Cain MT, Aftab M, Reece TB, Fullerton DA, Rove JY, Cleveland JC, Hoffman JRH. Association of cardiac preservation solution with short-term outcomes after heart transplantation. J Cardiovasc Med (Hagerstown) 2024; 25:158-164. [PMID: 38149702 DOI: 10.2459/jcm.0000000000001575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
AIMS There is wide variability in the practice of cardiac preservation for heart transplantation. Prior reports suggest that the type of solution may be linked with a reduced incidence of posttransplantation complications. METHODS Adult (≥18 years old) heart recipients who underwent transplantation between 2015 and 2021 in the United States were examined. Recipients were stratified by solution utilized for their grafts at the time of recovery: University of Wisconsin, histidine-tryptophan-ketoglutarate (HTK), or Celsior solution. The primary endpoint was a composite of 30-day mortality, primary graft dysfunction, or re-transplantation. Risk adjustment was performed for the recipient, donor, and procedural characteristics using regression modeling. RESULTS Among 16 884 recipients, the group distribution was University of Wisconsin solution 53%, HTK 22%, Celsior solution 15%, and other 10%. The observed incidence of the composite endpoint (University of Wisconsin solution = 3.6%, HTK = 4.0%, Celsior solution = 3.7%, P = 0.301) and 1-year survival (University of Wisconsin solution = 91.7%, HTK = 91.3%, Celsior solution = 91.7%, log-rank P = 0.777) were similar between groups. After adjustment, HTK was associated with a higher risk of the composite endpoint [odds ratio (OR) 1.249, 95% confidence interval (CI) 1.019-1.525, P = 0.030] in reference to University of Wisconsin solution. This association was substantially increased among recipients with ischemic periods of greater than 4 h (OR 1.817, 95% CI 1.188-2.730, P = 0.005). The risks were similar between University of Wisconsin solution and Celsior solution (P = 0.454). CONCLUSION The use of the histidine-tryptophan-ketoglutarate solution during cold static storage for cardiac preservation is associated with increased rates of early mortality or primary graft dysfunction. Clinician discretion should guide its use, especially when prolonged ischemic times (>4 h) are anticipated.
Collapse
Affiliation(s)
- Alejandro Suarez-Pierre
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado School of Medicine. Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ren ZY, Lyu SC, Wang HX, Wang J, Zhou L, He Q, Lang R. Protective Effects of Different Hypothermal Preservation Solutions on Structure and Function of Isolated Rat Arteries. Curr Med Sci 2023; 43:768-778. [PMID: 37480414 DOI: 10.1007/s11596-023-2766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/03/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE With the increasing application of vascular reconstruction in surgical procedures, allogeneic vessels are becoming more popular in clinical practice due to their abundant sources, precise diameter matching, improved histocompatibility, and higher long-term patency rate. This study aimed to investigate the protective effect of various preservation solutions on the function and structure of the isolated rat abdominal aorta preserved under hypothermal conditions. METHODS The study utilized a total of 150 Sprague-Dawley (SD) rats, with 144 rats allocated to the experimental groups and 6 rats allocated to the control groups. The abdominal aorta of the rats was chosen as the subject of our research. The aorta in the experimental groups were randomly assigned to 4 groups: University of Wisconsin (UW) solution group, histidine-tryptophan-ketoglutarate (HTK) solution group, normal saline (NS) group, and sodium lactate Ringer's solution (RS) group. Samples were subjected to examination after preservation periods of 1 day, 3 days, 5 days, 7 days, 14 days, 30 days, and 90 days. Evaluation of vascular physiological function involved detecting and assessing vasoconstriction ability and measuring cell viability through the MTT test. Evaluation of the vascular wall structure involved tension tolerance tests and pathological staining. RESULTS The pathogen-positive rate in the HTK group and NS group at 1 month was 16.7%. Regarding the vascular skeleton structure, both the UW group and HTK group exhibited intact structures after 2 weeks of preservation, with slightly edematous collagen and elastic fibers, which was significantly better than that of the NS group and RS group. In terms of cell activity and contractile function, all preservation groups showed similar effects within 2 weeks. However, after 2 weeks, the UW group showed the most favorable preservation effect (P<0.05). In terms of vascular tension, different groups exhibited similar effects within 1 week. However, after 2 weeks, the UW group showed the best preservation effect (P<0.05). CONCLUSION All 4 types of preservation solution had a preservation effect on the structure and function of isolated blood vessels during short-term hypothermal preservation. However, after 2-week preservation, the UW solution was found to be the most suitable solution for the preservation of blood vessels.
