1
|
Abadía-Cuchí N, Clavero-Adell M, González J, Medel-Martinez A, Fabre M, Ayerza-Casas A, Youssef L, Lerma-Irureta J, Maestro-Quibus P, Rodriguez-Calvo J, Ruiz-Martinez S, Lerma D, Schoorlemmer J, Oros D, Paules C. Impact of suspected preterm labour in foetal cardiovascular and metabolic programming: a prospective cohort study protocol. BMJ Open 2024; 14:e087430. [PMID: 39581725 PMCID: PMC11590803 DOI: 10.1136/bmjopen-2024-087430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
INTRODUCTION Suspected preterm labour (SPL) is an obstetric complication that occurs in 9% of all pregnancies and is the leading cause of antenatal hospital admissions. More than half of women with SPL deliver a premature baby which is a known risk factor for developing cardiovascular and metabolic disorders in childhood and later in adult life. On the other hand, the other half of these women will deliver at term, labelled as 'false preterm labour'. Although this has been thought to be a benign condition, accumulating evidence reported in recent years showed long-term effects for the foetus, neonate and infant even when birth occurs at term. However, the impact of SPL on cardiovascular and metabolic programming has not been studied yet. The aim of this prospective cohort study is to evaluate the impact of SPL on cardiac remodelling and function and on cardiovascular and metabolic profiles independently of gestational age at birth. METHODS AND ANALYSIS Prospective cohort study of subjects exposed and not exposed to an episode of SPL. Women with singleton pregnancies who are admitted at a tertiary hospital due to SPL and matched controls will be recruited. Evaluation of cardiovascular remodelling by foetal echocardiography will be performed during admission. Cord blood will be collected at birth in order to analyse different metabolomic footprints and several cardiovascular and metabolic risk biomarkers. Moreover, children will undergo an echocardiography 6 months after birth. The relationship between SPL and cardiovascular and metabolic programming will be modelled considering different covariates such as socioeconomic factors, perinatal characteristics, lifestyle, diet and exercise. ETHICS AND DISSEMINATION Ethical approval was granted in April 2020 from CEIC Aragón (CEICA) (C.P.-C.I. PI20/136). Study outcomes will be disseminated at international conferences and published in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER NCT05670665.
Collapse
Affiliation(s)
- Natalia Abadía-Cuchí
- Obstetrics and Gynaecology, Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain
| | - Marcos Clavero-Adell
- Pediatric Cardiology, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Dislipemias Primarias, Instituto de Investigacion Sanitaria Aragon, Zaragoza, Spain
| | - Jesús González
- Pediatrics Department, Clinica Quiron Zaragoza, Zaragoza, Aragón, Spain
| | | | - Marta Fabre
- Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain
- Biochemistry department, Hospital Clinico Universitario Lozano Blesa, Zaragoza, Aragón, Spain
| | | | - Lina Youssef
- BCNatal, Universidad de Barcelona, Barcelona, Spain
- Research Institute Against Leukemia Josep Carreras, Barcelona, Spain
| | | | - Pilar Maestro-Quibus
- Obstetrics Department, Hospital Clinico Universitario Lozano Blesa, Zaragoza, Aragón, Spain
| | - Jesús Rodriguez-Calvo
- Department of Obstetrics and Gynaecology, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Sara Ruiz-Martinez
- Instituto de Investigacion Sanitaria Aragon, Zaragoza, Spain
- Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain
| | - Diego Lerma
- Obstetrics Department, Hospital Clinico Universitario Lozano Blesa, Zaragoza, Aragón, Spain
- University of Zaragoza, Zaragoza, Spain
| | - Jon Schoorlemmer
- Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud, Zaragoza, Aragón, Spain
| | - Daniel Oros
- Obstetrics Department, Hospital Clinico Universitario Lozano Blesa, Zaragoza, Aragón, Spain
- Universidad de Zaragoza, Zaragoza, Aragón, Spain
| | - Cristina Paules
- Obstetrics Department, Hospital Clinico Universitario Lozano Blesa, Zaragoza, Aragón, Spain
- Universidad de Zaragoza, Zaragoza, Aragón, Spain
| |
Collapse
|
2
|
Sayres L, Sahi RK, Straub H, Peek E, Hobbins JC. Association of Amniotic Fluid Volume and Fetal Cardiac and Cerebrovascular Parameters in Fetal Growth Restriction. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:1969-1978. [PMID: 39031454 DOI: 10.1002/jum.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
OBJECTIVES To investigate the prevalence of oligohydramnios, brain sparing, and cardiac dysfunction among a cohort of fetal growth restriction (FGR). METHODS To assess the prevalence of oligohydramnios amongst a large sample of FGR fetuses, we screened a database of ultrasounds of FGR pregnancies from our maternal-fetal medicine clinics (clinical cohort) for diminished amniotic fluid volume. Using a threshold of a maximum vertical pocket (MVP) of <2 cm for "oligohydramnios," and 2 to 3 cm as a "reduced fluid" group, trends of Doppler values and cardiac parameters were assessed from pregnancies in an ongoing research study (comprehensive cohort). RESULTS In the clinical cohort, oligohydramnios was identified in only 2/229 (0.8%) and reduced fluid in 19/229 (8%). In the comprehensive cohort, oligohydramnios was seen in 3/126 (2.3%) and reduced fluid in 14/126 (11.1%). A high rate of cardiac and Doppler abnormalities were observed in the oligohydramnios group of the comprehensive cohort. The patients with oligohydramnios had a distinctly different cardiac phenotype with small (2/3 with cardiac area <5th%) (P = 0.01) and round (3/3 with global sphericity index <5th%) (P = 0.02) hearts. CONCLUSION Oligohydramnios, when present with FGR, is accompanied by high rates of cerebral and cardiovascular abnormalities.
