1
|
Kargozar S, Gorgani S, Nazarnezhad S, Wang AZ. Biocompatible Nanocomposites for Postoperative Adhesion: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:4. [PMID: 38202459 PMCID: PMC10780749 DOI: 10.3390/nano14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
To reduce and prevent postsurgical adhesions, a variety of scientific approaches have been suggested and applied. This includes the use of advanced therapies like tissue-engineered (TE) biomaterials and scaffolds. Currently, biocompatible antiadhesive constructs play a pivotal role in managing postoperative adhesions and several biopolymer-based products, namely hyaluronic acid (HA) and polyethylene glycol (PEG), are available on the market in different forms (e.g., sprays, hydrogels). TE polymeric constructs are usually associated with critical limitations like poor biocompatibility and mechanical properties. Hence, biocompatible nanocomposites have emerged as an advanced therapy for postoperative adhesion treatment, with hydrogels and electrospun nanofibers among the most utilized antiadhesive nanocomposites for in vitro and in vivo experiments. Recent studies have revealed that nanocomposites can be engineered to generate smart three-dimensional (3D) scaffolds that can respond to different stimuli, such as pH changes. Additionally, nanocomposites can act as multifunctional materials for the prevention of adhesions and bacterial infections, as well as tissue healing acceleration. Still, more research is needed to reveal the clinical potential of nanocomposite constructs and the possible success of nanocomposite-based products in the biomedical market.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Andrew Z. Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
2
|
Lee SH, Jo SH, Kim SH, Kim CS, Park SH. Anti-Osteoarthritic Effects of Cartilage-Derived Extracellular Matrix in a Rat Osteoarthritis Model. Tissue Eng Regen Med 2023; 20:83-92. [PMID: 36562983 PMCID: PMC9852408 DOI: 10.1007/s13770-022-00508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) has many functions, such as segregating tissues, providing support, and regulating intercellular communication. Cartilage-derived ECM (CECM) can be prepared via consecutive processes of chemical decellularization and enzyme treatment. The purpose of this study was to improve and treat osteoarthritis (OA) using porcine knee articular CECM. METHODS We assessed the rheological characteristics and pH of CECM solutions. Furthermore, we determined the effects of CECM on cell proliferation and cytotoxicity in the chondrocytes of New Zealand rabbits. The inhibitory effect of CECM on tumor necrosis factor (TNF)-α-induced cellular apoptosis was assessed using New Zealand rabbit chondrocytes and human synoviocytes. Finally, we examined the in vivo effects of CECM on inflammation control and cartilage degradation in an experimental OA-induced rat model. The rat model of OA was established by injecting monosodium iodoacetate into the intra-articular knee joint. The rats were then injected with CECM solution. Inflammation control and cartilage degradation were assessed by measuring the serum levels of proinflammatory cytokines and C-telopeptide of type II collagen and performing a histomorphological analysis. RESULTS CECM was found to be biocompatible and non-immunogenic, and could improve cell proliferation without inducing a toxic reaction. CECM significantly reduced cellular apoptosis due to TNF-α, significantly improved the survival of cells in inflammatory environments, and exerted anti-inflammatory effects. CONCLUSION Our findings suggest that CECM is an appropriate injectable material that mediates OA-induced inflammation.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
- The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
- The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Seon-Hwa Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
- The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea
| | - Chang-Su Kim
- Department of Orthopedics Surgery, Kosin University Gospel Hospital, 45 Yongso-Ro, Nam-Gu, Busan, Republic of Korea
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.
- The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, Republic of Korea.
