1
|
Karuntu JS, Klouwer FCC, Engelen M, Boon CJF. Systematic study of ophthalmological findings in 10 patients with PEX1-mediated Zellweger spectrum disorder. Ophthalmic Genet 2024; 45:351-362. [PMID: 38664000 DOI: 10.1080/13816810.2024.2330389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE This cross-sectional study describes the ophthalmological and general phenotype of 10 patients from six different families with a comparatively mild form of Zellweger spectrum disorder (ZSD), a rare peroxisomal disorder. METHODS Ophthalmological assessment included best-corrected visual acuity (BCVA), perimetry, microperimetry, ophthalmoscopy, fundus photography, spectral-domain optical coherence tomography (SD-OCT), and fundus autofluorescence (FAF) imaging. Medical records were reviewed for medical history and systemic manifestations of ZSD. RESULTS Nine patients were homozygous for c.2528 G > A (p.Gly843Asp) variants in PEX1 and one patient was compound heterozygous for c.2528 G>A (p.Gly843Asp) and c.2097_2098insT (p.Ile700TyrfsTer42) in PEX1. Median age was 22.6 years (interquartile range (IQR): 15.9 - 29.9 years) at the most recent examination, with a median symptom duration of 22.1 years. Symptom onset was variable with presentations of hearing loss (n = 7) or nyctalopia/reduced visual acuity (n = 3) at a median age of 6 months (IQR: 1.9-8.3 months). BCVA (median of 0.8 logMAR; IQR: 0.6-0.9 logMAR) remained stable over 10.8 years and all patients were hyperopic. Fundus examination revealed a variable retinitis pigmentosa (RP)-like phenotype with rounded hyperpigmentations as most prominent feature in six out of nine patients. Electroretinography, visual field measurements, and microperimetry further established the RP-like phenotype. Multimodal imaging revealed significant intraretinal fluid cavities on SD-OCT and a remarkable pattern of hyperautofluorescent abnormalities on FAF in all patients. CONCLUSION This study highlights the ophthalmological phenotype resembling RP with moderate to severe visual impairment in patients with mild ZSD. These findings can aid ophthalmologists in diagnosing, counselling, and managing patients with mild ZSD.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Femke C C Klouwer
- Department of Paediatric Neurology/Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Paediatric Neurology/Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Karuntu JS, Nguyen XTA, Talib M, van Schooneveld MJ, Wijnholds J, van Genderen MM, Schalij-Delfos NE, Klaver CCW, Meester-Smoor MA, van den Born LI, Hoyng CB, Thiadens AAHJ, Bergen AA, van Nispen RMA, Boon CJF. Quality of life in patients with CRB1-associated retinal dystrophies: A longitudinal study. Acta Ophthalmol 2024; 102:469-477. [PMID: 37749859 DOI: 10.1111/aos.15769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE To assess the longitudinal vision-related quality of life among patients with CRB1-associated inherited retinal dystrophies. METHODS In this longitudinal questionnaire study, the National Eye Institute Visual Function Questionnaire (39 items, NEI VFQ-39) was applied at baseline, two-year follow-up, and 4-year follow-up in patients with pathogenic CRB1 variants. [Correction added on 20 November 2023, after first online publication: The preceding sentence has been updated in this version.] Classical test theory was performed to obtain subdomain scores and in particular 'near activities' and 'total composite' scores. The Rasch analysis based on previous calibrations of the NEI VFQ-25 was applied to create visual functioning and socio-emotional subscales. RESULTS In total, 22 patients with a CRB1-associated retinal dystrophy were included, […] with a median age of 25.0 years (interquartile range: 13-31 years) at baseline and mean follow-up of 4.0 ± 0.3 years. [Correction added on 20 November 2023, after first online publication: The preceding sentence has been updated in this version.] A significant decline at 4 years was observed for 'near activities' (51.0 ± 23.8 vs 35.4 ± 14.7, p = 0.004) and 'total composite' (63.0 ± 13.1 vs 52.0 ± 12.1, p = 0.001) subdomain scores. For the Rasch-scaled scores, the 'visual functioning' scale significantly decreased after 2 years (-0.89 logits; p = 0.012), but not at 4-year follow-up (+0.01 logits; p = 0.975). [Correction added on 20 November 2023, after first online publication: In the preceding sentence, "…after 4 years…" has been corrected to "…after 2 years…" in this version.] The 'socio-emotional' scale also showed a significant decline after 2 years (-0.78 logits, p = 0.033) and 4 years (-0.83 logits, p = 0.021). CONCLUSION In the absence of an intervention, a decline in vision-related quality of life is present in patients with pathogenic CRB1 variants at 4-year follow-up. Patient-reported outcome measures should be included in future clinical trials, as they can be a potential indicator of disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mays Talib
