1
|
Yao H, You X, Ye Y, Gong X, Zhang X, Wang Y, Zhou X, Li Y, Liu Y, Dutta Chowdhury A, Liu T. Loading Self-Assembly Siliceous Zeolites for Affordable Next-Generation Wearable Artificial Kidney Technology. ACS NANO 2024. [PMID: 39448556 DOI: 10.1021/acsnano.4c07594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The global demand for dialysis among patients with end-stage kidney disease has surpassed the capacity of public healthcare, a trend that has intensified. While wearable artificial kidney (WAK) technology is seen as a crucial solution to address this demand, there is an urgent need for both efficient and renewable toxin-adsorbent materials to overcome the long-standing technological challenges in terms of cost, device size, and sustainability. In this study, we employed screening experiments for adsorbent materials, multimodal characterization, and Monte Carlo adsorption simulations to identify a synthetic self-assembly silicalite-1 zeolite that exhibits highly ordered crystal arrays along the [010] face (b-axis) direction, demonstrating exceptional adsorption capabilities for small molecular toxins such as creatinine and urea associated with uremia. Moreover, this metal-free, cost-effective, easily synthesized, and highly efficient toxin adsorbent could be regenerated through calcination without compromising the performance. The simulated toxin adsorption experiments and comprehensive biocompatibility verification position it as an auxiliary adsorbent to reduce dialysate dosages in WAK devices as well as a potential adsorbent for small-molecule toxins in dialysis. This work is poised to propel the development of next-generation WAK devices by providing siliceous adsorbent solutions for small-molecule toxins.
Collapse
Affiliation(s)
- Hanlin Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan 430072, P. R. China
| | - Xinyu You
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yunhao Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan 430072, P. R. China
| | - Xue Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yun Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410000, P. R. China
| | - Yang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan 430072, P. R. China
| | | | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan 430072, P. R. China
| |
Collapse
|
2
|
Karageorgos FF, Alexiou M, Tsoulfas G, Alexopoulos AH. Hydrogel-Based Vascularized Organ Tissue Engineering: A Systematized Review on Abdominal Organs. Gels 2024; 10:653. [PMID: 39451306 PMCID: PMC11507150 DOI: 10.3390/gels10100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Biomedical engineering, especially tissue engineering, is trying to provide an alternative solution to generate functional organs/tissues for use in various applications. These include beyond the final goal of transplantation, disease modeling and drug discovery as well. The aim of this study is to comprehensively review the existing literature on hydrogel-based vascularized organ (i.e., liver, pancreas, kidneys, intestine, stomach and spleen) tissue engineering of the abdominal organs. METHODS A comprehensive literature search was conducted on the Scopus database (latest search 1 September 2024). The research studies including hydrogel-based vascularized organ tissue engineering in the organs examined here were eligible for the review. RESULTS Herein, 18 studies were included. Specifically, 10 studies included the liver or hepatic tissue, 5 studies included the pancreas or pancreatic islet tissue, 3 studies included the kidney or renal tissue, 1 study included the intestine or intestinal or bowel tissue, 1 study included the stomach or gastric tissue, and 0 studies included spleen tissue. CONCLUSION Hydrogels are biocompatible materials with ideal characteristics for use as scaffolds. Even though organ tissue engineering is a rapidly growing field, there are still many obstacles to overcome to create a fully functional and long-lasting organ.
Collapse
Affiliation(s)
- Filippos F. Karageorgos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki School of Medicine, 54642 Thessaloniki, Greece; (F.F.K.); (M.A.)
| | - Maria Alexiou
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki School of Medicine, 54642 Thessaloniki, Greece; (F.F.K.); (M.A.)