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
3
|
Huang X, Ding Y, Pan W, Lu L, Jin R, Liang X, Chang M, Wang Y, Luo X. A Comparative Study on Two Types of Porcine Acellular Dermal Matrix Sponges Prepared by Thermal Crosslinking and Thermal-Glutaraldehyde Crosslinking Matrix Microparticles. Front Bioeng Biotechnol 2022; 10:938798. [PMID: 35992352 PMCID: PMC9388789 DOI: 10.3389/fbioe.2022.938798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Common commercial porcine acellular dermal matrix (PADM) products take the form of a thin membrane. Given its dense structure, delaying vascularization after implantation remains an issue to be solved. In addition, overlaying multiple sheets to address deep wounds and large tissue defects that are difficult to repair by self-tissues could hinder tissue ingrowth, angiogenesis, and integration. Here, we creatively prepared PADM microparticles through a homogenizing treatment and crosslinked them to ADM sponges by thermal crosslinking (VT-ADM) and thermal-glutaraldehyde crosslinking (GA-ADM). The resulting VT-ADM was thicker than GA-ADM, and both maintained the natural dermal matrix microstructure and thermal stability. The porosity of GA-ADM (mean 82%) was lower than that of VT-ADM (mean 90.2%), but the mechanical strength and hydrophilicity were significantly higher. The two types of ADM sponges showed no obvious difference in cell adhesion and proliferation without cytotoxicity. Furthermore, the human adipose stem cells were co-cultured with ADM sponges which promoted proliferation, tube formation, and migration of endothelial cells, and the GA-ADM group exhibited better migration behavior. There were no markable differences among expressions of pro-angiogenesis genes, including vascular endothelial growth factor, insulin-like growth factor-1, and epidermal growth factor. In a nude mouse model, the VT-ADM and GA-ADM pre-cultured with human adipose stem cells for 1 week in advance were implanted subcutaneously. The VT-ADM and the GA-ADM showed great histocompatibility without local redness, swelling, or necrosis. The vascular density of the local skin flap above the material was visualized using indocyanine green and showed no statistical difference between the two groups. The collagen tissue deposition in the pores and vessel formation within the sponges increased with time. Although VT-ADM had a higher degradation rate in vivo, the integrity of the two scaffolds was preserved. Collectively, the VT-ADM and the GA-ADM retained a natural matrix structure and presented biocompatibility. Thus, the above-mentioned two crosslinking methods for ADM sponges are safe and practicable. The novel ADM sponges with good physicochemical and biological properties are no longer limited to membrane tissue regeneration but could also realize structure remodeling where they act as scaffolds for a soft tissue filler and three-dimensional reconstruction of the tissue with strength requirements.
Collapse
Affiliation(s)
- Xing Huang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Tissue Engineering, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Ding
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqian Pan
- Jiangsu Unitrump Biomedical Technology Co.,Ltd., Jiangsu, China
| | - Lin Lu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Jin
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Liang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengling Chang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinmin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yinmin Wang, ; Xusong Luo,
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yinmin Wang, ; Xusong Luo,
| |
Collapse
|
4
|
Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, Sossa CL, Becerra-Bayona SM. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front Bioeng Biotechnol 2022; 10:821852. [PMID: 35252131 PMCID: PMC8896438 DOI: 10.3389/fbioe.2022.821852] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
The absence or damage of a tissue is the main cause of most acute or chronic diseases and are one of the appealing challenges that novel therapeutic alternatives have, in order to recover lost functions through tissue regeneration. Chronic cutaneous lesions are the most frequent cause of wounds, being a massive area of regenerative medicine and tissue engineering to have efforts to develop new bioactive medical products that not only allow an appropriate and rapid healing, but also avoid severe complications such as bacterial infections. In tissue repair and regeneration processes, there are several overlapping stages that involve the synergy of cells, the extracellular matrix (ECM) and biomolecules, which coordinate processes of ECM remodeling as well as cell proliferation and differentiation. Although these three components play a crucial role in the wound healing process, the ECM has the function of acting as a biological platform to permit the correct interaction between them. In particular, ECM is a mixture of crosslinked proteins that contain bioactive domains that cells recognize in order to promote migration, proliferation and differentiation. Currently, tissue engineering has employed several synthetic polymers to design bioactive scaffolds to mimic the native ECM, by combining biopolymers with growth factors including collagen and fibrinogen. Among these, decellularized tissues have been proposed as an alternative for reconstructing cutaneous lesions since they maintain the complex protein conformation, providing the required functional domains for cell differentiation. In this review, we present an in-depth discussion of different natural matrixes recently employed for designing novel therapeutic alternatives for treating cutaneous injuries, and overview some future perspectives in this area.
