1
|
Liu H, Pan W, Liu H, Xie D, Liao L. Biomimetic cryogel promotes the repair of osteoporotic bone defects through altering the ROS niche via down-regulating the ROMO1. Int J Biol Macromol 2024; 257:128481. [PMID: 38042316 DOI: 10.1016/j.ijbiomac.2023.128481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Osteoporosis is a systemic bone disease that is prone to fractures due to decreased bone density and bone quality, and delayed union or nonunion often occurs in osteoporotic fractures. Therefore, it is particularly important to develop tissue engineering materials to promote osteoporotic fracture healing. In this study, a series of biomimetic cryogels prepared from the decellularized extracellular matrix (dECM), methacrylate gelatin (GelMA), and carboxymethyl chitosan (CMCS) via unidirectional freezing, photo- and genipin crosslinking were applied for the regeneration of osteoporotic fractures. Specifically, dECM extracted from normal or osteoporotic rats was applied for the preparation of the cryogels, named as GC-Normal dECM or GC-OVX dECM, respectively. It was verified that the GC-Normal dECM demonstrated superior performance in promoting the proliferation of BMSCs isolated from osteoporotic rats (OVX-BMSCs), and the differentiation of OVX-BMSCs into osteoblasts both in vitro and in vivo. RNA sequencing and further verifications confirmed that GC-Normal dECM cryogel could scavenge the intracellular reactive oxygen species (ROS) in OVX-BMSCs to accelerate the regeneration of osteoporotic fracture by down-regulating the reactive oxygen species modulator 1 (Romo1). The results indicated that by regulating the ROS niche of OVX-BMSCs, biomimetic the GC-Normal dECM cryogel was expected to be a clinical candidate for repairing osteoporotic bone defects.
Collapse
Affiliation(s)
- Hai Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Weilun Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Denghui Xie
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China.
| | - Liqiong Liao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Grbić E, Globočnik Petrovič M, Cilenšek I, Petrovič D. SLC22A3 rs2048327 Polymorphism Is Associated with Diabetic Retinopathy in Caucasians with Type 2 Diabetes Mellitus. Biomedicines 2023; 11:2303. [PMID: 37626799 PMCID: PMC10452275 DOI: 10.3390/biomedicines11082303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The Solute Carrier Family 22 Member 3 (SLC22A3) is a high-capacity, low-affinity transporter for the neurotransmitters norepinephrine, epinephrine, dopamine, serotonin, and histamine. SLC22A3 plays important roles in interorgan and interorganism small-molecule communication, and also regulates local and overall homeostasis in the body. Our aim was to investigate the association between the rs2048327 gene polymorphism and diabetic retinopathy (DR) in Slovenian patients with type 2 diabetes mellitus (T2DM). We also investigated SLC22A3 expression in the fibrovascular membranes (FVMs) of patients with proliferative DR (PDR). Our study involved 1555 unrelated Caucasians with T2DM with a defined ophthalmologic status: 577 of them with DR as the study group, and 978 without DR as the control group. The investigated polymorphisms were genotyped using the KASPar genotyping assay. The expression of SLC22A3 (organic cation transporter 3-OCT3) was examined via immunohistochemistry in human FVM from 16 patients with PDR. The C allele and CC genotype frequencies of the rs2048327 polymorphism were significantly higher in the study group compared to the controls. The logistic regression analysis showed that the carriers of the CC genotype in the recessive genetic models of this polymorphism have a 1.531-fold increase (95% CI 1.083-2.161) in the risk of developing DR. Patients with the C allele of rs2048327 compared to the homozygotes for the wild type T allele exhibited a higher density of SLC22A3 (OCT3)-positive cells (10.5 ± 4.5/mm2 vs. 6.1 ± 2.7/mm2, respectively; p < 0.001). We showed the association of the rs2048327 SLC22A3 gene polymorphism with DR in a Slovenian cohort with type 2 diabetes mellitus, indicating its possible role as a genetic risk factor for the development of this diabetic complication.