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Maria M van Genderen
- Bartiméus, Diagnostic Centre for complex visual disorders, Zeist, The Netherlands
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | | | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| | - Ruth M A van Nispen
- Department of Ophthalmology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Charng J, Escalona IAV, Turpin A, McKendrick AM, Mackey DA, Alonso-Caneiro D, Chen FK. Nonlinear Reduction in Hyperautofluorescent Ring Area in Retinitis Pigmentosa. Ophthalmol Retina 2024; 8:298-306. [PMID: 37743021 DOI: 10.1016/j.oret.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE To report baseline dimension of the autofluorescent (AF) ring in a large cohort of retinitis pigmentosa (RP) patients and to evaluate models of ring progression. DESIGN Cohort study. PARTICIPANTS Four hundred and forty-five eyes of 224 patients with clinical diagnosis of RP. METHODS Autofluorescent rings from near-infrared AF (NIRAF) and short-wavelength AF (SWAF) imaging modalities in RP eyes were segmented with ring area and horizontal extent extracted from each image for cross-sectional and longitudinal analyses. In longitudinal analysis, for each eye, ring area, horizontal extent, and natural logarithm of the ring area were assessed as the best dependent variable for linear regression by evaluating R2 values. Linear mixed-effects modeling was utilized to account for intereye correlation. MAIN OUTCOME MEASURES Autofluorescent ring size characteristics at baseline and ring progression rates. RESULTS A total of 439 eyes had SWAF imaging at baseline with the AF ring observed in 206 (46.9%) eyes. Mean (95% confidence interval) of ring area and horizontal extent were 7.85 (6.60 to 9.11) mm2 and 3.35 (3.10 to 3.60) mm, respectively. In NIRAF, the mean ring area and horizontal extent were 7.74 (6.60 to 8.89) mm2 and 3.26 (3.02 to 3.50) mm, respectively in 251 out of 432 eyes. Longitudinal analysis showed mean progression rates of -0.57 mm2/year and -0.12 mm/year in SWAF using area and horizontal extent as the dependent variable, respectively. When ln(Area) was analyzed as the dependent variable, mean progression was -0.07 ln(mm2)/year, which equated to 6.80% decrease in ring area per year. Similar rates were found in NIRAF (area: -0.59 mm2/year, horizontal extent: -0.12 mm/year and ln(Area): -0.08 ln(mm2)/year, equated to 7.75% decrease in area per year). Analysis of R2 showed that the dependent variable ln(Area) provided the best linear model for ring progression in both imaging modalities, especially in eyes with large overall area change. CONCLUSIONS Our data suggest that using an exponential model to estimate progression of the AF ring area in RP is more appropriate than the models assuming linear decrease. Hence, the progression estimates provided in this study should provide more accurate reference points in designing clinical trials in RP patients. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Jason Charng
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia; Department of Optometry, School of Allied Health, The University of Western Australia, Perth, Australia
| | - Ignacio A V Escalona
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Andrew Turpin
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia; School of Population Health, Curtin University, Perth, Australia
| | - Allison M McKendrick
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia; Department of Optometry, School of Allied Health, The University of Western Australia, Perth, Australia
| | - David A Mackey
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology (QUT), Kelvin Grove, Australia; School of Science, Technology and Engineering, University of Sunshine Coast, Petrie, Queensland, Australia
| | - Fred K Chen
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia; Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Jolly JK, Grigg JR, McKendrick AM, Fujinami K, Cideciyan AV, Thompson DA, Matsumoto C, Asaoka R, Johnson C, Dul MW, Artes PH, Robson AG. ISCEV and IPS guideline for the full-field stimulus test (FST). Doc Ophthalmol 2024; 148:3-14. [PMID: 38238632 PMCID: PMC10879267 DOI: 10.1007/s10633-023-09962-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 02/21/2024]
Abstract
The full-field stimulus test (FST) is a psychophysical technique designed for the measurement of visual function in low vision. The method involves the use of a ganzfeld stimulator, as used in routine full-field electroretinography, to deliver full-field flashes of light. This guideline was developed jointly by the International Society for Clinical Electrophysiology of Vision (ISCEV) and Imaging and Perimetry Society (IPS) in order to provide technical information, promote consistency of testing and reporting, and encourage convergence of methods for FST. It is intended to aid practitioners and guide the formulation of FST protocols, with a view to future standardisation.