Collapse
Affiliation(s)
- Víctor Alfonso Solarte David
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Program of Biomedical Engineering, Faculty of Engineering, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | - Viviana Raquel Güiza-Argüello
- Metallurgical Engineering and Materials Science Department, Faculty of Physicochemical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Martha L. Arango-Rodríguez
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Claudia L. Sossa
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Silvia M. Becerra-Bayona
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- *Correspondence: Silvia M. Becerra-Bayona,
| |
Collapse
|
5
|
Zebiri H, Van Den Berghe H, Paunet T, Wolf-Mandroux A, Bethry A, Taillades H, Noel YJ, Pirot N, Botteron C, Chammas M, Chammas PE, Garric X. Preliminary in vivo study of biodegradables PLA-PEU-PLA anti-adhesion membranes in a rat Achilles tendon model of peritendinous adhesions. Biomater Sci 2022; 10:1776-1786. [DOI: 10.1039/d1bm01150b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peritendinous adhesions are complications known to occur up to 6 weeks after surgery and cause chronic pain and disability. Anti-adhesion barriers are currently the best option for prevention. In a...
Collapse
|
6
|
Kim TH, Heo SY, Oh GW, Park WS, Choi IW, Kang HW, Kim HW, Kim YM, Jo SH, Park SH, Jung WK. A phlorotannins-loaded homogeneous acellular matrix film modulates post-implantation inflammatory responses. J Tissue Eng Regen Med 2021; 16:51-62. [PMID: 34687268 DOI: 10.1002/term.3258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/11/2021] [Accepted: 10/13/2021] [Indexed: 01/26/2023]
Abstract
Peritendinous adhesion mainly occurs between proliferating fibrous tissues and adjacent normal organs after surgery. Many physical barriers are applied to the implanted site to prevent peritendinous adhesion. However, these barriers often trigger inflammatory responses. Therefore, our study sought to develop phlorotannins-loaded cartilage acellular matrix (CAM) films as a physical barrier and investigate their inhibitory effect on inflammatory responses, which are associated with the induction of postoperative peritendinous adhesion (PAA). Our findings indicated that incorporating phlorotannin into the CAM film did not affect its unique characteristics including its thermal and spectroscopic properties. Moreover, the phlorotannins-loaded CAM films suppressed the expression of inflammatory mediators on RAW 264.7 macrophages stimulated using Escherichia coli lipopolysaccharides and exhibited an anti-inflammatory effect when implanted subcutaneously in rats. Therefore, our results highlight the potential of phlorotannins-loaded CAM films as a promising physical barrier to prevent PAA.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Biomedical Engineering and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Korea
| | - Seong-Yeong Heo
- Research Center for Marine-Integrated Bionics Technology and Marine Integrated Biomedical Technology Center, Pukyong National University, Busan, Korea.,Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Korea
| | - Gun-Woo Oh
- Research Center for Marine-Integrated Bionics Technology and Marine Integrated Biomedical Technology Center, Pukyong National University, Busan, Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, Korea
| | - Hyun Wook Kang
- Department of Biomedical Engineering and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Korea.,Research Center for Marine-Integrated Bionics Technology and Marine Integrated Biomedical Technology Center, Pukyong National University, Busan, Korea
| | - Hyun-Woo Kim
- Research Center for Marine-Integrated Bionics Technology and Marine Integrated Biomedical Technology Center, Pukyong National University, Busan, Korea.,Department of Marine Biology, Pukyong National University, Busan, Korea
| | - Young-Mog Kim
- Research Center for Marine-Integrated Bionics Technology and Marine Integrated Biomedical Technology Center, Pukyong National University, Busan, Korea.,Department of Food Science and Technology, Pukyong National University, Busan, Korea
| | - Sung-Han Jo
- Department of Biomedical Engineering and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Korea.,Research Center for Marine-Integrated Bionics Technology and Marine Integrated Biomedical Technology Center, Pukyong National University, Busan, Korea
| |
Collapse
|
7
|
Characterization of Marine Organism Extracellular Matrix-Anchored Extracellular Vesicles and Their Biological Effect on the Alleviation of Pro-Inflammatory Cytokines. Mar Drugs 2021; 19:md19110592. [PMID: 34822463 PMCID: PMC8618641 DOI: 10.3390/md19110592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Representative marine materials such as biopolymers and bioceramics contain bioactive properties and are applied in regenerative medicine and tissue engineering. The marine organism-derived extracellular matrix (ECM), which consists of structural and functional molecules, has been studied as a biomaterial. It has been used to reconstruct tissues and improve biological functions. However, research on marine-derived extracellular vesicles (EVs) among marine functional materials is limited. Recent studies on marine-derived EVs were limited to eco-system studies using bacteria-released EVs. We aimed to expand the range of representative marine organisms such as fish, crustaceans, and echinoderms; establish the extraction process; and study the bioactivity capability of marine EVs. Results confirmed that marine organism ECM-anchored EVs (mEVs) have a similar morphology and cargos to those of EVs in land animals. To investigate physiological effects, lipopolysaccharide (LPS)-infected macrophages were treated with EVs derived from sea cucumber, fish, and shrimp. A comparison of the expression levels of inflammatory cytokine genes revealed that all types of mEVs alleviated pro-inflammatory cytokines, although to different degrees. Among them, the sea cucumber-derived EVs showed the strongest suppression ability. This study showed that research on EVs derived from various types of marine animals can lead to the development of high value-added therapeutics from discarded marine wastes.
