1
|
Cui X, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Li M, Zhang H, Chao B, Wang Z, Wu M. Advanced tumor organoid bioprinting strategy for oncology research. Mater Today Bio 2024; 28:101198. [PMID: 39205873 PMCID: PMC11357813 DOI: 10.1016/j.mtbio.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Bioprinting is a groundbreaking technology that enables precise distribution of cell-containing bioinks to construct organoid models that accurately reflect the characteristics of tumors in vivo. By incorporating different types of tumor cells into the bioink, the heterogeneity of tumors can be replicated, enabling studies to simulate real-life situations closely. Precise reproduction of the arrangement and interactions of tumor cells using bioprinting methods provides a more realistic representation of the tumor microenvironment. By mimicking the complexity of the tumor microenvironment, the growth patterns and diffusion of tumors can be demonstrated. This approach can also be used to evaluate the response of tumors to drugs, including drug permeability and cytotoxicity, and other characteristics. Therefore, organoid models can provide a more accurate oncology research and treatment simulation platform. This review summarizes the latest advancements in bioprinting to construct tumor organoid models. First, we describe the bioink used for tumor organoid model construction, followed by an introduction to various bioprinting methods for tumor model formation. Subsequently, we provide an overview of existing bioprinted tumor organoid models.
Collapse
Affiliation(s)
- Xiangran Cui
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Mufeng Li
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| |
Collapse
|
2
|
Kollampally SCR, Zhang X, Moskwa N, Nelson DA, Sharfstein ST, Larsen M, Xie Y. Evaluation of Alginate Hydrogel Microstrands for Stromal Cell Encapsulation and Maintenance. Bioengineering (Basel) 2024; 11:375. [PMID: 38671796 PMCID: PMC11048715 DOI: 10.3390/bioengineering11040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have displayed potential in regenerating organ function due to their anti-fibrotic, anti-inflammatory, and regenerative properties. However, there is a need for delivery systems to enhance MSC retention while maintaining their anti-fibrotic characteristics. This study investigates the feasibility of using alginate hydrogel microstrands as a cell delivery vehicle to maintain MSC viability and phenotype. To accommodate cell implantation needs, we invented a Syringe-in-Syringe approach to reproducibly fabricate microstrands in small numbers with a diameter of around 200 µm and a porous structure, which would allow for transporting nutrients to cells by diffusion. Using murine NIH 3T3 fibroblasts and primary embryonic 16 (E16) salivary mesenchyme cells as primary stromal cell models, we assessed cell viability, growth, and expression of mesenchymal and fibrotic markers in microstrands. Cell viability remained higher than 90% for both cell types. To determine cell number within the microstrands prior to in vivo implantation, we have further optimized the alamarBlue assay to measure viable cell growth in microstrands. We have shown the effect of initial cell seeding density and culture period on cell viability and growth to accommodate future stromal cell delivery and implantation. Additionally, we confirmed homeostatic phenotype maintenance for E16 mesenchyme cells in microstrands.