Collapse
Affiliation(s)
- Zhang-Yong Ren
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Han-Xuan Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
5
|
Normothermic Ex Vivo Heart Perfusion with Mesenchymal Stem Cell-Derived Conditioned Medium Improves Myocardial Tissue Protection in Rat Donation after Circulatory Death Hearts. Stem Cells Int 2022; 2022:8513812. [DOI: 10.1155/2022/8513812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objective. Adopting hearts from donation after circulatory death (DCD) is a promising approach to enlarge the donor pool. Nevertheless, DCD hearts experience severe warm ischemia/reperfusion (I/R) injury. Recent studies have demonstrated that conditioned medium (CM) derived from bone marrow mesenchymal stem cells (BMSCs) has the potential of reducing organ I/R injury. Therefore, we investigated whether DCD heart preservation with normothermic ex vivo heart perfusion (EVHP) and BMSCs-CM treatment could alleviate myocardial warm I/R injury in the DCD hearts. Methods. We randomly divided donor rats into two groups: (1) DCD-Control group and (2) DCD-CM group. Before DCD heart preservation with the normothermic EVHP system for 105 minutes, rats suffered from a 25-minute warm ischemia injury in the DCD procedure. Vehicle or CM (300 μl) was added to the perfusate at the beginning of the perfusion process. The cardiac function of DCD hearts in the DCD-Control and DCD-CM groups was measured every 30 minutes. Besides, non-DCD hearts were harvested from the beating-heart rats. Results. The antibody array demonstrated that the CM contained 14 bioactive factors involved in apoptosis, inflammation, and oxidative stress. Warm ischemia injury resulted in a significant increase in the level of oxidative stress, inflammation, and apoptosis in the DCD hearts of DCD-Control group. Furthermore, compared with the DCD-Control group, CM treatment increased the developed pressure,
and
of the left ventricular in the DCD hearts during a 90-minute EVHP. Moreover, the administration of CM attenuated the level of oxidative stress, inflammation, and apoptosis in the DCD hearts of the DCD-CM group. Conclusions. Normothermic EVHP combined with CM treatment can alleviate warm I/R injury in the DCD hearts by decreasing the level of oxidative stress, inflammatory response, and apoptosis, which might alleviate the shortage of donor hearts by adopting DCD hearts.
Collapse
|
6
|
Improvement of Left Ventricular Graft Function Using an Iron-Chelator-Supplemented Bretschneider Solution in a Canine Model of Orthotopic Heart Transplantation. Int J Mol Sci 2022; 23:ijms23137453. [PMID: 35806458 PMCID: PMC9267501 DOI: 10.3390/ijms23137453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
Demand for organs is increasing while the number of donors remains constant. Nevertheless, not all organs are utilized due to the limited time window for heart transplantation (HTX). Therefore, we aimed to evaluate whether an iron-chelator-supplemented Bretschneider solution could protect the graft in a clinically relevant canine model of HTX with prolonged ischemic storage. HTX was performed in foxhounds. The ischemic time was standardized to 4 h, 8 h, 12 h or 16 h, depending on the experimental group. Left ventricular (LV) and vascular function were measured. Additionally, the myocardial high energy phosphate and iron content and the in-vitro myocyte force were evaluated. Iron chelator supplementation proved superior at a routine preservation time of 4 h, as well as for prolonged times of 8 h and longer. The supplementation groups recovered quickly compared to their controls. The LV function was preserved and coronary blood flow increased. This was also confirmed by in vitro myocyte force and vasorelaxation experiments. Additionally, the biochemical results showed significantly higher adenosine triphosphate content in the supplementation groups. The iron chelator LK614 played an important role in this mechanism by reducing the chelatable iron content. This study shows that an iron-chelator-supplemented Bretschneider solution effectively prevents myocardial/endothelial damage during short- as well as long-term conservation.