Collapse
Affiliation(s)
- Lauren Sayres
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Roopjit K Sahi
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Heather Straub
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma Peek
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - John C Hobbins
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
3
|
Freedman AA, Cersonsky TEK, Pinar H, Goldenberg RL, Silver RM, Ernst LM. Vascular Placental Pathology and Cardiac Structure in Stillborn Fetuses. Am J Perinatol 2024. [PMID: 39209298 DOI: 10.1055/a-2405-1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Adverse pregnancy outcomes, including preterm birth and preeclampsia, are associated with worse cardiovascular outcomes for offspring. Examination of the placenta is important for understanding how the prenatal period shapes long-term cardiovascular health. We sought to investigate the association between placental vascular malperfusion and fetal cardiac structure. STUDY DESIGN Data obtained from the Stillbirth Collaborative Research Network included stillbirths with placental pathology and autopsy. Stillbirths were classified in two ways: based on the severity of placental maternal vascular malperfusion (MVM) and based on the cause of death (MVM, fetal vascular malperfusion [FVM], or acute infection/controls). Organ weight and heart measures were standardized by gestational age (GA) and compared across groups. RESULTS We included 329 stillbirths in the analysis by MVM severity and 76 in the analysis by cause of death (COD). While z-scores for most organ weights/heart measures were smaller when COD was attributed to MVM as compared with FVM or controls, heart weight and brain weight z-scores did not differ by COD (p > 0.05). In analyses accounting for body size, the difference between heart and body weight z-score was -0.05 (standard deviation [SD]: 0.53) among those with MVM as a COD and -0.20 (SD: 0.95) among those with severe MVM. Right and left ventricle thicknesses and tricuspid, pulmonary, mitral, and aortic valve circumferences were consistently as expected or larger than expected for GA and body weight. In the analysis investigating the severity of MVM, those with the most severe MVM had heart measures that were as expected or larger than expected for body weight while those with only mild to moderate MVM had heart measures that were generally small relative to body weight. CONCLUSION When assessed as COD or based on severity, MVM was associated with heart measures that were as expected or larger than expected for GA and body weight, indicating possible heart sparing. KEY POINTS · Fetal deaths with MVM show smaller organ weights.. · Heart weight sparing is seen with fetal death attributed to MVM.. · Heart weight sparing is more pronounced with severe MVM..
Collapse
Affiliation(s)
- Alexa A Freedman
- Department of Obstetrics and Gynecology, NorthShore University Health System, Evanston, Illinois
| | - Tess E K Cersonsky
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Halit Pinar
- Department of Pathology, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Robert L Goldenberg
- Department of Obstetrics and Gynecology, Columbia University, New York, New York
| | - Robert M Silver
- Department of Obstetrics and Gynecology, Maternal-Fetal Medicine, University of Utah, Salt Lake City, Utah
| | - Linda M Ernst
- Department of Pathology, University of Chicago Pritzker School of Medicine, Chicago, Illinois
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, Evanston, Illinois
| |
Collapse
|
4
|
van de Meent M, Nijholt KT, Joemmanbaks SCA, Kooiman J, Schipper HS, Wever KE, Lely AT, Terstappen F. Understanding changes in echocardiographic parameters at different ages following fetal growth restriction: a systematic review and meta-analysis. Am J Physiol Heart Circ Physiol 2024; 326:H1469-H1488. [PMID: 38668703 PMCID: PMC11380958 DOI: 10.1152/ajpheart.00052.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024]
Abstract
Fetal growth restriction (FGR) increases cardiovascular risk by cardiac remodeling and programming. This systematic review and meta-analysis across species examines the use of echocardiography in FGR offspring at different ages. PubMed and Embase.com were searched for animal and human studies reporting on echocardiographic parameters in placental insufficiency-induced FGR offspring. We included six animal and 49 human studies. Although unable to perform a meta-analysis of animal studies because of insufficient number of studies per individual outcome, all studies showed left ventricular dysfunction. Our meta-analyses of human studies revealed a reduced left ventricular mass, interventricular septum thickness, mitral annular peak velocity, and mitral lateral early diastolic velocity at neonatal age. No echocardiographic differences during childhood were observed, although the small age range and number of studies limited these analyses. Only two studies at adult age were performed. Meta-regression on other influential factors was not possible due to underreporting. The few studies on myocardial strain analysis showed small changes in global longitudinal strain in FGR offspring. The quality of the human studies was considered low and the risk of bias in animal studies was mostly unclear. Echocardiography may offer a noninvasive tool to detect early signs of cardiovascular predisposition following FGR. Clinical implementation yet faces multiple challenges including identification of the most optimal timing and the exact relation to long-term cardiovascular function in which echocardiography alone might be limited to reflect a child's vascular status. Future research should focus on myocardial strain analysis and the combination of other (non)imaging techniques for an improved risk estimation.NEW & NOTEWORTHY Our meta-analysis revealed echocardiographic differences between fetal growth-restricted and control offspring in humans during the neonatal period: a reduced left ventricular mass and interventricular septum thickness, reduced mitral annular peak velocity, and mitral lateral early diastolic velocity. We were unable to pool echocardiographic parameters in animal studies and human adults because of an insufficient number of studies per individual outcome. The few studies on myocardial strain analysis showed small preclinical changes in FGR offspring.