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki School of Medicine, 54642 Thessaloniki, Greece; (F.F.K.); (M.A.)
| | - Aleck H. Alexopoulos
- Chemical Process & Energy Resources Institute, 6th Km Harilaou-Thermi Rd., P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
3
|
Shiri P, Rezaeian S, Abdi A, Jalilian M, Khatony A. Risk factors for thrombosis in dialysis patients: A comprehensive systematic review and meta-analysis. JOURNAL OF VASCULAR NURSING 2024; 42:165-176. [PMID: 39244328 DOI: 10.1016/j.jvn.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 09/09/2024]
Abstract
AIM To identify the factors associated with thrombosis in dialysis patients. BACKGROUND Thrombosis is a leading cause of vascular access failure in dialysis patients. Numerous risk factors contribute to thrombosis in this population. METHODS A systematic search was conducted across international databases using standardized keywords. The quality of the selected studies was assessed using the STROBE and CONSORT checklists. The findings were summarized in a Garrard table. Meta-analysis was performed using CMA software. The study adhered to the guidelines outlined in the PRISMA statement. RESULTS A total of 180 articles were reviewed. The odds ratio for thrombosis in patients with arteriovenous grafts compared to arteriovenous fistulas was 10.93 (95 % CI: 9.35-12.78), demonstrating statistical significance (P = 0.001). Similarly, hemodialysis patients had an odds ratio of thrombosis 3.60 times higher than non-hemodialysis patients (95 % CI: 3.54-4.19), with statistical significance (P = 0.001). Patients undergoing single-stage basilic vein transposition had a 1.89 times higher risk of thrombosis compared to those undergoing two-stage transposition (95 % CI: 1.04-3.46), also demonstrating statistical significance (P = 0.038). CONCLUSIONS Thrombosis in patients with end-stage renal disease undergoing dialysis was significantly associated with various factors, including graft access, single-stage basilic vein transposition, and hemodialysis. Additional contributing factors to thrombosis included diabetes, elevated homocysteine levels, female gender, age over 50, access location, and low access blood flow velocity. The analysis revealed a higher incidence of thrombosis in end-stage renal disease patients undergoing hemodialysis compared to those not undergoing dialysis, as well as in patients with arteriovenous grafts compared to those with arteriovenous fistulas. These findings underscore the importance of recognizing and managing these risk factors to prevent thrombotic events and enhance patient care within the dialysis setting.
Collapse
Affiliation(s)
- Parisa Shiri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shabab Rezaeian
- Social Development and Health Promotion Research Centre, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Abdi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Jalilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Khatony
- Social Development and Health Promotion Research Centre, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Infectious Diseases Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Wieringa FP, Bolhuis D, Søndergaard H, Ash SR, Cummins C, Gerritsen KGF, Vollenbroek J, Irmak T. Transportable, portable, wearable and (partially) implantable haemodialysis systems: comparison of technologies and readiness levels. Clin Kidney J 2024; 17:sfae259. [PMID: 39301271 PMCID: PMC11411285 DOI: 10.1093/ckj/sfae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 09/22/2024] Open
Abstract
Background Dialysis modalities and their various treatment schedules result from complex compromises ('trade-offs') between medical, financial, technological, ergonomic, and ecological factors. This study targets summarizing the mutual influence of these trade-offs on (trans)portable, wearable, or even (partially) implantable haemodialysis (HD) systems, identify what systems are in development, and how they might improve quality of life (QoL) for patients with kidney failure. Methods HD as defined by international standard IEC 60601-2-16 was applied on a PUBMED database query regarding (trans)portable, wearable, and (partly) implantable HD systems. Out of 159 search results, 24 were included and scanned for specific HD devices and/or HD systems in development. Additional information about weight, size, and development status was collected by the internet and/or contacting manufacturers. International airplane hand baggage criteria formed the boundary between transportable and portable. Technology readiness levels (TRLs) were assigned by combining TRL scales from the European Union and NATO medical staff. Results The query revealed 13 devices/projects: seven transportable (six TRL9, one TRL5); two portable (one TRL6-7, one TRL4); two wearable (one TRL6, one frozen); and two partly implantable (one TRL4-5, one TRL2-3). Discussion Three main categories of technical approaches were distinguished: single-pass, dialysate regenerating, and implantable HD filter with extracorporeal dialysate regeneration (in climbing order of mobility). Conclusions Kidneys facilitate mobility by excreting strongly concentrated waste solutes with minimal water loss. Mimicking this kidney function can increase HD system mobility. Dialysate-regenerating HD systems are enablers for portability/wearability and, combined with durable implantable HD filters (once available), they may enable HD without needles or intravascular catheters. However, lack of funding severely hampers progress.