Collapse
|
7
|
Xia W, Yan T, Wen L, Zhu S, Yin W, Zhu M, Lang M, Wang C, Guo C. Hypothermia-Triggered Mesoporous Silica Particles for Controlled Release of Hydrogen Sulfide to Reduce the I/R Injury of the Myocardium. ACS Biomater Sci Eng 2022; 8:2970-2978. [PMID: 35671486 DOI: 10.1021/acsbiomaterials.2c00266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the fact that heart transplantation (HTx) is a relatively mature procedure, heart ischemic and reperfusion (I/R) injury during HTx remains a challenge. Even after a successful operation, the heart will be at risk of primary graft failure and mortality during the first year. In this study, temperature-sensitive polymer poly(N-n-propylacrylamide-co-N-tert-butyl acrylamide) (PNNTBA) was coated on diallyl trisulfide (DATS)-loaded mesoporous silica nanoparticles (DATS-MSN) to synthesize hypothermia-triggered hydrogen sulfide (H2S) releasing particles (HT-MSN). Because the PNNTBA shell dissolves in phosphate-buffered saline at 4 °C, the loaded DATS could continuously release H2S within 6 h when activated by glutathione (GSH). Furthermore, after co-culturing biocompatible HT-MSN with cardiomyocytes, H2S released from HT-MSN at 4 °C was found to protect cardiomyocytes from ischemic and reperfusion (I/R) injury. In detail, the rate of cell apoptosis and lactate dehydrogenase activity was decreased, as manifested by increased BCL-2 expression and decreased BAX expression. More importantly, in an isolated heart preservation experiment, HT-MSN demonstrated potent protection against cardiac I/R injury and reduced expression of inflammatory factors TNF-α and IL-1β. This study provided a new method for the controlled release of H2S by the donor and myocardial protection from I/R injury.
Collapse
Affiliation(s)
- Wenyi Xia
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tao Yan
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Lianlei Wen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shijie Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Wang Yin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Miao Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
8
|
He B, Su S, Yuan G, Duan J, Zhu Z, Wang Z. Clinical guideline for vascularized composite tissue cryopreservation. J Tissue Eng Regen Med 2021; 15:527-533. [PMID: 33830654 DOI: 10.1002/term.3190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/06/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
At the Summit on Organ Banking through Converging Technologies held recently in Boston, tissue and organ cryopreservation technology was a topic of considerable interest. Although cryopreservation has been widely used in clinical practice, it currently remains limited to bloodless tissues with simple structures and functions that are small or thin, for example, ultra-thin skin, ovarian tissue slices, and other similar tissues. For whole organs, except for successful cryopreservation of rat ovaries (2002) and hind limbs (August 2002), successful cryopreservation of vascularized animal tissues or organs and their replantation have not yet been reported. We conducted histological and electron microscopic examinations on muscle after blood supply restoration to explain this problem and describe our experience with the goal of informing our colleagues to further develop the technology. To achieve broad application of vascularized tissue and organ cryopreservation, we have summarized our experience and established a clinical application scope for vascularized composite tissue cryopreservation.
Collapse
Affiliation(s)
- Bo He
- Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shouwen Su
- Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guohui Yuan
- Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiekui Duan
- Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhaowei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zengtao Wang
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
9
|
Wells MA, See Hoe LE, Heather LC, Molenaar P, Suen JY, Peart J, McGiffin D, Fraser JF. Peritransplant Cardiometabolic and Mitochondrial Function: The Missing Piece in Donor Heart Dysfunction and Graft Failure. Transplantation 2021; 105:496-508. [PMID: 33617201 DOI: 10.1097/tp.0000000000003368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Primary graft dysfunction is an important cause of morbidity and mortality after cardiac transplantation. Donor brain stem death (BSD) is a significant contributor to donor heart dysfunction and primary graft dysfunction. There remain substantial gaps in the mechanistic understanding of peritransplant cardiac dysfunction. One of these gaps is cardiac metabolism and metabolic function. The healthy heart is an "omnivore," capable of utilizing multiple sources of nutrients to fuel its enormous energetic demand. When this fails, metabolic inflexibility leads to myocardial dysfunction. Data have hinted at metabolic disturbance in the BSD donor and subsequent heart transplantation; however, there is limited evidence demonstrating specific metabolic or mitochondrial dysfunction. This review will examine the literature surrounding cardiometabolic and mitochondrial function in the BSD donor, organ preservation, and subsequent cardiac transplantation. A more comprehensive understanding of this subject may then help to identify important cardioprotective strategies to improve the number and quality of donor hearts.