Collapse
Affiliation(s)
- J K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Young Street, Cambridge, CB1 2LZ, UK.
| | - J R Grigg
- Save Sight Institute, Specialty of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - A M McKendrick
- Lions Eye Institute, University of Western Australia, Perth, Australia
- School of Allied Health, University of Western Australia, Crawley, Australia
| | - K Fujinami
- Laboratory of Visual Physiology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Institute of Ophthalmology, University College London, London, UK
| | - A V Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, University of Pennsylvania, Philadelphia, USA
| | - D A Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic, Department of Ophthalmology, Sight and Sound Centre, Great Ormond Street Hospital for Children NHS Trust, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - C Matsumoto
- Department of Ophthalmology, Kindai University, Osakasayama, Japan
| | - R Asaoka
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
- Seirei Christopher University, Hamamatsu, Shizuoka, Japan
- Nanovision Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka, Japan
- The Graduate School for the Creation of New Photonics Industries, Shizuoka, Japan
| | - C Johnson
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
- School of Optometry, The Ohio State University, Columbus, IA, USA
| | - M W Dul
- Department of Biological and Vision Science, College of Optometry, State University of New York, New York, USA
| | - P H Artes
- Faculty of Health, University of Plymouth, Plymouth, UK
| | - A G Robson
- Institute of Ophthalmology, University College London, London, UK
- Department of Electrophysiology, Moorfields Eye Hospital, London, UK
| |
Collapse
|
5
|
Shi LF, Hall AJ, Thompson DA. Full-field stimulus threshold testing: a scoping review of current practice. Eye (Lond) 2024; 38:33-53. [PMID: 37443335 PMCID: PMC10764876 DOI: 10.1038/s41433-023-02636-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The full-field stimulus threshold (FST) is a psychophysical measure of whole-field retinal light sensitivity. It can assess residual visual function in patients with severe retinal disease and is increasingly being adopted as an endpoint in clinical trials. FST applications in routine ophthalmology clinics are also growing, but as yet there is no formalised standard guidance for measuring FST. This scoping review explored current variability in FST conduct and reporting, with an aim to inform further evidence synthesis and consensus guidance. A comprehensive electronic search and review of the literature was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews (PRISMA-ScR) checklist. Key source, participant, methodology and outcomes data from 85 included sources were qualitatively and quantitatively compared and summarised. Data from 85 sources highlight how the variability and insufficient reporting of FST methodology, including parameters such as units of flash luminance, colour, duration, test strategy and dark adaptation, can hinder comparison and interpretation of clinical significance across centres. The review also highlights an unmet need for paediatric-specific considerations for test optimisation. Further evidence synthesis, empirical research or structured panel consultation may be required to establish coherent standardised guidance on FST methodology and context or condition dependent modifications. Consistent reporting of core elements, most crucially the flash luminance equivalence to 0 dB reference level is a first step. The development of criteria for quality assurance, calibration and age-appropriate reference data generation may further strengthen rigour of measurement.