Collapse
Affiliation(s)
- Fokko P Wieringa
- IMEC the Netherlands - Health Research, Eindhoven, The Netherlands
- UMC Utrecht - Nephrology Dept, Utrecht, The Netherlands
- European Kidney Health Alliance - WG3, Brussels, Belgium
- IEC - TC62D/MT20, Geneva, Switzerland
| | - Dian Bolhuis
- UMC Utrecht - Nephrology Dept, Utrecht, The Netherlands
| | - Henning Søndergaard
- European Kidney Health Alliance - WG3, Brussels, Belgium
- Danish Kidney Association, Copenhagen, Denmark
| | - Stephen R Ash
- HemoCleanse, Inc. and Ash Access Technologies - R&D, 3601 Sagamore Parkway North, Lafayette, IN, USA
| | | | - Karin G F Gerritsen
- UMC Utrecht - Nephrology Dept, Utrecht, The Netherlands
- University Medical Center Utrecht - Pathology, Utrecht, The Netherlands
| | - Jeroen Vollenbroek
- IMEC the Netherlands - Health Research, Eindhoven, The Netherlands
- UMC Utrecht - Nephrology Dept, Utrecht, The Netherlands
- UTwente, Enschede, The Netherlands
| | - Tugrul Irmak
- UMC Utrecht - Nephrology Dept, Utrecht, The Netherlands
- European Kidney Health Alliance - WG3, Brussels, Belgium
| |
Collapse
|
5
|
Saud B, Guha K, Iannacci J, Selishchev S, Sengupta P, Dutta A. Design and simulation of a microfluidics-based artificial glomerular ultrafiltration unit to reduce cell-induced fouling. Artif Organs 2024. [PMID: 39078122 DOI: 10.1111/aor.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The microfluidic-based Glomerulus-on-Chips (GoC) are mostly cell based, that is, 3D cell culture techniques are used to culture glomerular cells in order to mimic glomerular ultrafiltration. These chips require high maintenance to keep cell viability intact. There have been some approaches to build non-cell-based GoCs but many of these approaches have the drawback of membrane fouling. This article presents a structural design and simulation study of a dialysate free microfluidic channel for replicating the function of the human glomerular filtration barrier. The key advancement of the current work is addressing the fouling issue by combining a pre-filter to eliminate cellular components and performing filtration on the blood plasma. METHODS The Laminar Flow Mixture Model in COMSOL Multiphysics 5.6 has been utilized to simulate the behavior of blood flow in the microchannels. The geometrical effect of microchannels on the separation of the filtrate was investigated. The velocity at the inlet of the microchannel and pore size of the filtration membrane are varied to see the change in outflow and filtration fraction. RESULTS The efficiency of the device is calculated in terms of the filtration fraction (FF%) formed. Simulation results show that the filtrate obtained is ~20% of the plasma flow rate in the channel, which resembles the glomerular filtration fraction. CONCLUSION Given that it is not dependent on the functionality of grown cells, the proposed device is anticipated to have a longer lifespan due to its non-cell-based design. The device's cost can be reduced by avoiding cell cultivation inside of it. It can be integrated as a glomerular functional unit with other units of kidney model to build a fully developed artificial kidney.