Collapse
Affiliation(s)
- Emin Grbić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina;
| | | | - Ines Cilenšek
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Danijel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
3
|
Tibaut M, Mankoč Ramuš S, Petrovič D. The C allele of the reactive oxygen species modulator 1 (ROMO1) polymorphism rs6060566 is a biomarker predicting coronary artery stenosis in Slovenian subjects with type 2 diabetes mellitus. BMC Med Genomics 2020; 13:184. [PMID: 33302957 PMCID: PMC7731747 DOI: 10.1186/s12920-020-00845-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We aimed to examine the role of the rs6060566 polymorphism of the reactive oxygen species modulator 1 (ROMO1) gene in the development of myocardial infarction (MI) in Caucasians with type 2 diabetes (T2DM). METHODS A total of 1072 subjects with T2DM were enrolled in this cross-sectional case-control study: 335 subjects with MI and 737 subjects without clinical signs of coronary artery disease (CAD). The genetic analysis of the rs6060566 polymorphism was performed in all subjects. To assess the degree of coronary artery obstruction, a subpopulation of 128 subjects with T2DM underwent coronary computed tomography angiography. Next, endarterectomy samples were obtained during myocardial revascularization from diffusely diseased coronary arteries in 40 cases, which were analysed for ROMO1 expression according to their genotype. RESULTS There were no statistically significant associations between different genotypes or alleles of the rs6060566 polymorphism and MI in subjects with T2DM. The carriers of the C allele of the ROMO1 rs6060566 had a threefold increased likelihood of having 50-75% coronary artery stenosis (Adjusted OR = 3.27, 95% CI 1.16-9.20). Subjects with two affected coronary arteries had a 3.72 fold higher prevalence of MI (OR = 3.72, 95% CI 1.27-10.84). With CAD in LMCA or LAD, MI prevalence was about 3.5-fold higher (p = 0.07 for LMCA and p = 0.01 for LAD). Furthermore, the carriers of the rs6060566 C allele showed higher number of positive cells for ROMO1 expression in endarterectomy samples of coronary arteries. CONCLUSIONS According to our study, the rs6060566 polymorphism of the ROMO1 gene is not a risk factor for MI in Caucasians with T2DM. However, we found that subjects carrying the C allele were at a 3.27-fold increased risk of developing severe CAD compared with those who had non-obstructive CAD. Moreover, C allele carriers showed a statistically higher number of cells positive for ROMO1 compared with T allele carriers in coronary endarterectomy samples.
Collapse
Affiliation(s)
- Miha Tibaut
- Department of Internal Medicine, Rakičan General Hospital, Ul. dr. Vrbnjaka 6, 9000, Murska Sobota, Slovenia
| | - Sara Mankoč Ramuš
- International Centre for Cardiovascular Diseases MC Medicor d.d., Izola, Slovenia.
| | - Daniel Petrovič
- Faculty of Medicine, Institute of Histology and Embryology, University of Ljubljana, Korytkova 2, 1105, Ljubljana, Slovenia
- International Centre for Cardiovascular Diseases MC Medicor d.d., Izola, Slovenia
| |
Collapse
|
4
|
Amini MA, Talebi SS, Karimi J. Reactive Oxygen Species Modulator 1 (ROMO1), a New Potential Target for Cancer Diagnosis and Treatment. Chonnam Med J 2019; 55:136-143. [PMID: 31598470 PMCID: PMC6769249 DOI: 10.4068/cmj.2019.55.3.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 02/01/2023] Open
Abstract
Today, the incidence of cancer in the world is rising, and it is expected that in the next several decades, the number of people suffering from cancer or (the cancer rate) will double. Cancer is defined as the excessive and uncontrolled growth of cells; of course (in simple terms), cancer is considered to be a set of other diseases that ultimately causes normal cells to be transformed into neoplastic cells. One of the most important causes of the onset and exacerbation of cancer is excessive oxidative stress. One of the most important proteins in the inner membrane of mitochondria is Reactive Oxygen Species (ROS) Modulator 1 (ROMO1) that interferes with the production of ROS, and with increasing the rate of this protein, oxidative stress will increase, which ultimately leads to some diseases, especially cancer. In this overview, we use some global databases to provide information about ROMO1 cellular signaling pathways, their related proteins and molecules, and some of the diseases associated with the mitochondrial protein, especially cancer.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Saman Talebi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