Collapse
Affiliation(s)
- Matthew A Wells
- School of medical Science, Griffith University Gold Coast, Australia
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, St Lucia, Australia
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter Molenaar
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane City, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, St Lucia, Australia
| | - Jason Peart
- School of medical Science, Griffith University Gold Coast, Australia
| | - David McGiffin
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
- Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, Australia
| | - John F Fraser
- School of medical Science, Griffith University Gold Coast, Australia
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, St Lucia, Australia
| |
Collapse
|
10
|
Pontailler M, David CH, Lacoste P, Guimbretière G, Marie B, Perigaud C, Mugniot A, Fellah I, Roussel JC, Senage T. Celsior ® crystalloid cardioplegia versus standard hyperkalemic normothermic blood cardioplegia: Analysis of myocardial protection in elective mitral valve repair. Perfusion 2021; 36:455-462. [PMID: 33530875 DOI: 10.1177/0267659121991760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION With the increase and refinement of video assisted mitral valve surgery, cristalloïd cardioplegia started regaining popularity. The aim of our study was to evaluate the effectiveness of Celsior®, a crystalloid cardioplegic solution, on myocardial protection in elective surgical mitral valve repair in comparison to blood based hyperkalemic cardioplegia. METHODS In this observational retrospective study, all consecutive elective isolated surgical mitral valve repair where Celsior® or normothermic hyperkalemic blood cardioplegia were used were included. Primary endpoint was any sign of myocardial protection failure (troponin levels, need for inotropic or mechanical support, rhythm disturbances, mortality). Secondary endpoint was Celsior® safety (allergic reactions, bleeding, organ toxicities). RESULTS From January 2009 to August 2016, 382 patients underwent elective isolated mitral valve repair in whom normothermic hyperkalemic blood cardioplegia (n = 181) or Celsior® (n = 201) were used. There were no statistically significant differences in baseline characteristics including Euroscore 2. Peak troponin (pg/ml) release and 30-days mortality were not statistically different. Need for cardioversion was significantly more frequent in the Celsior® group (47% vs 13%, p < 0.001). There was no statistical difference in post-operative atrial fibrillation, permanent pacemaker implantation, reoperation for bleeding, transfusion, acute kidney injury, haemoglobin at discharge or length of stay. No allergic reaction to Celsior® occurred. CONCLUSION Effective myocardial protection was achieved with the Celsior® cardioplegic solution with no unexpected toxicity. Celsior® may be an efficacious and safe cardioprotective strategy in mitral valve repair.
