1
|
Murrant CL, Fletcher NM. Capillary communication: the role of capillaries in sensing the tissue environment, coordinating the microvascular, and controlling blood flow. Am J Physiol Heart Circ Physiol 2022; 323:H1019-H1036. [PMID: 36149771 DOI: 10.1152/ajpheart.00088.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Historically, capillaries have been viewed as the microvascular site for flux of nutrients to cells and removal of waste products. Capillaries are the most numerous blood vessel segment within the tissue, whose vascular wall consists of only a single layer of endothelial cells and are situated within microns of each cell of the tissue, all of which optimizes capillaries for the exchange of nutrients between the blood compartment and the interstitial space of tissues. There is, however, a growing body of evidence to support that capillaries play an important role in sensing the tissue environment, coordinating microvascular network responses, and controlling blood flow. Much of our growing understanding of capillaries stems from work in skeletal muscle and more recent work in the brain, where capillaries can be stimulated by products released from cells of the tissue during increased activity and are able to communicate with upstream and downstream vascular segments, enabling capillaries to sense the activity levels of the tissue and send signals to the microvascular network to coordinate the blood flow response. This review will focus on the emerging role that capillaries play in communication between cells of the tissue and the vascular network required to direct blood flow to active cells in skeletal muscle and the brain. We will also highlight the emerging central role that disruptions in capillary communication may play in blood flow dysregulation, pathophysiology, and disease.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicole M Fletcher
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Fernando CA, Pangan AM, Cornelison D, Segal SS. Recovery of blood flow regulation in microvascular resistance networks during regeneration of mouse gluteus maximus muscle. J Physiol 2019; 597:1401-1417. [PMID: 30575953 DOI: 10.1113/jp277247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Skeletal muscle regenerates after injury, however the recovery of its microvascular supply is poorly understood. We injured the gluteus maximus muscle in mice aiming to investigate the recovery of blood flow regulation in microvascular resistance networks. We hypothesized that blood flow regulation recovers in concert with myofibre regeneration. Microvascular perfusion ceased within 1 day post injury and was restored at 5 days coincident with the appearance of new myofibres; however, the resistance network was dilated and unresponsive to vasoactive agents. Spontaneous vasomotor tone, endothelium-dependent dilatation and adrenergic vasoconstriction increased at 10 days in concert with myofibre regeneration. Vasomotor control recovered at 21 days, when regenerated myofibres matured and active force production stabilized. Functional vasodilatation in response to muscle contraction recovered at 35 days. Physiological integrity of microvascular smooth muscle and endothelium recovers in parallel with myofibre regeneration. Additional time is required to restore the efficacy of signalling between myofibres and microvascular networks controlling their oxygen supply. ABSTRACT Myofibre regeneration after skeletal muscle injury is well-studied, although little is known about how microvascular perfusion is restored. The present study aimed to evaluate the recovery of blood flow regulation during skeletal muscle regeneration. In anaesthetized male C57BL/6J mice (aged 4 months), the gluteus maximus muscle (GM) was injured by local injection of barium chloride solution (1.2%, 75 μL). Functional integrity of the resistance network was evaluated at 5, 10, 21 and 35 days post-injury vs. Control by measuring internal diameter of feed arteries, first-, second- and third-order arterioles supplying the GM using intravital microscopy. The resting diameters of all branch orders were significantly greater (P < 0.05) than Control at 5 and 10 days and recovered to Control by 21 days, as did spontaneous vasomotor tone. Vasodilatation to ACh and vasoconstriction to phenylephrine (10-9 to 10-5 m) were absent at 5 days, increased at 10 days and recovered to Control by 21 days; reactivity improved in a distal-to-proximal gradient. Across branch orders, functional vasodilatation to single tetanic contraction (100 Hz, 500 ms) and to rhythmic twitch contractions (4 Hz, 30 s) was impaired at 5 days, improved through 21 days and was not different from Control at 35 days. Peak force development (g) was 60% of Control at 10 days and recovered by 21 days. Diminished vasomotor tone during the initial stages of regeneration promotes tissue perfusion as myofibre recovery begins. Recovery of tone and vasomotor responses to agonists occur in concert with myofibre regeneration. Delayed recovery of functional vasodilatation indicates that additional time is required to restore signalling between contracting myofibres and their vascular supply.