6
|
Terzić R, Cilenšek I, Zorc Pleskovič R, Mankoč S, Milutinović A. Vascular endothelial growth factor (VEGF)-related single nucleotide polymorphisms rs10738760 and rs6921438 are not associated with diabetic retinopathy (DR) in Slovenian patients with type 2 diabetes mellitus (T2DM). Bosn J Basic Med Sci 2017; 17:328-332. [PMID: 29055125 DOI: 10.17305/bjbms.2017.2068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 02/02/2023] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes characterized by vascular permeability, increased tissue ischemia, and angiogenesis. One of the most important proteins involved in angiogenesis is vascular endothelial growth factor (VEGF, also known as VEGFA). A previous study demonstrated that two single nucleotide polymorphisms (SNPs), rs6921438 and rs10738760, account for nearly half the variation in circulating VEGF levels. The aim of our study was to assess the association between rs6921438 and rs10738760 and DR in Slovenian patients with type 2 diabetes mellitus (T2DM). This case-control study enrolled 1037 unrelated Slovenian individuals (Caucasians) with T2DM. DR group included 415 T2DM patients with DR, while control group included 622 T2DM patients with no clinical signs of DR. The clinical and laboratory data were obtained from the medical records of the patients. The genotyping of rs6921438 and rs10738760 SNPs was carried out with real-time PCR assays. Significant differences were observed between patients with DR and controls in the duration of diabetes (p < 0.001), insulin therapy (p < 0.001), glycated hemoglobin (p = 0.001), body mass index (p = 0.002), total cholesterol (p = 0.002), and low-density lipoprotein cholesterol (p < 0.001). However, we did not observe significant differences in the genotype and allele distribution of the two SNPs, between DR and control group (p < 0.05). Logistic regression analysis showed that rs6921438 and rs10738760 were not independent genetic risk factors for DR in the co-dominant model adjusted for the above-mentioned clinical and laboratory data. In conclusion, VEGF-related SNPs rs10738760 and rs6921438 are not associated with DR in our group of Slovenian patients (Caucasians) with T2DM.
Collapse
Affiliation(s)
- Rifet Terzić
- Department of Biology, Faculty of Science, University of Tuzla, Tuzla, Bosnia and Herzegovina.
| | | | | | | | | |
Collapse
|
7
|
Chatziralli IP, Theodossiadis G, Dimitriadis P, Charalambidis M, Agorastos A, Migkos Z, Platogiannis N, Moschos MM, Theodossiadis P, Keryttopoulos P. The Effect of Vitamin E on Oxidative Stress Indicated by Serum Malondialdehyde in Insulin-dependent Type 2 Diabetes Mellitus Patients with Retinopathy. Open Ophthalmol J 2017; 11:51-58. [PMID: 28567166 PMCID: PMC5420190 DOI: 10.2174/1874364101711010051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Several studies have focused on oxidative stress on diabetes mellitus (DM). Our purpose was to investigate the impact of oxidative stress on progression of diabetic retinopathy (DR) in insulin-dependent type 2 DM patients, measuring serum malondialdehyde (MDA), as well as to examine the effect of vitamin E on DR progression in the above-mentioned patients. Methods: Participants in the study were 282 insulin-dependent type 2 DM patients with DR. All participants underwent a thorough ophthalmological examination, so as to grade DR, along with serum MDA measurement. All participants received 300mg vitamin E daily for 3 months and were examined again. Serum MDA pre- and post-intake of Vitamin E was the main outcome. Results: Serum MDA was positively associated with DR stage, while there was a statistically significant difference pre- and post-intake of vitamin E in all DR stages. In a subgroup analysis of patients with proliferative DR, there was a significant difference at baseline between patients who have received prior laser photocoagulation and the treatment naïve patients, while after intake of vitamin E, no statistically significant difference was noticed. Conclusion: Oxidative stress has been found to play significant role in the pathogenesis and progression of DR, while vitamin E seems to reduce MDA levels and subsequent oxidative stress, suggesting that it might have protective role in DR progression.