Collapse
Affiliation(s)
- Mette van de Meent
- Division Women and Baby, Department of Obstetrics, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Kirsten T Nijholt
- Division Women and Baby, Department of Obstetrics, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Shary C A Joemmanbaks
- Division Women and Baby, Department of Obstetrics, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Judith Kooiman
- Division Women and Baby, Department of Obstetrics, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Henk S Schipper
- Department of Pediatric Cardiology, Sophia Children's Hospital, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kimberley E Wever
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Titia Lely
- Division Women and Baby, Department of Obstetrics, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Fieke Terstappen
- Division Women and Baby, Department of Obstetrics, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
- Division Women and Baby, Department of Neonatology, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Rock CR, White TA, Piscopo BR, Sutherland AE, Pham Y, Camm EJ, Sehgal A, Polglase GR, Miller SL, Allison BJ. Cardiovascular decline in offspring during the perinatal period in an ovine model of fetal growth restriction. Am J Physiol Heart Circ Physiol 2023; 325:H1266-H1278. [PMID: 37773057 DOI: 10.1152/ajpheart.00495.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Fetal growth restriction (FGR) increases the risk cardiovascular disease (CVD) in adulthood. Placental insufficiency and subsequent chronic fetal hypoxemia are causal factors for FGR, leading to a redistribution of blood flow that prioritizes vital organs. Subclinical signs of cardiovascular dysfunction are evident in growth-restricted neonates; however, the mechanisms programming for CVD in adulthood remain unknown. This study aimed to determine the potential mechanisms underlying structural and functional changes within the heart and essential (carotid) and nonessential (femoral) vascular beds in growth-restricted lambs. Placental insufficiency was surgically induced in ewes at 89 days gestational age (dGA, term = 148dGA). Three age groups were investigated: fetal (126dGA), newborn (24 h after preterm birth), and 4-wk-old lambs. In vivo and histological assessments of cardiovascular indices were undertaken. Resistance femoral artery function was assessed via in vitro wire myography and blockade of key vasoactive pathways including nitric oxide, prostanoids, and endothelium-dependent hyperpolarization. All lambs were normotensive throughout the first 4 wk of life. Overall, the FGR cohort had more globular hearts compared with controls (P = 0.0374). A progressive decline in endothelium-dependent vasodilation was demonstrated in FGR lambs compared with controls. Further investigation revealed that impairment of the prostanoid pathway may drive this reduction in vasodilatory capacity. Clinical indicators of CVD were not observed in our FGR lambs. However, subclinical signs of cardiovascular dysfunction were present in our FGR offspring. This study provides insight into potential mechanisms, such as the prostanoid pathway, that may warrant therapeutic interventions to improve cardiovascular development in growth-restricted newborns.NEW & NOTEWORTHY Our findings provide novel insight into the potential mechanisms that program for cardiovascular dysfunction in growth-restricted neonates as our growth-restricted lambs exhibited a progressive decline in endothelium-dependent vasodilation in the femoral artery between birth and 4 wk of age. Subsequent analyses indicated that this reduction in vasodilatory capacity is likely to be mediated by the prostanoid pathway and prostanoids could be a potential target for therapeutic interventions for fetal growth restriction (FGR).