Collapse
Affiliation(s)
- Sujith Chander Reddy Kollampally
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Xulang Zhang
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Nicholas Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
- The Jackson Laboratory of Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| |
Collapse
|
3
|
de Kanter AFJ, Jongsma KR, Verhaar MC, Bredenoord AL. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:167-187. [PMID: 36112697 PMCID: PMC10122262 DOI: 10.1089/ten.teb.2022.0033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Abstract
Tissue Engineering (TE) is a branch of Regenerative Medicine (RM) that combines stem cells and biomaterial scaffolds to create living tissue constructs to restore patients' organs after injury or disease. Over the last decade, emerging technologies such as 3D bioprinting, biofabrication, supramolecular materials, induced pluripotent stem cells, and organoids have entered the field. While this rapidly evolving field is expected to have great therapeutic potential, its development from bench to bedside presents several ethical and societal challenges. To make sure TE will reach its ultimate goal of improving patient welfare, these challenges should be mapped out and evaluated. Therefore, we performed a systematic review of the ethical implications of the development and application of TE for regenerative purposes, as mentioned in the academic literature. A search query in PubMed, Embase, Scopus, and PhilPapers yielded 2451 unique articles. After systematic screening, 237 relevant ethical and biomedical articles published between 2008 and 2021 were included in our review. We identified a broad range of ethical implications that could be categorized under 10 themes. Seven themes trace the development from bench to bedside: (1) animal experimentation, (2) handling human tissue, (3) informed consent, (4) therapeutic potential, (5) risk and safety, (6) clinical translation, and (7) societal impact. Three themes represent ethical safeguards relevant to all developmental phases: (8) scientific integrity, (9) regulation, and (10) patient and public involvement. This review reveals that since 2008 a significant body of literature has emerged on how to design clinical trials for TE in a responsible manner. However, several topics remain in need of more attention. These include the acceptability of alternative translational pathways outside clinical trials, soft impacts on society and questions of ownership over engineered tissues. Overall, this overview of the ethical and societal implications of the field will help promote responsible development of new interventions in TE and RM. It can also serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. Impact statement To our knowledge, this is the first time that the ethical implications of Tissue Engineering (TE) have been reviewed systematically. By gathering existing scholarly work and identifying knowledge gaps, this review facilitates further research into the ethical and societal implications of TE and Regenerative Medicine (RM) and other emerging biomedical technologies. Moreover, it will serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. As such, our review may promote successful and responsible development of new strategies in TE and RM.
Collapse
Affiliation(s)
- Anne-Floor J. de Kanter
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin R. Jongsma
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annelien L. Bredenoord
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Shinkar K, Rhode K. Could 3D extrusion bioprinting serve to be a real alternative to organ transplantation in the future? ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Frejo L, Goldstein T, Swami P, Patel NA, Grande DA, Zeltsman D, Smith LP. A two-stage in vivo approach for implanting a 3D printed tissue-engineered tracheal replacement graft: A proof of concept. Int J Pediatr Otorhinolaryngol 2022; 155:111066. [PMID: 35189447 DOI: 10.1016/j.ijporl.2022.111066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/04/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To optimize a 3D printed tissue-engineered tracheal construct using a combined in vitro and a two-stage in vivo technique. METHODS A 3D-CAD (Computer-aided Design) template was created; rabbit chondrocytes were harvested and cultured. A Makerbot Replicator™ 2x was used to print a polycaprolactone (PCL) scaffold which was then combined with a bio-ink and the previously harvested chondrocytes. In vitro: Cell viability was performed by live/dead assay using Calcein A/Ethidium. Gene expression was performed using quantitative real-time PCR for the following genes: Collagen Type I and type II, Sox-9, and Aggrecan. In vivo: Surgical implantation occurred in two stages: 1) Index procedure: construct was implanted within a pocket in the strap muscles for 21 days and, 2) Final surgery: construct with vascularized pedicle was rotated into a segmental tracheal defect for 3 or 6 weeks. Following euthanasia, the construct and native trachea were explanted and evaluated. RESULTS In vitro: After 14 days in culture the constructs showed >80% viable cells. Collagen type II and sox-9 were overexpressed in the construct from day 2 and by day 14 all genes were overexpressed when compared to chondrocytes in monolayer. IN VIVO By day 21 (immediately before the rotation), cartilage formation could be seen surrounding all the constructs. Mature cartilage was observed in the grafts after 6 or 9 weeks in vivo. CONCLUSION This two-stage approach for implanting a 3D printed tissue-engineered tracheal replacement construct has been optimized to yield a high-quality, printable segment with cellular growth and viability both in vitro and in vivo.