Collapse
Affiliation(s)
| | | | | | | | - Antonios Agorastos
- Department of Internal Medicine, General Hospital of Veroia, Veroia, Greece
| | - Zisis Migkos
- Department of Internal Medicine, General Hospital of Veroia, Veroia, Greece
| | | | | | | | | |
Collapse
|
8
|
Zhang LQ, Cui H, Wang L, Fang X, Su S. Role of microRNA-29a in the development of diabetic retinopathy by targeting AGT gene in a rat model. Exp Mol Pathol 2017; 102:296-302. [PMID: 28189547 DOI: 10.1016/j.yexmp.2017.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/05/2017] [Accepted: 02/08/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES This study intends to explore the role of microRNA-29a (miRNA-29a) in the development of diabetic retinopathy by targeting AGT gene in a rat model. METHODS Fifty-six DR rat models were established and divided into 7 groups (with 8 rats in each group): the model group, the miRNA-29a group, the miRNA-29a knockdown group, the negative control (NC) group, the AGT group, the miRNA-29a+AGT group, and the miRNA-29a knockdown+AGT group respectively, while 8 normal rats were selected as the normal group. The qRT-PCR was used to detect the expression of miRNA-29a and AGT mRNA. The AGT protein expression was measured using Western blotting. The ADPase histochemical staining was applied to detect retinal neo-vascular morphology. The number of retinal vascular endothelial cells was counted by H&E staining. RESULTS MiRNA-29a and AGT mRNA expressions were negatively correlated. Compared with rats in the normal group, the miRNA-29a expression in DR rats of each group decreased, but the AGT mRNA and protein expression increased; the vascular distribution was in disorder, and the new retinal vessels, vascular density, and endothelial nuclei all increased. Compared with the model group, miRNA-29a increased, and the AGT mRNA and protein expression decreased in the miRNA-29a group; additionally, the vascular density, tortuosity, and endothelial cell nuclei significantly decreased. The opposite trend was found in the miRNA-29a knockdown group, the miRNA-29a knockdown+AGT group, and the AGT group, particularly in the miRNA-29a knockdown+AGT group. CONCLUSION Overexpression of miRNA-29a could down-regulate AGT expression, thereby preventing the development of DR in a rat model.
Collapse
Affiliation(s)
- Li-Qiong Zhang
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, PR China.
| | - Hao Cui
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, PR China
| | - Lin Wang
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, PR China
| | - Xu Fang
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, PR China
| | - Sheng Su
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, PR China
| |
Collapse
|
9
|
Dong L, Bai J, Jiang X, Yang MM, Zheng Y, Zhang H, Lin D. The gene polymorphisms of IL-8(-251T/A) and IP-10(-1596C/T) are associated with susceptibility and progression of type 2 diabetic retinopathy in northern Chinese population. Eye (Lond) 2016; 31:601-607. [PMID: 27935598 DOI: 10.1038/eye.2016.287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022] Open
Abstract
PurposeThe aim of the present study is to investigate the association of the polymorphism of two genes in CXC chemokine family, interleukin-8 (IL-8) and interferon-inducible protein 10 (IP-10), with both susceptibility and progression of DR in T2D population of northern China.Patients and methodsA total of 1043 eligible type 2 diabetic patients from Heilongjiang of northern China were recruited for this study. They were grouped into: with diabetic retinopathy (DR, 528 cases) and without diabetic retinopathy (DNR, 515 cases). Single nucleotide polymorphism (SNP) genotyping of IL-8(-251T/A) and IP-10(-1596C/T) was performed by polymerase chain reaction. Multivariate analysis and stepwise multiple logistic progression analysis were conducted to evaluate the association between gene SNP and DR susceptibility and progression. Pooled odds ratio (OR) with 95% confidence interval (CI) was applied to assess the strength of the association among study groups.ResultsThe occurring of IL-8(-251) AA genotype was correlated with susceptibility (OR: 2.286, 95% CI: 1.382-3.782, P=0.001) and progression of high-risk proliferative diabetic retinopathy (PDR) (OR: 0.354, 95% CI: 0.162-0.770, P=0.009). Reversely, T allele of IP-10 (-1596) C/T was correlated with a reduced risk of DR (OR: 0.341, 95% CI: 0.249-0.466, P<0.001). However, gene polymorphisms of IL-8-251T/A and IP-10-1596C/T were not associated with diabetic macular edema (DME)(P>0.05).ConclusionsAA genotype of IL-8-251T/A was closely correlated to DR and high-risk proliferative diabetic retinopathy (PDR). -1596T allele of the IP-10 is a beneficial genotype for DR.