Collapse
Affiliation(s)
- Linda F Shi
- Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Amanda J Hall
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Dorothy A Thompson
- Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- UCL Great Ormond Street Institute for Child Health, University College London, London, UK.
| |
Collapse
|
6
|
Boon N, Lu X, Andriessen CA, Orlovà M, Quinn PM, Boon CJ, Wijnholds J. Characterization and AAV-mediated CRB gene augmentation in human-derived CRB1KO and CRB1KOCRB2+/- retinal organoids. Mol Ther Methods Clin Dev 2023; 31:101128. [PMID: 37886604 PMCID: PMC10597801 DOI: 10.1016/j.omtm.2023.101128] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
The majority of patients with mutations in CRB1 develop either early-onset retinitis pigmentosa as young children or Leber congenital amaurosis as newborns. The cause for the phenotypic variability in CRB1-associated retinopathies is unknown, but might be linked to differences in CRB1 and CRB2 protein levels in Müller glial cells and photoreceptor cells. Here, CRB1KO and CRB1KOCRB2+/- differentiation day 210 retinal organoids showed a significant decrease in the number of photoreceptor nuclei in a row and a significant increase in the number of photoreceptor cell nuclei above the outer limiting membrane. This phenotype with outer retinal abnormalities is similar to CRB1 patient-derived retinal organoids and Crb1 or Crb2 mutant mouse retinal disease models. The CRB1KO and CRB1KOCRB2+/- retinal organoids develop an additional inner retinal phenotype due to the complete loss of CRB1 from Müller glial cells, suggesting an essential role for CRB1 in proper localization of neuronal cell types. Adeno-associated viral (AAV) transduction was explored at early and late stages of organoid development. Moreover, AAV-mediated gene augmentation therapy with AAV.hCRB2 improved the outer retinal phenotype in CRB1KO retinal organoids. Altogether, these data provide essential information for future gene therapy approaches for patients with CRB1-associated retinal dystrophies.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Xuefei Lu
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Charlotte A. Andriessen
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Michaela Orlovà
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Camiel J.F. Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, 1000 AE Amsterdam, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
7
|
Daich Varela M, Georgiou M, Alswaiti Y, Kabbani J, Fujinami K, Fujinami-Yokokawa Y, Khoda S, Mahroo OA, Robson AG, Webster AR, AlTalbishi A, Michaelides M. CRB1-Associated Retinal Dystrophies: Genetics, Clinical Characteristics, and Natural History. Am J Ophthalmol 2023; 246:107-121. [PMID: 36099972 PMCID: PMC10555856 DOI: 10.1016/j.ajo.2022.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE To analyze the clinical characteristics, natural history, and genetics of CRB1-associated retinal dystrophies. DESIGN Multicenter international retrospective cohort study. METHODS Review of clinical notes, ophthalmic images, and genetic testing results of 104 patients (91 probands) with disease-causing CRB1 variants. Macular optical coherence tomography (OCT) parameters, visual function, fundus characteristics, and associations between variables were the main outcome measures. RESULTS The mean age of the cohort at the first visit was 19.8 ± 16.1 (median 15) years, with a mean follow-up of 9.6 ± 10 years. Based on history, imaging, and clinical examination, 26 individuals were diagnosed with retinitis pigmentosa (RP; 25%), 54 with early-onset severe retinal dystrophy / Leber congenital amaurosis (EOSRD/LCA; 52%), and 24 with macular dystrophy (MD; 23%). Severe visual impairment was most frequent after 40 years of age for patients with RP and after 20 years of age for EOSRD/LCA. Longitudinal analysis revealed a significant difference between baseline and follow-up best-corrected visual acuity in the 3 subcohorts. Macular thickness decreased in most patients with EOSRD/LCA and MD, whereas the majority of patients with RP had increased perifoveal thickness. CONCLUSIONS A subset of individuals with CRB1 variants present with mild, adult-onset RP. EOSRD/LCA phenotype was significantly associated with null variants, and 167_169 deletion was exclusively present in the MD cohort. The poor OCT lamination may have a degenerative component, as well as being congenital. Disease symmetry and reasonable window for intervention highlight CRB1 retinal dystrophies as a promising target for trials of novel therapeutics.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital (M.D.V., M.G., K.F., S.K., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., M.G., K.F., Y.F.-Y., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom
| | - Michalis Georgiou
- Moorfields Eye Hospital (M.D.V., M.G., K.F., S.K., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., M.G., K.F., Y.F.-Y., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom; Jones Eye Institute (M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yahya Alswaiti
- St John of Jerusalem Eye Hospital group, Jerusalem, Palestine (Y.A., A.A.)