Collapse
Affiliation(s)
- Lidia Frejo
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Pediatric Otolaryngology, Steven and Alexandra Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Todd Goldstein
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Pooja Swami
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Neha A Patel
- Division of Pediatric Otolaryngology, Steven and Alexandra Cohen Children's Medical Center, New Hyde Park, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Daniel A Grande
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - David Zeltsman
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Division of Thoracic Surgery, Northwell Health, New Hyde Park, NY, USA; Division of Thoracic Surgery, Long Island Jewish Medical Center, New Hyde Park, NY, USA
| | - Lee P Smith
- Division of Pediatric Otolaryngology, Steven and Alexandra Cohen Children's Medical Center, New Hyde Park, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
6
|
Abstract
AbstractThe multidisciplinary research field of bioprinting combines additive manufacturing, biology and material sciences to create bioconstructs with three-dimensional architectures mimicking natural living tissues. The high interest in the possibility of reproducing biological tissues and organs is further boosted by the ever-increasing need for personalized medicine, thus allowing bioprinting to establish itself in the field of biomedical research, and attracting extensive research efforts from companies, universities, and research institutes alike. In this context, this paper proposes a scientometric analysis and critical review of the current literature and the industrial landscape of bioprinting to provide a clear overview of its fast-changing and complex position. The scientific literature and patenting results for 2000–2020 are reviewed and critically analyzed by retrieving 9314 scientific papers and 309 international patents in order to draw a picture of the scientific and industrial landscape in terms of top research countries, institutions, journals, authors and topics, and identifying the technology hubs worldwide. This review paper thus offers a guide to researchers interested in this field or to those who simply want to understand the emerging trends in additive manufacturing and 3D bioprinting.
Graphic abstract
Collapse
|
7
|
Vijayavenkataraman S. Perspective: 3D bioprinted skin - engineering the skin for medical applications. ANNALS OF 3D PRINTED MEDICINE 2021. [DOI: 10.1016/j.stlm.2021.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Biofabrication in Congenital Cardiac Surgery: A Plea from the Operating Theatre, Promise from Science. MICROMACHINES 2021; 12:mi12030332. [PMID: 33800971 PMCID: PMC8004062 DOI: 10.3390/mi12030332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Despite significant advances in numerous fields of biofabrication, clinical application of biomaterials combined with bioactive molecules and/or cells largely remains a promise in an individualized patient settings. Three-dimensional (3D) printing and bioprinting evolved as promising techniques used for tissue-engineering, so that several kinds of tissue can now be printed in layers or as defined structures for replacement and/or reconstruction in regenerative medicine and surgery. Besides technological, practical, ethical and legal challenges to solve, there is also a gap between the research labs and the patients' bedside. Congenital and pediatric cardiac surgery mostly deal with reconstructive patient-scenarios when defects are closed, various segments of the heart are connected, valves are implanted. Currently available biomaterials lack the potential of growth and conduits, valves derange over time surrendering patients to reoperations. Availability of viable, growing biomaterials could cancel reoperations that could entail significant public health benefit and improved quality-of-life. Congenital cardiac surgery is uniquely suited for closing the gap in translational research, rapid application of new techniques, and collaboration between interdisciplinary teams. This article provides a succinct review of the state-of-the art clinical practice and biofabrication strategies used in congenital and pediatric cardiac surgery, and highlights the need and avenues for translational research and collaboration.
Collapse
|
9
|
Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater 2020; 106:54-69. [PMID: 32044456 DOI: 10.1016/j.actbio.2020.02.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Peripheral nerves can sustain injuries due to loss of structure and/or function of peripheral nerves because of accident, trauma and other causes, which leads to partial or complete loss of sensory, motor, and autonomic functions and neuropathic pain. Even with the extensive knowledge on the pathophysiology and regeneration mechanisms of peripheral nerve injuries (PNI), reliable treatment methods that ensure full functional recovery are scant. Nerve autografting is the current gold standard for treatment of PNI. Given the limitations of autografts including donor site morbidity and limited supply, alternate treatment methods are being pursued by the researchers. Neural guide conduits (NGCs) are increasingly being considered as a potential alternative to nerve autografts. The anatomy of peripheral nerves, classification of PNI, and current treatment methods are briefly yet succinctly reviewed. A detailed review on the various designs of NGCs, the different materials used for making the NGCs, and the fabrication methods adopted is presented in this work. Much progress had been made in all the aspects of making an NGC, including the design, materials and fabrication techniques. The advent of advanced technologies such as additive manufacturing and 3D bioprinting could be beneficial in easing the production of patient-specific NGCs. NGCs with supporting cells or stem cells, NGCs loaded with neurotropic factors and drugs, and 4D printed NGCs are some of the futuristic areas of interest. STATEMENT OF SIGNIFICANCE: Neural guide conduits (NGCs) are increasingly being considered as a potential alternative to nerve autografts in the treatment of peripheral nerve injuries. A detailed review on the various designs of NGCs, the different materials used for making the NGCs, and the fabrication methods (including Additive Manufacturing) adopted is presented in this work.