Collapse
Affiliation(s)
- Charmaine R Rock
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Tegan A White
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Beth R Piscopo
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Emily J Camm
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Arvind Sehgal
- Monash Newborn, Monash Medical Centre, Clayton, Victoria, Australia
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
de Waal K, Crendal E, Poon ACY, Latheef MS, Sachawars E, MacDougall T, Phad N. The association between patterns of early respiratory disease and diastolic dysfunction in preterm infants. J Perinatol 2023; 43:1268-1273. [PMID: 36823313 PMCID: PMC10541326 DOI: 10.1038/s41372-023-01608-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND This study aims to determine the association between clinical patterns of early respiratory disease and diastolic dysfunction in preterm infants. METHODS Preterm infants <29 weeks' gestation underwent cardiac ultrasounds around day 7 and 14-21. Respiratory dysfunction patterns were classified as stable (ST), respiratory deterioration (RD) or early persistent respiratory dysfunction (EPRD) according to oxygen need. Diastolic dysfunction was diagnosed using a multi-parameter approach including left atrial strain (LASR) to help differentiate between cardiac or pulmonary pathophysiology. RESULTS 98 infants (mean 27 weeks) were included. The prevalence of ST, RD and EPRD was 53%, 21% and 26% respectively. Diastolic dysfunction was more prevalent in the RD and EPRD groups with patent ductus arteriosus and significant growth restriction as risk factors. Not all infants with a PDA developed diastolic dysfunction. LASR was lower in the EPDR group. CONCLUSION Respiratory dysfunction patterns are associated with diastolic dysfunction in preterm infants.
Collapse
Affiliation(s)
- Koert de Waal
- John Hunter Children's Hospital, department of neonatology, Newcastle, NSW, Australia.
- University of Newcastle, Newcastle, NSW, Australia.
| | - Edward Crendal
- John Hunter Children's Hospital, department of neonatology, Newcastle, NSW, Australia
- John Hunter Hospital, department of cardiology, Newcastle, NSW, Australia
| | | | | | - Elias Sachawars
- John Hunter Hospital, department of radiology, Newcastle, NSW, Australia
| | - Thomas MacDougall
- John Hunter Hospital, department of radiology, Newcastle, NSW, Australia
| | - Nilkant Phad
- John Hunter Children's Hospital, department of neonatology, Newcastle, NSW, Australia
- University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
7
|
Freedman AA, Price E, Franklin A, Ernst LM. Measures of Fetal Growth and Cardiac Structure in Stillbirths With Placental Maternal Vascular Malperfusion: Evidence for Heart Weight Sparing and Structural Cardiac Alterations in Humans. Pediatr Dev Pathol 2023:10935266231166548. [PMID: 37082927 DOI: 10.1177/10935266231166548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
BACKGROUND Placental maternal vascular malperfusion (MVM) is associated with fetal growth restriction (FGR). While FGR increases the risk of cardiovascular disease, the impact of MVM on fetal cardiac structure is understudied. METHODS We utilized a cohort of autopsied stillbirths; 29 with MVM as the cause of death and 21 with a cause of death unrelated to MVM. Fetal and organ weights and heart measurements were standardized by gestational age and compared between MVM and non-MVM stillbirths. Differences in standardized fetal organ and cardiac measures as compared to standardized fetal body weight were calculated to account for body size. RESULTS MVM stillbirths had smaller organ and heart weights than non-MVM stillbirths; however, after accounting for gestational age, heart weight was the least affected among all organs. In an analysis of organ weights relative to body size, heart weights were 0.31 standard deviations (SD) larger than expected relative to body weight (95% CI: 0.04, 0.57). Right and left ventricle thicknesses and mitral valve circumference were also larger than expected relative to body weight. CONCLUSION Stillbirth due to MVM was associated with relative sparing of heart weight and other heart measurements. The significance of these findings in liveborn infants needs further study.
Collapse
Affiliation(s)
- Alexa A Freedman
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Erica Price
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| | - Andrew Franklin
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Linda M Ernst
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Pathology, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
8
|
Bjarkø L, Fugelseth D, Harsem N, Kiserud T, Haugen G, Nestaas E. Cardiac morphology in neonates with fetal growth restriction. J Perinatol 2023; 43:187-195. [PMID: 36284207 DOI: 10.1038/s41372-022-01538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Assess effects of fetal growth restriction (FGR) on cardiac modelling in premature and term neonates. STUDY DESIGN Prospective echocardiographic study of a cohort of FGR neonates (n = 21) and controls (n = 41) with normal prenatal growth and circulation. RESULTS Unadjusted for gestational age, birth weight, sex, and twin/singleton, Late-FGR neonates had smaller hearts than controls, with globular left ventricles and symmetrical right ventricles. Adjusted estimates showed smaller left ventricles and similarly sized right ventricles, with symmetrical left and right ventricles. Early-FGR (compared with Late-FGR) had smaller hearts and globular left ventricles in unadjusted estimates, but after adjustment, sizes and shapes were similar. CONCLUSION FGR had significant impact on cardiac modelling, seen in both statistical models unadjusted and adjusted for gestational age, birth weight, sex, and twin/singleton. The adjustments, however, refined the results and revealed more specific effects of FGR, thus underscoring the importance of statistical adjustments in such studies.