Collapse
Affiliation(s)
- Bhagyashree Saud
- Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, India
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, India
| | - Jacopo Iannacci
- Center for Sensors and Devices (SD), Fondazione Bruno Kessler (FBK), Trento, Italy
| | - Sergei Selishchev
- National Research University of Electronic Technology (MIET), Moscow, Russia
| | | | - Arindam Dutta
- RG Stone Urology & Laparoscopic Hospital, Kolkata, India
| |
Collapse
|
6
|
Jayanti S, Rangan GK. Advances in Human-Centered Care to Address Contemporary Unmet Needs in Chronic Dialysis. Int J Nephrol Renovasc Dis 2024; 17:91-104. [PMID: 38525412 PMCID: PMC10961023 DOI: 10.2147/ijnrd.s387598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Advances in the treatment of kidney failure with chronic dialysis have stagnated over the past three decades, with over 50% of patients still managed by conventional in-hospital haemodialysis. In parallel, the demands of chronic dialysis medical care have changed and evolved due to a growing population that has higher frailty and multimorbidity. Thus, the gap between the needs of kidney failure patients and the healthcare capability to provide effective overall management has widened. To address this problem, healthcare policy has increasingly aligned towards a human-centred approach. The paradigm shift of human-centred approach places patients at the forefront of decision-making processes, ensuring that specific needs are understood and prioritised. Integration of human-centred approaches with patient care has been shown to improve satisfaction and quality of life. The aim of this narrative is to evaluate the current clinical challenges for managing kidney failure for dialysis providers; summarise current experiences and unmet needs of chronic dialysis patients; and finally emphasise how human-centred care has advanced chronic dialysis care. Specific incremental advances include implementation of renal supportive care; home-assisted dialysis; hybrid dialysis; refinements to dialysis methods; whereas emerging advances include portable and wearable dialysis devices and the potential for the integration of artificial intelligence in clinical practice.
Collapse
Affiliation(s)
- Sumedh Jayanti
- Department of Renal Medicine, Westmead Hospital, Sydney, NSW, Australia
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Gopala K Rangan
- Department of Renal Medicine, Westmead Hospital, Sydney, NSW, Australia
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Karageorgos FF, Neiros S, Karakasi KE, Vasileiadou S, Katsanos G, Antoniadis N, Tsoulfas G. Artificial kidney: Challenges and opportunities. World J Transplant 2024; 14:89025. [PMID: 38576754 PMCID: PMC10989479 DOI: 10.5500/wjt.v14.i1.89025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 03/15/2024] Open
Abstract
This review aims to present the developments occurring in the field of artificial organs and particularly focuses on the presentation of developments in artificial kidneys. The challenges for biomedical engineering involved in overcoming the potential difficulties are showcased, as well as the importance of interdisciplinary collaboration in this marriage of medicine and technology. In this review, modern artificial kidneys and the research efforts trying to provide and promise artificial kidneys are presented. But what are the problems faced by each technology and to what extent is the effort enough to date?
Collapse
Affiliation(s)
- Filippos F Karageorgos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Stavros Neiros
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Konstantina-Eleni Karakasi
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Stella Vasileiadou
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Katsanos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Nikolaos Antoniadis
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki 54642, Greece
| |
Collapse
|
8
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
9
|
Christou CD, Vasileiadou S, Sotiroudis G, Tsoulfas G. Three-Dimensional Printing and Bioprinting in Renal Transplantation and Regenerative Medicine: Current Perspectives. J Clin Med 2023; 12:6520. [PMID: 37892658 PMCID: PMC10607284 DOI: 10.3390/jcm12206520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
For patients with end-stage kidney disease (ESKD), renal transplantation is the treatment of choice, constituting the most common solid organ transplantation. This study aims to provide a comprehensive review regarding the application of three-dimensional (3D) printing and bioprinting in renal transplantation and regenerative medicine. Specifically, we present studies where 3D-printed models were used in the training of surgeons through renal transplantation simulations, in patient education where patients acquire a higher understanding of their disease and the proposed operation, in the preoperative planning to facilitate decision-making, and in fabricating customized, tools and devices. Three-dimensional-printed models could transform how surgeons train by providing surgical rehearsal platforms across all surgical specialties, enabling training with tissue realism and anatomic precision. The use of 3D-printed models in renal transplantations has shown a positive impact on surgical outcomes, including the duration of the operation and the intraoperative blood loss. Regarding 3D bioprinting, the technique has shown promising results, especially in the field of microfluidic devices, with the development of tissue demonstrating proximal tubules, glomerulus, and tubuloinerstitium function, and in renal organoid development. Such models can be applied for renal disease modeling, drug development, and renal regenerative medicine.