Collapse
Affiliation(s)
- Sanjairaj Vijayavenkataraman
- Division of Engineering, New York University Abu Dhabi, UAE; Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, NY, USA.
| |
Collapse
|
10
|
Vijayavenkataraman S, Thaharah S, Zhang S, Lu WF, Fuh JYH. 3D‐Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair. Artif Organs 2018; 43:515-523. [DOI: 10.1111/aor.13360] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022]
Affiliation(s)
| | - Siti Thaharah
- Department of Mechanical EngineeringNational University of Singapore (NUS) Singapore
| | - Shuo Zhang
- Department of Mechanical EngineeringNational University of Singapore (NUS) Singapore
| | - Wen Feng Lu
- Department of Mechanical EngineeringNational University of Singapore (NUS) Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical EngineeringNational University of Singapore (NUS) Singapore
- NUS Research Institute Suzhou China
| |
Collapse
|
11
|
Zhang S, Vijayavenkataraman S, Lu WF, Fuh JYH. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication. J Biomed Mater Res B Appl Biomater 2018; 107:1329-1351. [DOI: 10.1002/jbm.b.34226] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/26/2018] [Accepted: 08/12/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Shuo Zhang
- Department of Mechanical EngineeringNational University of Singapore, 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Sanjairaj Vijayavenkataraman
- Department of Mechanical EngineeringNational University of Singapore, 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Wen Feng Lu
- Department of Mechanical EngineeringNational University of Singapore, 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Jerry Y H Fuh
- Department of Mechanical EngineeringNational University of Singapore, 9 Engineering Drive 1 Singapore 117576 Singapore
| |
Collapse
|
12
|
Vijayavenkataraman S, Zhang L, Zhang S, Hsi Fuh JY, Lu WF. Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach toward Biomimetic Scaffold Design. ACS APPLIED BIO MATERIALS 2018; 1:259-269. [DOI: 10.1021/acsabm.8b00052] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Lei Zhang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
| | - Shuo Zhang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
| |
Collapse
|
13
|
Vijayavenkataraman S, Zhang S, Thaharah S, Sriram G, Lu WF, Fuh JYH. Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Polymers (Basel) 2018; 10:E753. [PMID: 30960678 PMCID: PMC6403768 DOI: 10.3390/polym10070753] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022] Open
Abstract
The prevalence of peripheral nerve injuries resulting in loss of motor function, sensory function, or both, is on the rise. Artificial Nerve Guide Conduits (NGCs) are considered an effective alternative treatment for autologous nerve grafts, which is the current gold-standard for treating peripheral nerve injuries. In this study, Polycaprolactone-based three-dimensional porous NGCs are fabricated using Electrohydrodynamic jet 3D printing (EHD-jetting) for the first time. The main advantage of this technique is that all the scaffold properties, namely fibre diameter, pore size, porosity, and fibre alignment, can be controlled by tuning the process parameters. In addition, EHD-jetting has the advantages of customizability, repeatability, and scalability. Scaffolds with five different pore sizes (125 to 550 μm) and porosities (65 to 88%) are fabricated and the effect of pore size on the mechanical properties is evaluated. In vitro degradation studies are carried out to investigate the degradation profile of the scaffolds and determine the influence of pore size on the degradation rate and mechanical properties at various degradation time points. Scaffolds with a pore size of 125 ± 15 μm meet the requirements of an optimal NGC structure with a porosity greater than 60%, mechanical properties closer to those of the native peripheral nerves, and an optimal degradation rate matching the nerve regeneration rate post-injury. The in vitro neural differentiation studies also corroborate the same results. Cell proliferation was highest in the scaffolds with a pore size of 125 ± 15 μm assessed by the PrestoBlue assay. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) results involving the three most important genes concerning neural differentiation, namely β3-tubulin, NF-H, and GAP-43, confirm that the scaffolds with a pore size of 125 ± 15 μm have the highest gene expression of all the other pore sizes and also outperform the electrospun Polycaprolactone (PCL) scaffold. The immunocytochemistry results, expressing the two important nerve proteins β3-tubulin and NF200, showed directional alignment of the neurite growth along the fibre direction in EHD-jet 3D printed scaffolds.