Collapse
Affiliation(s)
| | - Aaron M Pangan
- Department of Biomedical, Biological and Chemical Engineering
| | - Ddw Cornelison
- Division of Biological Sciences.,Christopher S. Bond Life Sciences Center
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Novielli-Kuntz NM, Lemaster KA, Frisbee JC, Jackson DN. Neuropeptide Y1 and alpha-1 adrenergic receptor-mediated decreases in functional vasodilation in gluteus maximus microvascular networks of prediabetic mice. Physiol Rep 2018; 6:e13755. [PMID: 29981203 PMCID: PMC6035337 DOI: 10.14814/phy2.13755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Prediabetes is associated with impaired contraction‐evoked dilation of skeletal muscle arterioles, which may be due to increased sympathetic activity accompanying this early stage of diabetes disease. Herein, we sought to determine whether blunted contraction‐evoked vasodilation resulted from enhanced sympathetic neuropeptide Y1 receptor (Y1R) and alpha‐1 adrenergic receptor (α1R) activation. Using intravital video microscopy, second‐, third‐, and fourth‐order (2A, 3A, and 4A) arteriolar diameters were measured before and following electrical field stimulation of the gluteus maximus muscle (GM) in prediabetic (PD, Pound Mouse) and control (CTRL, c57bl6, CTRL) mice. Baseline diameter was similar between groups; however, single tetanic contraction (100 Hz; 400 and 800 msec) and sustained rhythmic contraction (2 and 8 Hz, 30 sec) evoked rapid onset vasodilation and steady‐state vasodilatory responses that were blunted by 50% or greater in PD versus CTRL. Following Y1R and α1R blockade with sympathetic antagonists BIBP3226 and prazosin, contraction‐evoked arteriolar dilation in PD was restored to levels observed in CTRL. Furthermore, arteriolar vasoconstrictor responses to NPY (10−13–10−8 mol/L) and PE (10−9–10−5 mol/L) were greater in PD versus CTRL at higher concentrations, especially at 3A and 4A. These findings suggest that contraction‐evoked vasodilation in PD is blunted by Y1R and α1R receptor activation throughout skeletal muscle arteriolar networks.
Collapse
Affiliation(s)
| | - Kent A Lemaster
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Lamb IR, Novielli NM, Murrant CL. Capillary response to skeletal muscle contraction: evidence that redundancy between vasodilators is physiologically relevant during active hyperaemia. J Physiol 2018; 596:1357-1372. [PMID: 29417589 DOI: 10.1113/jp275467] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/31/2018] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS The current theory behind matching blood flow to metabolic demand of skeletal muscle suggests redundant interactions between metabolic vasodilators. Capillaries play an important role in blood flow control given their ability to respond to muscle contraction by causing conducted vasodilatation in upstream arterioles that control their perfusion. We sought to determine whether redundancies occur between vasodilators at the level of the capillary by stimulating the capillaries with muscle contraction and vasodilators relevant to muscle contraction. We identified redundancies between potassium and both adenosine and nitric oxide, between nitric oxide and potassium, and between adenosine and both potassium and nitric oxide. During muscle contraction, we demonstrate redundancies between potassium and nitric oxide as well as between potassium and adenosine. Our data show that redundancy is physiologically relevant and involved in the coordination of the vasodilator response during muscle contraction at the level of the capillaries. ABSTRACT We sought to determine if redundancy between vasodilators is physiologically relevant during active hyperaemia. As inhibitory interactions between vasodilators are indicative of redundancy, we tested whether vasodilators implicated in mediating active hyperaemia (potassium (K+ ), adenosine (ADO) and nitric oxide (NO)) inhibit one another's vasodilatory effects through direct application of pharmacological agents and during muscle contraction. Using the hamster cremaster muscle and intravital microscopy, we locally stimulated capillaries with one vasodilator in the absence and the presence of a second vasodilator (10-7 m S-nitroso-N-acetylpenicillamine (SNAP), 10-7 m ADO, 10 mm KCl) applied sequentially and simultaneously, and observed the response in the associated upstream 4A arteriole controlling the perfusion of the stimulated capillary. We found that KCl significantly attenuated SNAP- and ADO-induced vasodilatations by ∼49.7% and ∼128.0% respectively and ADO significantly attenuated KCl- and SNAP-induced vasodilatations by ∼94.7% and ∼59.6%, respectively. NO significantly attenuated KCl vasodilatation by 93.8%. Further, during muscle contraction we found that inhibition of NO production using l-NG -nitroarginine methyl ester and inhibition of ADO receptors using xanthine amine congener was effective at inhibiting contraction-induced vasodilatation but only in the presence of K+ release channel inhibition. Thus, only when the inhibiting vasodilator K+ was blocked was the second vasodilator, NO or ADO, able to produce effective vasodilatation. Therefore, we show that there are inhibitory interactions between specific vasodilators at the level of the capillary. Further, these inhibitions can be observed during muscle contraction indicating that redundancies between vasodilators are physiologically relevant and influence vasodilatation during active hyperaemia.