| | - Jamil Kabbani
- Imperial College London (J.K.), London, United Kingdom
| | - Kaoru Fujinami
- Moorfields Eye Hospital (M.D.V., M.G., K.F., S.K., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., M.G., K.F., Y.F.-Y., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center (Y.F.-Y.), Tokyo, Japan
| | - Yu Fujinami-Yokokawa
- UCL Institute of Ophthalmology, University College London (M.D.V., M.G., K.F., Y.F.-Y., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center (Y.F.-Y.), Tokyo, Japan; Department of Health Policy and Management, School of Medicine, Keio University(Y.F.-Y.), Tokyo, Japan
| | - Shaheeni Khoda
- Moorfields Eye Hospital (M.D.V., M.G., K.F., S.K., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom
| | - Omar A Mahroo
- Moorfields Eye Hospital (M.D.V., M.G., K.F., S.K., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., M.G., K.F., Y.F.-Y., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom
| | - Anthony G Robson
- Moorfields Eye Hospital (M.D.V., M.G., K.F., S.K., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., M.G., K.F., Y.F.-Y., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital (M.D.V., M.G., K.F., S.K., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., M.G., K.F., Y.F.-Y., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom
| | - Alaa AlTalbishi
- St John of Jerusalem Eye Hospital group, Jerusalem, Palestine (Y.A., A.A.)
| | - Michel Michaelides
- Moorfields Eye Hospital (M.D.V., M.G., K.F., S.K., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., M.G., K.F., Y.F.-Y., O.A.M., A.G.R., A.R.W., M.M.), London, United Kingdom.
| |
Collapse
|
8
|
Lopes da Costa B, Kolesnikova M, Levi SR, Cabral T, Tsang SH, Maumenee IH, Quinn PMJ. Clinical and Therapeutic Evaluation of the Ten Most Prevalent CRB1 Mutations. Biomedicines 2023; 11:385. [PMID: 36830922 PMCID: PMC9953187 DOI: 10.3390/biomedicines11020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Mutations in the Crumbs homolog 1 (CRB1) gene lead to severe inherited retinal dystrophies (IRDs), accounting for nearly 80,000 cases worldwide. To date, there is no therapeutic option for patients suffering from CRB1-IRDs. Therefore, it is of great interest to evaluate gene editing strategies capable of correcting CRB1 mutations. A retrospective chart review was conducted on ten patients demonstrating one or two of the top ten most prevalent CRB1 mutations and receiving care at Columbia University Irving Medical Center, New York, NY, USA. Patient phenotypes were consistent with previously published data for individual CRB1 mutations. To identify the optimal gene editing strategy for these ten mutations, base and prime editing designs were evaluated. For base editing, we adopted the use of a near-PAMless Cas9 (SpRY Cas9), whereas for prime editing, we evaluated the canonical NGG and NGA prime editors. We demonstrate that for the correction of c.2843G>A, p.(Cys948Tyr), the most prevalent CRB1 mutation, base editing has the potential to generate harmful bystanders. Prime editing, however, avoids these bystanders, highlighting its future potential to halt CRB1-mediated disease progression. Additional studies investigating prime editing for CRB1-IRDs are needed, as well as a thorough analysis of prime editing's application, efficiency, and safety in the retina.