Collapse
Affiliation(s)
| | - Shuo Zhang
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
| | - Siti Thaharah
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore 119083, Singapore.
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
- NUS Research Institute, Suzhou Industry Park, Suzhou 215123, China.
| |
Collapse
|
14
|
Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 2018; 132:296-332. [PMID: 29990578 DOI: 10.1016/j.addr.2018.07.004] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/27/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
3D bioprinting is a pioneering technology that enables fabrication of biomimetic, multiscale, multi-cellular tissues with highly complex tissue microenvironment, intricate cytoarchitecture, structure-function hierarchy, and tissue-specific compositional and mechanical heterogeneity. Given the huge demand for organ transplantation, coupled with limited organ donors, bioprinting is a potential technology that could solve this crisis of organ shortage by fabrication of fully-functional whole organs. Though organ bioprinting is a far-fetched goal, there has been a considerable and commendable progress in the field of bioprinting that could be used as transplantable tissues in regenerative medicine. This paper presents a first-time review of 3D bioprinting in regenerative medicine, where the current status and contemporary issues of 3D bioprinting pertaining to the eleven organ systems of the human body including skeletal, muscular, nervous, lymphatic, endocrine, reproductive, integumentary, respiratory, digestive, urinary, and circulatory systems were critically reviewed. The implications of 3D bioprinting in drug discovery, development, and delivery systems are also briefly discussed, in terms of in vitro drug testing models, and personalized medicine. While there is a substantial progress in the field of bioprinting in the recent past, there is still a long way to go to fully realize the translational potential of this technology. Computational studies for study of tissue growth or tissue fusion post-printing, improving the scalability of this technology to fabricate human-scale tissues, development of hybrid systems with integration of different bioprinting modalities, formulation of new bioinks with tuneable mechanical and rheological properties, mechanobiological studies on cell-bioink interaction, 4D bioprinting with smart (stimuli-responsive) hydrogels, and addressing the ethical, social, and regulatory issues concerning bioprinting are potential futuristic focus areas that would aid in successful clinical translation of this technology.
Collapse
|
15
|
Patuzzo S, Goracci G, Gasperini L, Ciliberti R. 3D Bioprinting Technology: Scientific Aspects and Ethical Issues. SCIENCE AND ENGINEERING ETHICS 2018; 24:335-348. [PMID: 28660387 DOI: 10.1007/s11948-017-9918-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
The scientific development of 3D bioprinting is rapidly advancing. This innovative technology involves many ethical and regulatory issues, including theoretical, source, transplantation and enhancement, animal welfare, economic, safety and information arguments. 3D bioprinting technology requires an adequate bioethical debate in order to develop regulations in the interest both of public health and the development of research. This paper aims to initiate and promote ethical debate. The authors examine scientific aspects of 3D bioprinting technology and explore related ethical issues, with special regard to the protection of individual rights and transparency of research. In common with all new biotechnologies, 3D bioprinting technology involves both opportunities and risks. Consequently, several scientific and ethical issues need to be addressed. A bioethical debate should be carefully increased through a multidisciplinary approach among experts and also among the public.