Collapse
Affiliation(s)
- Chrysanthos D. Christou
- Department of Transplantation Surgery, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (S.V.); (G.S.); (G.T.)
| | | | | | | |
Collapse
|
10
|
Moyer J, Wilson MW, Sorrentino TA, Santandreu A, Chen C, Hu D, Kerdok A, Porock E, Wright N, Ly J, Blaha C, Frassetto LA, Fissell WH, Vartanian SM, Roy S. Renal Embolization-Induced Uremic Swine Model for Assessment of Next-Generation Implantable Hemodialyzers. Toxins (Basel) 2023; 15:547. [PMID: 37755973 PMCID: PMC10536310 DOI: 10.3390/toxins15090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Reliable models of renal failure in large animals are critical to the successful translation of the next generation of renal replacement therapies (RRT) into humans. While models exist for the induction of renal failure, none are optimized for the implantation of devices to the retroperitoneal vasculature. We successfully piloted an embolization-to-implantation protocol enabling the first implant of a silicon nanopore membrane hemodialyzer (SNMHD) in a swine renal failure model. Renal arterial embolization is a non-invasive approach to near-total nephrectomy that preserves retroperitoneal anatomy for device implants. Silicon nanopore membranes (SNM) are efficient blood-compatible membranes that enable novel approaches to RRT. Yucatan minipigs underwent staged bilateral renal arterial embolization to induce renal failure, managed by intermittent hemodialysis. A small-scale arteriovenous SNMHD prototype was implanted into the retroperitoneum. Dialysate catheters were tunneled externally for connection to a dialysate recirculation pump. SNMHD clearance was determined by intermittent sampling of recirculating dialysate. Creatinine and urea clearance through the SNMHD were 76-105 mL/min/m2 and 140-165 mL/min/m2, respectively, without albumin leakage. Normalized creatinine and urea clearance measured in the SNMHD may translate to a fully implantable clinical-scale device. This pilot study establishes a path toward therapeutic testing of the clinical-scale SNMHD and other implantable RRT devices.
Collapse
Affiliation(s)
- Jarrett Moyer
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Mark W. Wilson
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Thomas A. Sorrentino
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Ana Santandreu
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Caressa Chen
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Dean Hu
- Outset Medical, San Jose, CA 95134, USA
| | | | - Edward Porock
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Nathan Wright
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Jimmy Ly
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Charles Blaha
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| | - Lynda A. Frassetto
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - William H. Fissell
- Silicon Kidney, San Ramon, CA 94583, USA
- Division of Nephrology & Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shant M. Vartanian
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
| | - Shuvo Roy
- Departments of Bioengineering & Therapeutic Sciences, Surgery, Medicine, and Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143, USA; (J.M.)
- Silicon Kidney, San Ramon, CA 94583, USA
| |
Collapse
|
11
|
Ramada DL, de Vries J, Vollenbroek J, Noor N, Ter Beek O, Mihăilă SM, Wieringa F, Masereeuw R, Gerritsen K, Stamatialis D. Portable, wearable and implantable artificial kidney systems: needs, opportunities and challenges. Nat Rev Nephrol 2023:10.1038/s41581-023-00726-9. [PMID: 37277461 DOI: 10.1038/s41581-023-00726-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/07/2023]
Abstract
Haemodialysis is life sustaining but expensive, provides limited removal of uraemic solutes, is associated with poor patient quality of life and has a large carbon footprint. Innovative dialysis technologies such as portable, wearable and implantable artificial kidney systems are being developed with the aim of addressing these issues and improving patient care. An important challenge for these technologies is the need for continuous regeneration of a small volume of dialysate. Dialysate recycling systems based on sorbents have great potential for such regeneration. Novel dialysis membranes composed of polymeric or inorganic materials are being developed to improve the removal of a broad range of uraemic toxins, with low levels of membrane fouling compared with currently available synthetic membranes. To achieve more complete therapy and provide important biological functions, these novel membranes could be combined with bioartificial kidneys, which consist of artificial membranes combined with kidney cells. Implementation of these systems will require robust cell sourcing; cell culture facilities annexed to dialysis centres; large-scale, low-cost production; and quality control measures. These challenges are not trivial, and global initiatives involving all relevant stakeholders, including academics, industrialists, medical professionals and patients with kidney disease, are required to achieve important technological breakthroughs.