Collapse
Affiliation(s)
- Lisa Bjarkø
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neonatal Intensive Care, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Drude Fugelseth
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neonatal Intensive Care, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Nina Harsem
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
| | - Torvid Kiserud
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Guttorm Haugen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Fetal Medicine, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
| | - Eirik Nestaas
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Clinic of Pediatrics and Adolescence, Akershus University Hospital, Loerenskog, Norway.
| |
Collapse
|
9
|
Korada S, Jebbia MR, Pavlek LR. Linking the Perinatal Environment to Neonatal Cardiovascular Outcomes. Neoreviews 2022; 23:e400-e408. [PMID: 35641456 DOI: 10.1542/neo.23-6-e400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cases of high-risk pregnancies continue to rise throughout the United States and globally, increasing rates of maternal and neonatal morbidity. Common pregnancy complications and morbidities include preterm birth, hypertensive disorders, fetal growth restriction, diabetes mellitus, and chorioamnionitis. Exposure to these perinatal conditions contributes to cardiac morbidities in the fetus and neonate, including altered cardiac growth, congenital heart disease, and cardiac dysfunction. Significant research has demonstrated lasting effects of these pregnancy complications, with increased rates of cardiac morbidities seen in children and adults after these perinatal exposures. The link between the perinatal environment and long-term outcomes has not been fully elucidated. The aim of this review is to discuss the current understanding of the implications of a high-risk pregnancy on fetal and neonatal cardiac development.
Collapse
Affiliation(s)
- Saichidroopi Korada
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Maria R Jebbia
- Division of Neonatology, Nationwide Children's Hospital, Columbus, OH.,Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Leeann R Pavlek
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH.,Division of Neonatology, Nationwide Children's Hospital, Columbus, OH.,Department of Pediatrics, The Ohio State University, Columbus, OH
| |
Collapse
|
10
|
Änghagen O, Engvall J, Gottvall T, Nelson N, Nylander E, Bang P. Developmental Differences in Left Ventricular Strain in IUGR vs. Control Children the First Three Months of Life. Pediatr Cardiol 2022; 43:1286-1297. [PMID: 35333947 PMCID: PMC9293814 DOI: 10.1007/s00246-022-02850-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) may directly affect cardiovascular function in early life. Longitudinal data on left ventricular longitudinal strain (LVLS), a key measure of cardiac function independent of body size, is not available. We hypothesize impaired cardiac function among IUGR newborns and persistence of the impairment until age 3 months. METHOD This is a prospective cohort study of consecutive pregnancies where IUGR was identified at 18-38 weeks gestational age (GA) with healthy controls randomly selected at 18-20 weeks GA. Echocardiograms were performed at birth and at age 3-4 months, and then compared. RESULTS At birth, mean (SD) LVLS did not differ between the IUGR group [N = 19; - 15.76 (3.12) %] and controls [N = 35; - 15.53 (3.56) %]. The IUGR group demonstrated no significant change in LVLS at age 3-4 months [- 17.80 (3.82) %], while the control group [- 20.91 (3.31) %] showed a significant increase (P < 0.001). Thus, LVLS was lower in the IUGR group at age 3-4 months (P = 0.003). CONCLUSION The lack of increase in LVLS may suggest that IUGR has a direct impact on cardiac function as early as during the first months of life. Trial registration Clinical trials.gov Identifier: NCT02583763, registration October 22, 2015. Retrospectively registered September 2014-October 2015, thereafter, registered prospectively.
Collapse
Affiliation(s)
- Olov Änghagen
- Crown Princess Victoria's Child and Youth Hospital, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden. .,Division of Children's and Women's Health, Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Jan Engvall
- grid.5640.70000 0001 2162 9922Department of Clinical Physiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden ,grid.5640.70000 0001 2162 9922Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Tomas Gottvall
- grid.5640.70000 0001 2162 9922Department of Obstetrics and Gynaecology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Nina Nelson
- grid.5640.70000 0001 2162 9922Crown Princess Victoria’s Child and Youth Hospital, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden ,grid.24381.3c0000 0000 9241 5705National Highly Specialized Care, Karolinska University Hospital Stockholm, Stockholm, Sweden ,grid.5640.70000 0001 2162 9922Division of Children’s and Women’s Health, Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Eva Nylander
- grid.5640.70000 0001 2162 9922Department of Clinical Physiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Bang
- grid.5640.70000 0001 2162 9922Crown Princess Victoria’s Child and Youth Hospital, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden ,grid.5640.70000 0001 2162 9922Division of Children’s and Women’s Health, Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Kooi EMW, Bos AF, Mintzer JP. Editorial: Organ Perfusion and Oxygenation in the Sick Infant. Front Pediatr 2021; 9:840917. [PMID: 35155323 PMCID: PMC8830284 DOI: 10.3389/fped.2021.840917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elisabeth M W Kooi
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arend F Bos
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | |
Collapse
|
12
|
Hromadnikova I, Kotlabova K, Krofta L, Sirc J. Association Analysis in Children Born from Normal and Complicated Pregnancies-Cardiovascular Disease Associated microRNAs and the Incidence of Prehypertension/Hypertension, Overweight/Obesity, Valve Problems and Heart Defects. Int J Mol Sci 2020; 21:ijms21218413. [PMID: 33182505 PMCID: PMC7672623 DOI: 10.3390/ijms21218413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