Collapse
Affiliation(s)
- Sara Patuzzo
- School of Medicine and Surgery, University of Verona, 37134, Verona, Italy.
| | - Giada Goracci
- Department of Foreign Languages and Literatures, University of Verona, 37129, Verona, Italy
| | - Luca Gasperini
- 3B's, Department of Polymer Engineering, University of Minho, 4806-909, Caldas das Taipas, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarãs, Portugal
| | | |
Collapse
|
16
|
Vijayavenkataraman S, Shuo Z, Fuh JYH, Lu WF. Design of Three-Dimensional Scaffolds with Tunable Matrix Stiffness for Directing Stem Cell Lineage Specification: An In Silico Study. Bioengineering (Basel) 2017; 4:E66. [PMID: 28952545 PMCID: PMC5615312 DOI: 10.3390/bioengineering4030066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering is a multi-disciplinary area of research bringing together the fields of engineering and life sciences with the aim of fabricating tissue constructs aiding in the regeneration of damaged tissues and organs. Scaffolds play a key role in tissue engineering, acting as the templates for tissue regeneration and guiding the growth of new tissue. The use of stem cells in tissue engineering and regenerative medicine becomes indispensable, especially for applications involving successful long-term restoration of continuously self-renewing tissues, such as skin. The differentiation of stem cells is controlled by a number of cues, of which the nature of the substrate and its innate stiffness plays a vital role in stem cell fate determination. By tuning the substrate stiffness, the differentiation of stem cells can be directed to the desired lineage. Many studies on the effect of substrate stiffness on stem cell differentiation has been reported, but most of those studies are conducted with two-dimensional (2D) substrates. However, the native in vivo tissue microenvironment is three-dimensional (3D) and life science researchers are moving towards 3D cell cultures. Porous 3D scaffolds are widely used by the researchers for 3D cell culture and the properties of such scaffolds affects the cell attachment, proliferation, and differentiation. To this end, the design of porous scaffolds directly influences the stem cell fate determination. There exists a need to have 3D scaffolds with tunable stiffness for directing the differentiation of stem cells into the desired lineage. Given the limited number of biomaterials with all the desired properties, the design of the scaffolds themselves could be used to tune the matrix stiffness. This paper is an in silico study, investigating the effect of various scaffold parameter, namely fiber width, porosity, number of unit cells per layer, number of layers, and material selection, on the matrix stiffness, thereby offering a guideline for design of porous tissue engineering scaffolds with tunable matrix stiffness for directing stem cell lineage specification.
Collapse
Affiliation(s)
| | - Zhang Shuo
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117576, Singapore.
| | - Jerry Y H Fuh
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117576, Singapore.
- NUS Research Institute, Suzhou Industry Park, Suzhou 215123, China.
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117576, Singapore.
| |
Collapse
|
17
|
Vijayavenkataraman S, Fuh JYH, Lu WF. 3D Printing and 3D Bioprinting in Pediatrics. Bioengineering (Basel) 2017; 4:E63. [PMID: 28952542 PMCID: PMC5615309 DOI: 10.3390/bioengineering4030063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.
Collapse
Affiliation(s)
- Sanjairaj Vijayavenkataraman
- Department of Mechanical Engineering, National University of Singapore (NUS), Block EA 02-17, 9 Engineering Drive 1, Singapore 117576, Singapore.
| | - Jerry Y H Fuh
- Department of Mechanical Engineering, National University of Singapore (NUS), Block EA 02-17, 9 Engineering Drive 1, Singapore 117576, Singapore.
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore (NUS), Block EA 02-17, 9 Engineering Drive 1, Singapore 117576, Singapore.
| |
Collapse
|
18
|
Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 2017. [DOI: 10.1039/c7py00826k] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last decade, interest in the field of three-dimensional (3D) bioprinting has increased enormously. This review describes all the currently used bio-printing inks, including polymeric hydrogels, polymer bead microcarriers, cell aggregates and extracellular matrix proteins.
Collapse
Affiliation(s)
- Ilze Donderwinkel
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- Department of Bio-organic Chemistry
| | - Jan C. M. van Hest
- Department of Bio-organic Chemistry
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
- Department of Chemical Engineering and Chemistry
| | - Neil R. Cameron
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- School of Engineering
| |
Collapse
|