Collapse
Affiliation(s)
- L Dong
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - J Bai
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - X Jiang
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - M-M Yang
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Y Zheng
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - H Zhang
- Key Laboratory of Harbin Medical University Eye Center in Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - D Lin
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
10
|
Priščáková P, Minárik G, Repiská V. Candidate gene studies of diabetic retinopathy in human. Mol Biol Rep 2016; 43:1327-1345. [PMID: 27730450 PMCID: PMC5102952 DOI: 10.1007/s11033-016-4075-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is a multifactorial disease with complex pathophysiology. It is the main cause of blindness among the people in productive age. The purpose of this literature review is to highlight recent achievements in the genetics of diabetic retinopathy with particular focus on candidate gene studies. We summarized most of the available published data about candidate genes for diabetic retinopathy with the goal to identify main genetic aspects. We conclude that genetic studies reported contradictory findings and no genetic variants meet criteria of a diagnostic marker, or significantly elucidate the root of DR development. Based on these findings it is important to continue with the research in the field of DR genetics, mainly due to the fact that currently new possibilities and approaches associated with utilization of next-generation sequencing are available.
Collapse
Affiliation(s)
- Petra Priščáková
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, University Hospital Bratislava, Comenius University in Bratislava, Sasinkova 4, 81108, Bratislava, Slovakia
| | - Gabriel Minárik
- Medirex Group Academy n.o., Galvaniho 17/C, 82016, Bratislava, Slovakia
| | - Vanda Repiská
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, University Hospital Bratislava, Comenius University in Bratislava, Sasinkova 4, 81108, Bratislava, Slovakia.
| |
Collapse
|
11
|
Yan ZP, Ma JX. Risk factors for diabetic retinopathy in northern Chinese patients with type 2 diabetes mellitus. Int J Ophthalmol 2016; 9:1194-9. [PMID: 27588275 DOI: 10.18240/ijo.2016.08.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/01/2015] [Indexed: 12/29/2022] Open
Abstract
AIM To investigate the prevalence and risk factors of diabetic retinopathy (DR) in northern Chinese patients with type 2 diabetes mellitus (T2DM). METHODS This retrospective cross-sectional study was performed between May 2011 and April 2012. A total of 1100 patients (male/female, 483/617) were included in this study. DR was defined following the Early Treatment Diabetic Retinopathy Study (ETDRS) severity scale. All included patients accepted a comprehensive ophthalmic examination including retinal photographs. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence interval (CI) after adjusting for age and gender. RESULTS Retinopathy was present in 307 patients with a prevalence of 27.9%. In univariate logistic analysis, presence of DR was associated with longer duration of diabetes (OR, 5.70; 95%CI, 2.91-12.56), higher concentration of fasting blood glucose (OR, 12.94; 95%CI, 2.40-67.71), higher level of glycosylated hemoglobin HbA1c (OR, 5.50; 95%CI, 3.78-11.97) and insulin treatment (OR, 6.99; 95%CI, 1.39-35.12). The lifestyle of patients with T2DM including smoking, alcohol consumption and regular exercise seemed not associated with the development of DR. CONCLUSION Our study suggests that fasting serum glucose concentration, HbA1c level, duration of diabetes and insulin treatment are potential risk factors for DR in northern Chinese patients with T2DM, while the lifestyle of included patients seems not associated with DR.