Collapse
Affiliation(s)
- Margaux Pontailler
- Department of Thoracic and Cardiovascular Surgery, Thorax Institute, Nantes Hospital University, Nantes, France
| | - Charles-Henri David
- Department of Thoracic and Cardiovascular Surgery, Thorax Institute, Nantes Hospital University, Nantes, France
| | - Philippe Lacoste
- Department of Thoracic and Cardiovascular Surgery, Thorax Institute, Nantes Hospital University, Nantes, France
| | - Guillaume Guimbretière
- Department of Thoracic and Cardiovascular Surgery, Thorax Institute, Nantes Hospital University, Nantes, France
| | - Basile Marie
- Department of Thoracic and Cardiovascular Surgery, Thorax Institute, Nantes Hospital University, Nantes, France
| | - Christian Perigaud
- Department of Thoracic and Cardiovascular Surgery, Thorax Institute, Nantes Hospital University, Nantes, France
| | - Antoine Mugniot
- Department of Thoracic and Cardiovascular Surgery, Thorax Institute, Nantes Hospital University, Nantes, France
| | - Imen Fellah
- Department of Thoracic and Cardiovascular Surgery, Thorax Institute, Nantes Hospital University, Nantes, France
| | - Jean-Christian Roussel
- Department of Thoracic and Cardiovascular Surgery, Thorax Institute, Nantes Hospital University, Nantes, France
| | - Thomas Senage
- Department of Thoracic and Cardiovascular Surgery, Thorax Institute, Nantes Hospital University, Nantes, France.,INSERM 1246, Methods in Patients-Centered Outcomes and Health Research - SPHERE, Nantes University, Nantes, France
| |
Collapse
|
11
|
Benke K, Jász DK, Szilágyi ÁL, Baráth B, Tuboly E, Márton AR, Varga P, Mohácsi Á, Szabó A, Széll Z, Ruppert M, Radovits T, Szabó G, Merkely B, Hartmann P, Boros M. Methane supplementation improves graft function in experimental heart transplantation. J Heart Lung Transplant 2020; 40:183-192. [PMID: 33277170 DOI: 10.1016/j.healun.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Maintenance of cell viability during cold storage is a key issue in organ transplantation. Methane (CH4) bioactivity has recently been recognized in ischemia/reperfusion conditions; we therefore hypothesized that cold storage in CH4-enriched preservation solution can provide an increased defense against organ dysfunction during experimental heart transplantation (HTX). METHODS The hearts of donor Lewis rats were stored for 60 minutes in cold histidine-tryptophan-ketoglutarate (Custodiol [CS]) or CH4-saturated CS solution (CS-CH4) (n = 12 each). Standard heterotopic HTX was performed, and 60 minutes later, the left ventricular (LV) pressure-volume relationships LV systolic pressure (LVSP), systolic pressure increment (dP/dtmax), diastolic pressure decrement, and coronary blood flow (CBF) were measured. Tissue samples were taken to detect proinflammatory parameters, structural damage (by light microscopy), endoplasmic reticulum (ER) stress, and apoptosis markers (CCAAT/enhancer binding protein [C/EBP] homologous protein, GRP78, glycogen synthase kinase-3β, very low-density lipoprotein receptor, caspase 3 and 9, B-cell lymphoma 2, and bcl-2-like protein 4), whereas mitochondrial functional changes were analyzed by high-resolution respirometry. RESULTS LVSP and dP/dtmax increased significantly at the largest pre-load volumes in CS-CH4 grafts as compared with the CS group (114.5 ± 16.6 mm Hg vs 82.8 ± 4.6 mm Hg and 3,133 ± 430 mm Hg/s vs 1,739 ± 169 mm Hg/s, respectively); the diastolic function and CBF (2.4 ± 0.4 ml/min/g vs 1.3 ± 0.3 ml/min/g) also improved. Mitochondrial oxidative phosphorylation capacity was more preserved (58.5 ± 9.4 pmol/s/ml vs 27.7 ± 6.6 pmol/s/ml), and cytochrome c release was reduced in CS-CH4 storage. Signs of HTX-caused myocardial damage, level of ER stress, and the transcription of proapoptotic proteins were significantly lower in CS-CH4 grafts. CONCLUSION The addition of CH4 during 1 hour of cold storage improved early in vitro graft function and reduced mitochondrial dysfunction and activation of inflammation. Evidence shows that CH4 reduced ER stress-linked proapoptotic signaling.
Collapse
Affiliation(s)
- Kálmán Benke
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary; Department of Cardiac Surgery, University of Halle, Halle, Germany
| | | | - Ágnes Lilla Szilágyi
- Institute of Surgical Research, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Bálint Baráth
- Institute of Surgical Research, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Eszter Tuboly
- Institute of Surgical Research, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Anett Roxána Márton
- Institute of Surgical Research, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Petra Varga
- Institute of Surgical Research, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Árpád Mohácsi
- MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Anna Szabó
- MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Zsófia Széll
- Institute of Surgical Research, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Mihály Ruppert
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Halle, Halle, Germany
| | - Béla Merkely
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Petra Hartmann
- Institute of Surgical Research, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Szeged, Hungary; MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary.