Collapse
|
8
|
Advanced technology-driven therapeutic interventions for prevention of tendon adhesion: Design, intrinsic and extrinsic factor considerations. Acta Biomater 2021; 124:15-32. [PMID: 33508510 DOI: 10.1016/j.actbio.2021.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Tendon adhesion formation describes the development of fibrotic tissue between the tendon and its surrounding tissues, which commonly occurs as a reaction to injury or surgery. Its impact on function and quality of life varies from negligible to severely disabling, depending on the affected area and extent of adhesion formed. Thus far, treatment options remain limited with prophylactic anti-inflammatory medications and revision surgeries constituting the only tools within the doctors' armamentarium - neither of which provides reliable outcomes. In this review, the authors aim to collate the current understanding of the pathophysiological mechanisms underlying tendon adhesion formation, highlighting the significant role ascribed to the inflammatory cascade in accelerating adhesion formation. The bulk of this article will then be dedicated to critically appraising different therapeutic structures like nanoparticles, hydrogels and fibrous membranes fabricated by various cutting-edge technologies for adhesion formation prophylaxis. Emphasis will be placed on the role of the fibrous membranes, their ability to act as drug delivery vehicles as well as the combination with other therapeutic structures (e.g., hydrogel or nanoparticles) or fabrication technologies (e.g., weaving or braiding). Finally, the authors will provide an opinion as to the future direction of the prevention of tendon adhesion formation in view of scaffold structure and function designs.
Collapse
|
9
|
Jo SH, Kim C, Park SH. Novel Marine Organism-Derived Extracellular Vesicles for Control of Anti-Inflammation. Tissue Eng Regen Med 2021; 18:71-79. [PMID: 33415671 DOI: 10.1007/s13770-020-00319-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/13/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) exhibit potential as functional biomolecules for tissue regeneration and immunomodulation as they play important roles in the physiological communication between cells. EV internal cargo contains miRNAs, proteins, lipids, and so on. Osteoarthritis (OA) is a common joint disease causing disability owing to impaired joint function and pain. EVs originating from animal cells and tissue matrices are also being considered for OA, in addition to research involving non-steroidal therapeutic agents. However, there are no studies on EVs from marine organisms. Hence, we focused on sea cucumber-derived EVs and conducted experiments to set up an extraction protocol and to demonstrate their efficacy to modulate the inflammatory environment. METHODS Sea cucumber extracellular matrices (SECMs) were prepared by a decellularization process. Lyophilized SECMs were treated with collagenase and filtered to isolate sea cucumber extracellular vesicles (SEVs). After isolation, we conducted physical characterization and cell activation studies including cytotoxicity, proliferation, and anti-inflammation effect assays. RESULTS The physical characterization results showed circular SEVs in the size range of 66-480 nm. These SEVs contained large amounts of protein cargo, infiltrated the synoviocyte membrane without damage, and had a suppressive effect on inflammatory cytokines. CONCLUSION This study established an extraction process for EVs from sea cucumber and reported the anti-inflammatory ability of SEVs. Isolated SEVs can be further utilized for tissue regeneration studies and can be compared to various marine or animal-derived EVs.
Collapse
Affiliation(s)
- Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea.,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, 48513, Republic of Korea
| | - Changsu Kim
- Department of Orthopedics Surgery, Kosin University Gospel Hospital, Busan, 49267, Republic of Korea
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea. .,The Center for Marine Integrated Biomedical Technology (BK21 PLUS), Pukyong National University, Busan, 48513, Republic of Korea. .,Department of Biomedical Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|