Collapse
Affiliation(s)
- Zhi-Peng Yan
- Department of Ophthalmology, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Jing-Xue Ma
- Department of Ophthalmology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
12
|
Sinha S, Saxena S, Das S, Prasad S, Bhasker SK, Mahdi AA, Kruzliak P. Antimyeloperoxidase antibody is a biomarker for progression of diabetic retinopathy. J Diabetes Complications 2016; 30:700-4. [PMID: 26948921 DOI: 10.1016/j.jdiacomp.2016.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/03/2016] [Accepted: 01/11/2016] [Indexed: 01/08/2023]
Abstract
AIM To study the correlation between serum antimyeloperoxidase (MPO) antibody levels with severity of diabetic retinopathy (DR). METHODS Study subjects included 60 consecutive cases of type 2 diabetes mellitus (DM): no diabetic retinopathy (NODR, n=20); nonproliferative DR (NPDR, n=20); proliferative DR (PDR, n=20) and 20 healthy controls. Best corrected visual acuity (BCVA) was measured on logMAR scale. Serum anti-MPO antibody levels were evaluated using ELISA IgG kit. Serum urea and creatinine was measured using standard protocol. Data were analysed statistically. RESULTS Mean serum anti-MPO antibody (RU/ml) was 16.94 ± 4.85 in controls, 17.66 ± 4.78 in NODR, 21.51 ± 5.27 in NPDR and 37.27 ± 11.92 in PDR groups. On ANOVA, significant difference in visual acuity was found among the study groups (F=73.46, p<0.001). Serum anti-MPO antibody was correlated significantly with decrease in visual acuity (F=48.40, p<0.001), increase in serum urea (F=128.13, p<0.001) and creatinine (F=77.10, p<0.001). CONCLUSION Increase in serum anti-MPO antibody levels correlate with increased severity of DR. Serum anti-MPO antibody may be a noteworthy biochemical marker for progression of retinopathy from nonproliferative to proliferative stage.
Collapse
Affiliation(s)
- Shivani Sinha
- Retina service, Department of Ophthalmology, King George's Medical University, Lucknow, India
| | - Sandeep Saxena
- Retina service, Department of Ophthalmology, King George's Medical University, Lucknow, India.
| | - Siddharth Das
- Department of Rheumatology, King George's Medical University, Lucknow, India
| | - Senthamizh Prasad
- Department of Preventive and Social Medicine, King George's Medical University, Lucknow, India
| | - Shashi Kumar Bhasker
- Retina service, Department of Ophthalmology, King George's Medical University, Lucknow, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, India
| | - Peter Kruzliak
- Laboratory of Structural Biology and Proteomics, Central Laboratories, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| |
Collapse
|
13
|
Ramus SM, Cilensek I, Petrovic MG, Soucek M, Kruzliak P, Petrovic D. Single nucleotide polymorphisms in the Trx2/TXNIP and TrxR2 genes of the mitochondrial thioredoxin antioxidant system and the risk of diabetic retinopathy in patients with Type 2 diabetes mellitus. J Diabetes Complications 2016; 30:192-8. [PMID: 26763822 DOI: 10.1016/j.jdiacomp.2015.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/13/2015] [Accepted: 11/25/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Oxidative stress plays an important role in the pathogenesis of diabetes and its complications. The aim of this study was to examine the possible association between seven single nucleotide polymorphisms (SNPs) of the Trx2/TXNIP and TrxR2 genes encoding proteins involved in the thioredoxin antioxidant defence system and the risk of diabetic retinopthy (DR). DESIGN Cross-sectional case-control study. PARTICIPANTS A total of 802 Slovenian patients with Type 2 diabetes mellitus; 277 patients with DR and 525 with no DR were enrolled. METHODS Patients genotypes of the SNPs; including rs8140110, rs7211, rs7212, rs4755, rs1548357, rs4485648 and rs5748469 were determined by the competitive allele specific PCR method. MAIN OUTCOME MEASURES Each genotype of examined SNPs was regressed in a logistic model, assuming the co-dominant, dominant and the recessive models of inheritance with covariates of duration of diabetes, HbA1c, insulin therapy, total cholesterol and LDL cholesterol levels. RESULTS In the present study, for the first time we identified an association between the rs4485648 polymorphism of the TrxR2 gene and DR in Caucasians with Type 2 DM. The estimated ORs of adjusted logistic regression models were found to be as follows: 4.4 for CT heterozygotes, 4.3 for TT homozygotes (co-dominant genetic model) and 4.4 for CT+TT genotypes (dominant genetic model). CONCLUSIONS In our case-control study we were not able to demonstrate any association between rs8140110, rs7211, rs7212, rs4755, rs1548357, and rs5748469 and DR, however, our findings provide evidence that the rs4485648 polymorphism of the TrxR2 gene might exert an independent effect on the development of DR.