The goal was to assess how a history of any kind of pregnancy-related complication altered expression profile of microRNAs played a role in the pathogenesis of diabetes, cardiovascular and cerebrovascular diseases in the peripheral blood leukocytes of children at the age of 3–11 years. The prior exposure to gestational hypertension, preeclampsia, fetal growth restriction, gestational diabetes mellitus, preterm prelabor rupture of membranes or spontaneous preterm birth causes that a significant proportion of children (57.42% to 90.0% specifically) had a substantially altered microRNA expression profile, which might be the origin of a lifelong cardiovascular risk. A total of 23 out of 29 tested microRNAs were upregulated in children born from such complicated gestation. The occurrence of overweight, obesity, valve problems and heart defects even intensified upregulation of microRNAs already present in children exposed to such pregnancy complications. The occurrence of overweight/obesity (miR-92a-3p, and miR-210-3p) and valve problems or heart defects (miR-342-3p) induced microRNA upregulation in children affected with pregnancy complications. Overall, 42.86% overweight/obese children and 27.36% children with valve problems or heart defects had even higher microRNA levels than children with normal clinical findings after complicated pregnancies. In addition, the microRNA expression profile was also able to differentiate between children descending from normal gestation in relation to the occurrence of overweight and obesity. Screening on the base of the combination of 19 microRNAs identified 70.0% overweight/obese children at 90.0% specificity. In general, children after complicated pregnancies, just as children after normal pregnancies, with abnormal findings are at a higher risk of the onset of cardiovascular complications, and their dispensarization, with the aim to implement primary prevention strategies, would be beneficial.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-296511336
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, 147 00 Prague, Czech Republic; (L.K.); (J.S.)
| | - Jan Sirc
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, 147 00 Prague, Czech Republic; (L.K.); (J.S.)
| |
Collapse
|
13
|
Telles F, McNamara N, Nanayakkara S, Doyle MP, Williams M, Yaeger L, Marwick TH, Leeson P, Levy PT, Lewandowski AJ. Changes in the Preterm Heart From Birth to Young Adulthood: A Meta-analysis. Pediatrics 2020; 146:peds.2020-0146. [PMID: 32636236 DOI: 10.1542/peds.2020-0146] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2020] [Indexed: 11/24/2022] Open
Abstract
CONTEXT Preterm birth is associated with incident heart failure in children and young adults. OBJECTIVE To determine the effect size of preterm birth on cardiac remodeling from birth to young adulthood. DATA SOURCES Data sources include Medline, Embase, Scopus, Cochrane databases, and clinical trial registries (inception to March 25, 2020). STUDY SELECTION Studies in which cardiac phenotype was compared between preterm individuals born at <37 weeks' gestation and age-matched term controls were included. DATA EXTRACTION Random-effects models were used to calculate weighted mean differences with corresponding 95% confidence intervals. RESULTS Thirty-two observational studies were included (preterm = 1471; term = 1665). All measures of left ventricular (LV) and right ventricular (RV) systolic function were lower in preterm neonates, including LV ejection fraction (P = .01). Preterm LV ejection fraction was similar from infancy, although LV stroke volume index was lower in young adulthood. Preterm LV peak early diastolic tissue velocity was lower throughout development, although preterm diastolic function worsened with higher estimated filling pressures from infancy. RV longitudinal strain was lower in preterm-born individuals of all ages, proportional to the degree of prematurity (R 2 = 0.64; P = .002). Preterm-born individuals had persistently smaller LV internal dimensions, lower indexed LV end-diastolic volume in young adulthood, and an increase in indexed LV mass, compared with controls, of 0.71 g/m2 per year from childhood (P = .007). LIMITATIONS The influence of preterm-related complications on cardiac phenotype could not be fully explored. CONCLUSIONS Preterm-born individuals have morphologic and functional cardiac impairments across developmental stages. These changes may make the preterm heart more vulnerable to secondary insults, potentially underlying their increased risk of early heart failure.
Collapse
Affiliation(s)
- Fernando Telles
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.,Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia.,Royal Prince Alfred Hospital, Sydney, Australia
| | | | - Shane Nanayakkara
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Cardiovascular Medicine, The Alfred Hospital, Melbourne, Australia
| | | | | | - Lauren Yaeger
- Bernard Becker Medical Library, School of Medicine, Washington University in St Louis, St Louis, Missouri; and
| | - Thomas H Marwick
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip T Levy
- Boston Children's Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Adam J Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
14
|
Rodriguez-Lopez M, Vergara-Sanchez C, Crispi F, Cepeda IL. Sources of heterogeneity when studying the cardiovascular effects of fetal growth restriction: an overview of the issues. J Matern Fetal Neonatal Med 2020; 35:1379-1385. [PMID: 32228109 DOI: 10.1080/14767058.2020.1749592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Intrauterine growth restriction (IUGR) has been repeatedly identified as a risk factor for cardiovascular disease (CVD). A possible explanation for this association is the effect of IUGR on cardiovascular structure and function. However, the specific changes observed are not consistent among studies. In this paper, we analyze several sources of heterogeneity within and between studies related to exposure, outcome and co-variables. A broad IUGR definition might include different phenotypes, expressing heterogeneity as an outcome. Outcome heterogeneity may also be the result of the postnatal effect modification that can be explored within studies. In order to do so, it is important to move beyond mean differences between groups, for example using unsupervised, stratified or interaction analysis. Different definitions of IUGR and the inclusion of different postnatal variables as confounders are potential sources of heterogeneity between studies. Researchers should be aware that postnatal variables may play different roles throughout a person's life and are not limited to behave as confounders. Therefore, their inclusion in the statistical model needs to be carefully considered. We discuss when sources of heterogeneity need to be controlled, and when they need to be identified and shown as a result.