| |
Collapse
|
12
|
Prolonged Cold Ischemia Time in Mouse Heart Transplantation Using Supercooling Preservation. Transplantation 2020; 104:1879-1889. [PMID: 31895334 DOI: 10.1097/tp.0000000000003089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Supercooling preservation techniques store a donor organ below 0°C without freezing. This has great advantages in inhibiting metabolism and preserving the organ in comparison to conventional preservation at 4°C. We developed a novel supercooling technique using a liquid cooling apparatus and novel preservation and perfusion solutions. The purpose of this study was to evaluate the preservation effect of our supercooling preservation technique in a mouse heart transplantation model. METHODS Syngeneic heterotopic heart transplantation was performed in 3 groups of mice: (1) the nonpreservation group, in which the cardiac grafts were transplanted immediately after retrieval; (2) the conventional University of Wisconsin (UW) group, in which the cardiac grafts were stored in UW solution at 4°C for different periods of time; and (3) the supercooling group, in which the cardiac grafts were stored in a novel supercooling preservation solution at -8°C for different periods of time. The maximal preservation time was investigated. Twenty-four-hour sample data were collected and analyzed to compare supercooling preservation to conventional UW preservation. RESULTS Our technique yielded a stable -8°C supercooling state. Cardiac graft revival was successfully achieved after supercooling preservation for 144 hours, and long-term survival was observed after supercooling preservation for 96 hours. Posttransplant outcomes, including myocardial ischemia-reperfusion injury, oxidative stress-related damage, and myocardial cell apoptosis, were improved in comparison to conventional 4°C UW preservation. CONCLUSIONS Supercooling heart preservation at -8°C greatly prolonged the preservation time and improved the posttransplant outcomes in comparison to conventional 4°C UW preservation. Supercooling preservation is a promising technique for organ preservation.
Collapse
|
13
|
Längin M, Reichart B, Steen S, Sjöberg T, Paskevicius A, Liao Q, Qin G, Mokelke M, Mayr T, Radan J, Issl L, Buttgereit I, Ying J, Fresch AK, Panelli A, Egerer S, Bähr A, Kessler B, Milusev A, Sfriso R, Rieben R, Ayares D, Murray PJ, Ellgass R, Walz C, Klymiuk N, Wolf E, Abicht JM, Brenner P. Cold non-ischemic heart preservation with continuous perfusion prevents early graft failure in orthotopic pig-to-baboon xenotransplantation. Xenotransplantation 2020; 28:e12636. [PMID: 32841431 DOI: 10.1111/xen.12636] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non-ischemic perfusion for our ongoing pig-to-baboon cardiac xenotransplantation project. METHODS Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1- KO/hCD46/hTBM) as donors and captive-bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non-ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin-containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti-non-Gal-antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient's kidney, liver and coagulation functions. RESULTS In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti-non-Gal-antibodies were similar in recipients receiving grafts from either IC or CP preservation. CONCLUSIONS While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi-organ failure in more than half of the xenotransplantation experiments. In contrast, cold non-ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long-term results after cardiac xenotransplantation.