Collapse
Affiliation(s)
- Sara Mankoc Ramus
- Institute of Histology and Embriology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ines Cilensek
- Institute of Histology and Embriology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Miroslav Soucek
- 2(nd) Department of Internal Medicine, St. Anne´s University Hospital and Masaryk University, Brno, Czech Republic
| | - Peter Kruzliak
- Laboratory of Structural Biology and Proteomics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.
| | - Daniel Petrovic
- Institute of Histology and Embriology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Hampton BM, Schwartz SG, Brantley MA, Flynn HW. Update on genetics and diabetic retinopathy. Clin Ophthalmol 2015; 9:2175-93. [PMID: 26648684 PMCID: PMC4664538 DOI: 10.2147/opth.s94508] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clinical risk factors for diabetic retinopathy (DR), such as duration of disease and degree of glucose control, do not adequately predict disease progression in individual patients, suggesting the presence of a genetic component. Multiple smaller studies have investigated genotype–phenotype correlations in genes encoding vascular endothelial growth factor, aldose reductase, the receptor for advanced glycation end products, and many others. In general, reported results have been conflicting, due to factors including small sample sizes, variations in study design, differences in clinical end points, and underlying genetic differences between study groups. At this time, there is no confirmed association with any risk allele reported. As we continue to collect data from additional studies, the role of genetics in DR may become more apparent.
Collapse
Affiliation(s)
- Blake M Hampton
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephen G Schwartz
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Milam A Brantley
- Department of Ophthalmology, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Harry W Flynn
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
15
|
Srivastav K, Saxena S, Mahdi AA, Kruzliak P, Khanna VK. Increased serum urea and creatinine levels correlate with decreased retinal nerve fibre layer thickness in diabetic retinopathy. Biomarkers 2015; 20:470-3. [PMID: 26474118 DOI: 10.3109/1354750x.2015.1094142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Correlation of increased levels of serum urea and creatinine with retinal nerve fibre layer (RNFL) thinning on spectral domain optical coherence tomography (SD-OCT) was studied in diabetic retinopathy (DR). Sixty consecutive cases and 20 healthy controls were included. Cases were divided into three groups: without DR, non-proliferative DR with macular oedema and proliferative DR with oedema. Serum urea and creatinine were measured using a standard protocol. Average (RNFL) was measured using SD-OCT. Increased severity of DR was associated with decrease in levels of serum urea and serum creatinine levels. RNFL thinning correlated positively with increase in serum urea and creatinine levels.
Collapse
Affiliation(s)
| | | | - Abbas A Mahdi
- b Department of Biochemistry , King George's Medical University , Lucknow , India
| | - Peter Kruzliak
- c International Clinical Research Center, St. Anne's University Hospital and Masaryk University , Brno , Czech Republic , and
| | - Vinay K Khanna
- d Indian Institute of Toxicology and Research , Lucknow , India
| |
Collapse
|