Collapse
Affiliation(s)
- Bruna Lopes da Costa
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
- Jonas Children′s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04021-001, SP, Brazil
| | - Masha Kolesnikova
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
- Jonas Children′s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- College of Medicine at the State University of New York at Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Sarah R. Levi
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
- Jonas Children′s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Thiago Cabral
- Department of Ophthalmology, Federal University of São Paulo, São Paulo 04021-001, SP, Brazil
- Vision Center Unit/EBSERH and Department of Ophthalmology, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
- Young Leadership Physicians Programme, National Academy of Medicine, Rio de Janeiro 20021-130, RJ, Brazil
| | - Stephen H. Tsang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
- Jonas Children′s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Irene H. Maumenee
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
- Jonas Children′s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Peter M. J. Quinn
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY 10032, USA
- Jonas Children′s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Jenny LA, Liu PK, Kolesnikova M, Duong J, Kim AH, Levi SR, Greenstein VC, Tsang SH. Foveolar thickness as potential standardized structural outcome measurement in studies of Bietti crystalline dystrophy. Sci Rep 2022; 12:14706. [PMID: 36038562 PMCID: PMC9424222 DOI: 10.1038/s41598-022-16563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Bietti crystalline dystrophy (BCD) is an ultra-rare orphan disorder that can lead to blindness. Because of the variable rates of progression of the disease, it is necessary to identify suitable outcome measurements for tracking progression in BCD. A retrospective analysis of patients with a clinical and genetic diagnosis of BCD was conducted. Four measurements of spectral domain-optical coherence tomography were compared to patients’ best corrected visual acuity. We observed that patients with higher measurements of foveolar thickness, choroidal thickness in the foveolar region, ellipsoid zone band length and the outer nuclear layer + area, had on average better visual acuity. Future studies are needed to validate the structural–functional correlations we observed in BCD and to propose a sensitive and clinically meaningful outcome measurement for tracking this rare, variable disease.
Collapse
Affiliation(s)
- Laura A Jenny
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Pei-Kang Liu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Masha Kolesnikova
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Jimmy Duong
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Angela H Kim
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Sarah R Levi
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | - Stephen H Tsang
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA. .,Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA. .,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA. .,Institute of Human Nutrition, Columbia University, New York, NY, USA. .,Columbia University Stem Cell Initiative, New York, NY, USA.
| |
Collapse
|
10
|
Nguyen XTA, Talib M, van Schooneveld MJ, Wijnholds J, van Genderen MM, Schalij-Delfos NE, Klaver CCW, Talsma HE, Fiocco M, Florijn RJ, Ten Brink JB, Cremers FPM, Meester-Smoor MA, van den Born LI, Hoyng CB, Thiadens AAHJ, Bergen AA, Boon CJF. CRB1-Associated Retinal Dystrophies: A Prospective Natural History Study in Anticipation of Future Clinical Trials. Am J Ophthalmol 2022; 234:37-48. [PMID: 34320374 DOI: 10.1016/j.ajo.2021.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE To investigate the natural disease course of retinal dystrophies associated with crumbs cell polarity complex component 1 (CRB1) and identify clinical end points for future clinical trials. DESIGN Single-center, prospective case series. METHODS An investigator-initiated nationwide collaborative study that included 22 patients with CRB1-associated retinal dystrophies. Patients underwent ophthalmic assessment at baseline and 2 years after baseline. Clinical examination included best-corrected visual acuity (BCVA) using Early Treatment Diabetic Retinopathy Study charts, Goldmann kinetic perimetry (V4e isopter seeing retinal areas), microperimetry, full-field electroretinography, full-field stimulus threshold (FST), fundus photography, spectral-domain optical coherence tomography, and fundus autofluorescence imaging. RESULTS Based on genetic, clinical, and electrophysiological data, patients were diagnosed with retinitis pigmentosa (19 [86%]), cone-rod dystrophy (2 [9%]), or isolated macular dystrophy (1 [5%]). Analysis of the entire cohort at 2 years showed no significant changes in BCVA (P = .069) or V4e isopter seeing retinal areas (P = .616), although signs of clinical progression were present in individual patients. Macular sensitivity measured on microperimetry revealed a significant reduction at the 2-year follow-up (P < .001). FST responses were measurable in patients with nonrecordable electroretinograms. On average, FST responses remained stable during follow-up. CONCLUSION In CRB1-associated retinal dystrophies, visual acuity and visual field measures remain relatively stable over the course of 2 years. Microperimetry showed a significant decrease in retinal sensitivity during follow-up and may be a more sensitive progression marker. Retinal sensitivity on microperimetry may serve as a functional clinical end point in future human treatment trials for CRB1-associated retinal dystrophies.