Collapse
Affiliation(s)
- Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Trygve Sjöberg
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Qiuming Liao
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Guangqi Qin
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Tanja Mayr
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Lara Issl
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Ines Buttgereit
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Jiawei Ying
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Ann Kathrin Fresch
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Alessandro Panelli
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Stefanie Egerer
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Barbara Kessler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Anastasia Milusev
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Riccardo Sfriso
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
14
|
Fesenko EE, Gagarinsky EL, Averin AS, Grudinin NV, Gurin AE, Shishova NV, Shvirst NE, Goltyaev MV, Kovtun AL. The Condition of the Rat Myocardium and Isolated Sheep Heart after Prolonged 24-Hour Hypothermic Preservation in a Pressurized Carbon Monoxide–Oxygen Gas Mixture. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920040065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Ribeiro RVP, Friedrich JO, Ouzounian M, Yau T, Lee J, Yanagawa B. Supplemental Cardioplegia During Donor Heart Implantation: A Systematic Review and Meta-Analysis. Ann Thorac Surg 2020; 110:545-552. [PMID: 31972127 DOI: 10.1016/j.athoracsur.2019.10.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND The optimal donor heart preservation and management strategy during heart transplantation remains controversial. We report the results of a systematic review and meta-analysis of the effect of supplemental cardioplegia administration during donor heart implant for transplantation. METHODS We searched MEDLINE and Embase databases until February 2019 for studies comparing patients who received transplants with the donor heart given supplemental cardioplegia or not. Data were extracted by 2 independent investigators. The main outcomes were early morbidity and mortality. RESULTS Included were 7 retrospective observational studies (4 comparing to historical controls) and 3 randomized controlled trials enrolling 1125 patients. Supplemental cardioplegia included crystalloid and blood cardioplegia given continuous retrograde or as terminal "hot shots." Supplemental cardioplegia was associated with improved early mortality (risk ratio [RR], 0.55; 95% confidence interval [CI], 0.35-0.87; P < .01), greater rates of spontaneous return of sinus rhythm (RR, 2.62; 95% CI, 1.50-4.56; P < .01), shorter intensive care stay (mean difference, -3.4 days; 95% CI, -5.1 to -1.6; P < .01), and lower incidence of ischemic changes seen on endomyocardial biopsy specimens (RR, 0.49; 95% CI, 0.35-0.69; P < .01) compared with controls. Midterm mortality was not different between groups (incident rate ratio, 0.80; 95% CI, 0.51-1.26; P = .34). CONCLUSIONS Administration of supplemental cardioplegia may be associated with a reduction in organ ischemic injury and shorter intensive care stay as well as improvement in early survival after transplantation. This strategy may be a simple and cost-effective adjunct to improve outcomes of heart transplantation, especially in an era of increasing use of marginal donor organs. Further investigation will be needed to confirm the findings of this hypothesis-generating study.
Collapse
Affiliation(s)
- Roberto V P Ribeiro
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jan O Friedrich
- Critical Care and Medicine Departments and Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Medicine and Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Maral Ouzounian
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Terrance Yau
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Lee
- Division of Cardiovascular Surgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Bobby Yanagawa
- Division of Cardiovascular Surgery, St. Michael's Hospital, Toronto, Ontario, Canada.
| | | |
Collapse
|
16
|
Zhu C, Su Y, Juriasingani S, Zheng H, Veramkovich V, Jiang J, Sener A, Whiteman M, Lacefield J, Nagpal D, Alotaibi F, Liu K, Zheng X. Supplementing preservation solution with mitochondria-targeted H 2 S donor AP39 protects cardiac grafts from prolonged cold ischemia-reperfusion injury in heart transplantation. Am J Transplant 2019; 19:3139-3148. [PMID: 31338943 DOI: 10.1111/ajt.15539] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/01/2019] [Accepted: 07/14/2019] [Indexed: 01/25/2023]
Abstract
Heart transplant has been accepted as the standard treatment for end-stage heart failure. Because of its susceptibility to ischemia-reperfusion injury, the heart can be preserved for only 4 to 6 hours in cold static preservation solutions. Prolonged ischemia time is adversely associated with primary graft function and long-term survival. New strategies to preserve donor hearts are urgently needed. We demonstrate that AP39, a mitochondria-targeting hydrogen sulfide donor, significantly increases cardiomyocyte viability and reduces cell apoptosis/death after cold hypoxia/reoxygenation in vitro. It also decreases gene expression of proinflammatory cytokines and preserves mitochondria function. Using an in vivo murine heart transplant model, we show that preserving donor hearts with AP39-supplemented University of Wisconsin solution (n = 7) significantly protects heart graft function, measured by quantitative ultrasound scan, against prolonged cold ischemia-reperfusion injury (24 hours at 4°C), along with reducing tissue injury and fibrosis. Our study demonstrates that supplementing preservation solution with AP39 protects cardiac grafts from prolonged ischemia, highlighting its therapeutic potential in preventing ischemia-reperfusion injury in heart transplant.