Collapse
Affiliation(s)
- Merida Rodriguez-Lopez
- Pontificia Universidad Javeriana, Cali, Colombia.,Center for Interdisciplinary Health Studies, Pontificia Universidad Javeriana, Cali, Colombia
| | - Carlos Vergara-Sanchez
- Pontificia Universidad Javeriana, Cali, Colombia.,Center for Interdisciplinary Health Studies, Pontificia Universidad Javeriana, Cali, Colombia
| | - Fatima Crispi
- Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut Clínic de Ginecologia Obstetricia i Neonatologia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | | |
Collapse
|
15
|
Bassareo PP, Mercuro G. Comment on how foetal growth restriction and preterm birth affects cardiac morphology and function during infancy. Acta Paediatr 2020; 109:863. [PMID: 29245172 DOI: 10.1111/apa.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- PP Bassareo
- Department of Medical Sciences and Public Health “M. Aresu” University of Cagliari Cagliari Italy
| | - G Mercuro
- Department of Medical Sciences and Public Health “M. Aresu” University of Cagliari Cagliari Italy
| |
Collapse
|
16
|
Size and shape of the four-chamber view of the fetal heart in fetuses with an estimated fetal weight less than the tenth centile. Am J Obstet Gynecol 2019; 221:495.e1-495.e9. [PMID: 31207236 DOI: 10.1016/j.ajog.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Fetuses with an estimated fetal weight below the 10th centile have an increased risk of adverse perinatal and long-term outcomes as well as increased rates of cardiac dysfunction, which often alters cardiac size and shape of the 4-chamber view and the individual ventricles. As a result, a simple method has emerged to screen for potential cardiac dysfunction in fetuses with estimated fetal weights <10th centile by measuring the size and shape of the 4-chamber view and the size of the ventricles. OBJECTIVE To determine the number of fetuses with an abnormal size and shape of the 4-chamber view and size of the ventricles in fetuses with an estimated fetal weight <10th centile. MATERIALS AND METHODS This was a retrospective study of 50 fetuses between 25 and 37 weeks of gestation with an estimated fetal weight <10th centile. Data from their last examination were analyzed. From an end-diastolic image of the 4-chamber view, the largest basal-apical length and transverse width were measured from their corresponding epicardial borders. This allowed the 4-chamber view area and global sphericity index (4-chamber view length/4-chamber view width) to be computed. In addition, tracing along the endocardial borders with speckle tracking software enabled measurements of the right and left ventricular chamber areas and the right ventricle/left ventricle area ratios to be computed. Doppler waveform pulsatility indices from the umbilical (umbilical artery pulsatility index) and middle cerebral arteries (middle cerebral artery pulsatility index) were analyzed, and the cerebroplacental ratio (middle cerebral artery pulsatility index/umbilical artery pulsatility index) computed. Umbilical artery pulsatility indices >90th and cerebroplacental ratios <10th centile were considered abnormal. Using data from the control fetuses, the centile for each of the cardiac measurements was categorized by whether it was <10th or >90th centile, depending upon the measurement. RESULTS Of the 50 fetuses with estimated fetal weight <10th centile, 50% (n = 25) had a normal umbilical artery pulsatility index and cerebroplacental ratio. These fetuses had significantly more (P < 0.02 to <0.0001) abnormalities of the size and shape of the 4-chamber view than controls. In all, 44% had a 4-chamber view area >90th centile, 32% had a 4-chamber view global sphericity index <10th centile, 56% had a 4-chamber view width >90th centile, and 80% had 1 or more abnormalities of size and/or shape. The remaining 50% of fetuses (n = 25) had abnormalities of 1 or both for the umbilical artery pulsatility index and/or cerebroplacental ratio. These fetuses had significantly higher rates of abnormalities (P <0.05 to <0.0001) than controls for the following 4-chamber view measurements: 36% had a 4-chamber view area >90th centile; 28% had a 4-chamber view global sphericity index <10th centile; and 68% had a 4-chamber view width >90th centile. Only those fetuses with an abnormal umbilical artery pulsatility index had significant changes in ventricular size; 56% had a left ventricular area <10th centile; 28% had a right ventricular area <10th centile; 36% had right ventricular/left ventricular area ratio >90th centile. One or more of the above abnormal measurements were present in 92% of the fetuses. CONCLUSION Higher rates of abnormalities of cardiac size and shape of the 4-chamber view were found in fetuses with an estimated fetal weight <10th centile, regardless of their umbilical artery pulsatility index and cerebroplacental ratio measurements. Those with a normal umbilical artery pulsatility index and an abnormal cerebroplacental ratio had larger and wider measurements of the 4-chamber view. In addition, the shape of the 4-chamber view was more globular or round than in controls. These fetuses may have an increased risk of perinatal complications and childhood and/or adult cardiovascular disease. Screening tools derived from the 4-chamber view, acting as surrogates for ventricular dysfunction, may identify fetuses who could benefit from further comprehensive testing and future preventive interventions.