Collapse
Affiliation(s)
- David Loureiro Ramada
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands
| | - Joost de Vries
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Vollenbroek
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- BIOS Lab on a Chip Group, MESA + Institute, University of Twente, Hallenweg 15, 7522, NH Enschede, The Netherlands
| | - Nazia Noor
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands
| | - Odyl Ter Beek
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Fokko Wieringa
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Autonomous Therapeutics, IMEC, Eindhoven, The Netherlands
- European Kidney Health Alliance (EKHA), WG3 "Breakthrough Innovation", Brussels, Belgium
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karin Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dimitrios Stamatialis
- Advanced Organ bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O Box 217, 7500, AE Enschede, The Netherlands.
- European Kidney Health Alliance (EKHA), WG3 "Breakthrough Innovation", Brussels, Belgium.
| |
Collapse
|
12
|
Cacciola R, Delbue S. Managing the "Sword of Damocles" of Immunosuppression: Prevention, Early Diagnosis, and Treatment of Infectious Diseases in Kidney Transplantation. Pathogens 2023; 12:pathogens12050649. [PMID: 37242318 DOI: 10.3390/pathogens12050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The careful tailoring of the most appropriate immunosuppressive strategy for recipients of a kidney transplant (KT) regularly faces a risk of complications that may harm the actual graft and affect patient survival [...].
Collapse
Affiliation(s)
- Roberto Cacciola
- Department of Surgery, King Salman Armed Forces Hospital, Tabuk 47512, Saudi Arabia
- Department of Surgical Sciences, University of Tor Vergata, 00133 Rome, Italy
| | - Serena Delbue
- Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milano, Italy
| |
Collapse
|
13
|
Jonsson P, Stegmayr C, Stegmayr B, Forsberg U. Venous chambers in clinical use for hemodialysis have limited capacity to eliminate microbubbles from entering the return bloodline: An in vitro study. Artif Organs 2023. [PMID: 36594759 DOI: 10.1111/aor.14495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND During hemodialysis (HD), blood passes through an extracorporeal circuit (ECC). To prevent air administration to the patient, a venous chamber (chamber) is located before the blood return. Microbubbles (MBs) may pass through the chamber and end up as microemboli in organs such as the brain and heart. This in vitro study investigated the efficacy of various chambers in MB removal. MATERIALS AND METHODS The in vitro recirculated setting of an ECC included an FX10 dialyzer, a dextran-albumin solution to mimic blood viscosity and chambers with different flow characteristics in clinical use (Baxter: AK98 and Artis, Fresenius: 5008 and 6008) and preclinical test (Embody: Emboless®). A Gampt BCC200 device measured the presence and size of MBs (20-500 μm). Percentage change of MBs was calculated: ΔMB% = 100*(outlet-inlet)/inlet for each size of MB. Blood pump speed (Qb) was 200 (Qb200) or 300 (Qb300) ml/minute. Wilcoxon paired test determined differences. RESULTS With Qb200 median ΔMB% reduction was: Emboless -58%, AK98 -24%, Fresenius 5008 -23%, Artis -8%, and Fresenius 6008 ± 0%. With Qb300 ΔMB% was: Emboless -36%, AK98 ± 0%, Fresenius 5008 ± 0%, Artis +25%, and Fresenius 6008 + 21%. The Emboless was superior to all other chambers with Qb200 and Qb300 (p < 0.001). Further, the Emboless with Qb300 still eliminated more MBs than all other chambers with Qb200 (p ≤ 0.003). CONCLUSION The results from the present study indicate that flow characteristics of the chamber and the Qb are important factors to limiting exposure of MB to the return bloodline. The Emboless chamber reduced MBs more effective than those chambers in clinical use investigated.
Collapse
Affiliation(s)
- Per Jonsson
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| | - Christofer Stegmayr
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| | - Bernd Stegmayr
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| | - Ulf Forsberg
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| |
Collapse
|