Collapse
Affiliation(s)
- Xuan-Thanh-An Nguyen
- From the Department of Ophthalmology (X.-T.-A.N., M.T., J.W., N.E.S.-D., H.E.T., C.J.F.B.), Leiden University Medical Center, Leiden, the Netherlands
| | - Mays Talib
- From the Department of Ophthalmology (X.-T.-A.N., M.T., J.W., N.E.S.-D., H.E.T., C.J.F.B.), Leiden University Medical Center, Leiden, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology (M.J.v.S., C.J.F.B.), Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, the Netherlands
| | - Jan Wijnholds
- From the Department of Ophthalmology (X.-T.-A.N., M.T., J.W., N.E.S.-D., H.E.T., C.J.F.B.), Leiden University Medical Center, Leiden, the Netherlands; The Netherlands Institute for Neuroscience (NIN-KNAW) (J.W., A.A.B.), Amsterdam, the Netherlands
| | - Maria M van Genderen
- Bartiméus Diagnostic Centre for Complex Visual Disorders (M.M.v.G., H.E.T.), Zeist, the Netherlands; Department of Ophthalmology (M.M.v.G.), University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Nicoline E Schalij-Delfos
- From the Department of Ophthalmology (X.-T.-A.N., M.T., J.W., N.E.S.-D., H.E.T., C.J.F.B.), Leiden University Medical Center, Leiden, the Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology (C.C.W.K., M.A.M.-S., A.A.H.J.T.); Department of Epidemiology (C.C.W.K.), Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology (C.C.W.K., C.B.H.), Radboud University Medical Center, Nijmegen, the Netherlands; Institute for Molecular and Clinical Ophthalmology (C.C.W.K.), Basel, Switzerland
| | - Herman E Talsma
- From the Department of Ophthalmology (X.-T.-A.N., M.T., J.W., N.E.S.-D., H.E.T., C.J.F.B.), Leiden University Medical Center, Leiden, the Netherlands; Bartiméus Diagnostic Centre for Complex Visual Disorders (M.M.v.G., H.E.T.), Zeist, the Netherlands
| | - Marta Fiocco
- Mathematical Institute (M.F.), and Department of Biomedical Data Sciences (M.F.), Leiden University Medical Center, Leiden, the Netherlands
| | - Ralph J Florijn
- Department of Clinical Genetics (R.J.F., J.B.t.B., A.A.B.), Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, the Netherlands
| | - Jacoline B Ten Brink
- Department of Clinical Genetics (R.J.F., J.B.t.B., A.A.B.), Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour (F.P.M.C.), Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - Carel B Hoyng
- Department of Ophthalmology (C.C.W.K., C.B.H.), Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Arthur A Bergen
- The Netherlands Institute for Neuroscience (NIN-KNAW) (J.W., A.A.B.), Amsterdam, the Netherlands; Department of Clinical Genetics (R.J.F., J.B.t.B., A.A.B.), Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, the Netherlands
| | - Camiel J F Boon
- From the Department of Ophthalmology (X.-T.-A.N., M.T., J.W., N.E.S.-D., H.E.T., C.J.F.B.), Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology (M.J.v.S., C.J.F.B.), Amsterdam University Medical Center (UMC), Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Pole C, Ameri H. Fundus Autofluorescence and Clinical Applications. J Ophthalmic Vis Res 2021; 16:432-461. [PMID: 34394872 PMCID: PMC8358768 DOI: 10.18502/jovr.v16i3.9439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
Fundus autofluorescence (FAF) has allowed in vivo mapping of retinal metabolic derangements and structural changes not possible with conventional color imaging. Incident light is absorbed by molecules in the fundus, which are excited and in turn emit photons of specific wavelengths that are captured and processed by a sensor to create a metabolic map of the fundus. Studies on the growing number of FAF platforms has shown each may be suited to certain clinical scenarios. Scanning laser ophthalmoscopes, fundus cameras, and modifications of these each have benefits and drawbacks that must be considered before and after imaging to properly interpret the images. Emerging clinical evidence has demonstrated the usefulness of FAF in diagnosis and management of an increasing number of chorioretinal conditions, such as age-related macular degeneration, central serous chorioretinopathy, retinal drug toxicities, and inherited retinal degenerations such as retinitis pigmentosa and Stargardt disease. This article reviews commercial imaging platforms, imaging techniques, and clinical applications of FAF.
Collapse
Affiliation(s)
- Cameron Pole
- Retina Division, USC Roski Eye Institute, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| | - Hossein Ameri
- Retina Division, USC Roski Eye Institute, Keck School of Medicine, University of South California, Los Angeles, CA, USA
| |
Collapse
|