Collapse
|
17
|
Sebastiani G, García-Beltran C, Pie S, Guerra A, López-Bermejo A, de Toledo JS, de Zegher F, Rosés F, Ibáñez L. The sequence of prenatal growth restraint and postnatal catch-up growth: normal heart but thicker intima-media and more pre-peritoneal fat in late infancy. Pediatr Obes 2019; 14:e12476. [PMID: 30362284 DOI: 10.1111/ijpo.12476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The sequence of prenatal growth restraint and postnatal catch-up growth leads to a thicker intima-media and more pre-peritoneal fat by age 3-6 years. OBJECTIVES To study whether carotid intima-media thickness (cIMT) and pre-peritoneal fat differ already between catch-up small-for-gestational-age (SGA) infants and appropriate-for-gestational-age (AGA) controls in late infancy (ages 1 and 2 years) and whether such differences - if any - are accompanied by differences in cardiac morphology and function. METHODS Longitudinal assessments included body height and weight; fasting glucose, insulin, Insulin-like growth factor (IGF-I), high-molecular-weight adiponectin; body composition (by absorptiometry); cIMT, aortic IMT, pre-peritoneal fat partitioning (by ultrasound); cardiac morphometry and function (by echocardiography) in AGA and SGA infants at birth, at age 1 year (N = 87), and again at age 2 years (N = 68). RESULTS Catch-up SGA infants had already a thicker cIMT than AGA controls at ages 1 and 2 years, and more pre-peritoneal fat by age 2 years (all p values between <0.01 and <0.0001); all cardiac and endocrine-metabolic results were similar in AGA and SGA infants at ages 1 and 2 years. CONCLUSIONS From late infancy onwards, catch-up SGA infants have a thicker cIMT and more pre-peritoneal fat than AGA controls, but their cardiac morphology and function remain reassuringly similar.
Collapse
Affiliation(s)
- G Sebastiani
- Endocrinology Unit, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Esplugues, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III, Madrid, Spain
| | - C García-Beltran
- Endocrinology Unit, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Esplugues, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III, Madrid, Spain
| | - S Pie
- Pediatric Cardiology Department, Hospital Materno-Infantil Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - A Guerra
- Pediatric Cardiology Department, Hospital Materno-Infantil Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - A López-Bermejo
- Department of Pediatrics, Dr. Josep Trueta Hospital, Girona Institute for Biomedical Research, Girona, Spain
| | - J S de Toledo
- Cardiology Department, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Esplugues, Spain
| | - F de Zegher
- Pediatric and Adolescent Endocrinology, University Hospital Gasthuisberg, Leuven, Belgium.,Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - F Rosés
- Pediatric Cardiology Department, Hospital Materno-Infantil Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain.,Paediatric Cardiology Department, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - L Ibáñez
- Endocrinology Unit, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Esplugues, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Malhotra A, Allison BJ, Castillo-Melendez M, Jenkin G, Polglase GR, Miller SL. Neonatal Morbidities of Fetal Growth Restriction: Pathophysiology and Impact. Front Endocrinol (Lausanne) 2019; 10:55. [PMID: 30792696 PMCID: PMC6374308 DOI: 10.3389/fendo.2019.00055] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
Being born small lays the foundation for short-term and long-term implications for life. Intrauterine or fetal growth restriction describes the pregnancy complication of pathological reduced fetal growth, leading to significant perinatal mortality and morbidity, and subsequent long-term deficits. Placental insufficiency is the principal cause of FGR, which in turn underlies a chronic undersupply of oxygen and nutrients to the fetus. The neonatal morbidities associated with FGR depend on the timing of onset of placental dysfunction and growth restriction, its severity, and the gestation at birth of the infant. In this review, we explore the pathophysiological mechanisms involved in the development of major neonatal morbidities in FGR, and their impact on the health of the infant. Fetal cardiovascular adaptation and altered organ development during gestation are principal contributors to postnatal consequences of FGR. Clinical presentation, diagnostic tools and management strategies of neonatal morbidities are presented. We also present information on the current status of targeted therapies. A better understanding of neonatal morbidities associated with FGR will enable early neonatal detection, monitoring and management of potential adverse outcomes in the newborn period and beyond.
Collapse
Affiliation(s)
- Atul Malhotra
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- *Correspondence: Atul Malhotra
| | - Beth J. Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|