Collapse
Affiliation(s)
- Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China.,Department of Pathology, Western University, Ontario, Canada.,Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Center, Ontario, Canada
| | - Yale Su
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China.,Department of Pathology, Western University, Ontario, Canada.,Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Center, Ontario, Canada
| | - Smriti Juriasingani
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Center, Ontario, Canada
| | - Hao Zheng
- Department of Pathology, Western University, Ontario, Canada.,Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Center, Ontario, Canada
| | - Vitali Veramkovich
- Department of Pathology, Western University, Ontario, Canada.,Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Center, Ontario, Canada
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Center, Ontario, Canada
| | - Alp Sener
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Center, Ontario, Canada.,Department of Surgery, Western University, Ontario, Canada.,Lawson Health Research Institute, Ontario, Canada.,Department of Oncology, Western University, Ontario, Canada
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Exeter, UK
| | - James Lacefield
- Department of Medical Biophysics, Western University, Ontario, Canada.,Department of Electrical & Computer Engineering, Western University, Ontario, Canada.,Robarts Research Institute, Western University, Ontario, Canada
| | - Dave Nagpal
- Department of Surgery, Western University, Ontario, Canada
| | - Faizah Alotaibi
- Department of Pathology, Western University, Ontario, Canada
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xiufen Zheng
- Department of Pathology, Western University, Ontario, Canada.,Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Center, Ontario, Canada.,Department of Surgery, Western University, Ontario, Canada.,Lawson Health Research Institute, Ontario, Canada.,Department of Oncology, Western University, Ontario, Canada
| |
Collapse
|
17
|
Carter KT, Lirette ST, Baran DA, Creswell LL, Panos AL, Cochran RP, Copeland JG, Copeland H. The Effect of Cardiac Preservation Solutions on Heart Transplant Survival. J Surg Res 2019; 242:157-165. [DOI: 10.1016/j.jss.2019.04.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/25/2019] [Accepted: 04/09/2019] [Indexed: 11/29/2022]
|
18
|
Stehlik J, Kobashigawa J, Hunt SA, Reichenspurner H, Kirklin JK. Honoring 50 Years of Clinical Heart Transplantation in
Circulation. Circulation 2018; 137:71-87. [DOI: 10.1161/circulationaha.117.029753] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Heart transplantation has become a standard therapy option for advanced heart failure. The translation of heart transplantation from innovative experiments to long-term clinical success has married prescient insights with discipline and organization in the domains of surgical techniques, organ preservation, immunosuppression, organ donation and transplantation logistics, infection control, and long-term graft surveillance. This review explores the key milestones of the past 50 years of heart transplantation and discusses current challenges and promising innovations on the clinical horizon.
Collapse
Affiliation(s)
- Josef Stehlik
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City (J.S.)
| | | | - Sharon A. Hunt
- Division of Cardiovascular Medicine, Stanford University, CA (S.A.H.)
| | | | - James K. Kirklin
- Division of Cardiothoracic Surgery, University of Alabama at Birmingham (J.K.K.)
| |
Collapse
|
19
|
Abstract
In this Editor's Review, articles published in 2016 are organized by category and briefly summarized. We aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ Replacement, Recovery, and Regeneration. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, the International Society for Mechanical Circulatory Support, the International Society for Pediatric Mechanical Cardiopulmonary Support, and the Vienna International Workshop on Functional Electrical Stimulation, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level." Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ Replacement, Recovery, and Regeneration from all over the world. We were pleased to publish our second Virtual Issue in April 2016 on "Tissue Engineering in Bone" by Professor Tsuyoshi Takato. Our first was published in 2011 titled "Intra-Aortic Balloon Pumping" by Dr. Ashraf Khir. Other peer-reviewed Special Issues this year included contributions from the 11th International Conference on Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary Perfusion edited by Dr. Akif Ündar and selections from the 23rd Congress of the International Society for Rotary Blood Pumps edited by Dr. Bojan Biocina. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers the quality expected from such a journal could not be possible. We also express our special thanks to our Publisher, John Wiley & Sons for their expert attention and support in the production and marketing of Artificial Organs. We look forward to reporting further advances in the coming years.
Collapse
|