Collapse
Affiliation(s)
- Iain R Lamb
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole M Novielli
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
5
|
Poitras VJ, Hudson RW, Tschakovsky ME. Exercise intolerance in Type 2 diabetes: is there a cardiovascular contribution? J Appl Physiol (1985) 2018; 124:1117-1139. [PMID: 29420147 DOI: 10.1152/japplphysiol.00070.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Physical activity is critically important for Type 2 diabetes management, yet adherence levels are poor. This might be partly due to disproportionate exercise intolerance. Submaximal exercise tolerance is highly sensitive to muscle oxygenation; impairments in exercising muscle oxygen delivery may contribute to exercise intolerance in Type 2 diabetes since there is considerable evidence for the existence of both cardiac and peripheral vascular dysfunction. While uncompromised cardiac output during submaximal exercise is consistently observed in Type 2 diabetes, it remains to be determined whether an elevated cardiac sympathetic afferent reflex could sympathetically restrain exercising muscle blood flow. Furthermore, while deficits in endothelial function are common in Type 2 diabetes and are often cited as impairing exercising muscle oxygen delivery, no direct evidence in exercise exists, and there are several other vasoregulatory mechanisms whose dysfunction could contribute. Finally, while there are findings of impaired oxygen delivery, conflicting evidence also exists. A definitive conclusion that Type 2 diabetes compromises exercising muscle oxygen delivery remains premature. We review these potentially dysfunctional mechanisms in terms of how they could impair oxygen delivery in exercise, evaluate the current literature on whether an oxygen delivery deficit is actually manifest, and correspondingly identify key directions for future research.
Collapse
Affiliation(s)
- Veronica J Poitras
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada.,Department of Physiology, Queen's University , Kingston, Ontario , Canada.,Children's Hospital of Eastern Ontario, Research Institute , Ottawa, Ontario , Canada
| | - Robert W Hudson
- Department of Medicine, Division of Endocrinology, Queen's University , Kingston, Ontario , Canada
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
6
|
Dora KA. Endothelial-smooth muscle cell interactions in the regulation of vascular tone in skeletal muscle. Microcirculation 2018; 23:626-630. [PMID: 27653241 DOI: 10.1111/micc.12322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022]
Abstract
The SMCs of skeletal muscle arterioles are intricately sensitive to changes in membrane potential. Upon increasing luminal pressure, the SMCs depolarize, thereby opening VDCCs, which leads to contraction. Mechanisms that oppose this myogenic tone can involve voltage-dependent and independent dilator pathways, and can be endothelium-dependent or independent. Of particular interest are the pathways leading to hyperpolarization of SMCs, as these can potentially evoke both local and conducted dilation. This review focuses on three agonists that cause local and conducted dilation in skeletal muscle: ACh, ATP, and KCl. The mechanisms for the release of these agonists during motor nerve stimulation and/or hypoxia, and their actions to open either Ca2+ -activated K+ channels (KCa ) or inwardly rectifying K+ channels (KIR ) are described. By causing local and conducted dilation, each agonist has the ability to improve skeletal muscle blood flow during exercise and ischemia.
Collapse
Affiliation(s)
- Kim A Dora
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Murrant CL, Lamb IR, Novielli NM. Capillary endothelial cells as coordinators of skeletal muscle blood flow during active hyperemia. Microcirculation 2017; 24. [DOI: 10.1111/micc.12348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Coral L. Murrant
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| | - Iain R. Lamb
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| | - Nicole M. Novielli
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| |
Collapse
|
8
|
Lamb IR, Murrant CL. Potassium inhibits nitric oxide and adenosine arteriolar vasodilatation via K(IR) and Na(+)/K(+) ATPase: implications for redundancy in active hyperaemia. J Physiol 2015; 593:5111-26. [PMID: 26426256 DOI: 10.1113/jp270613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/18/2015] [Indexed: 11/08/2022] Open
Abstract
Redundancy, in active hyperaemia, where one vasodilator can compensate for another if the first is missing, would require that one vasodilator inhibits the effects of another; therefore, if the first vasodilator is inhibited, its inhibitory influence on the second vasodilator is removed and the second vasodilator exerts a greater vasodilatory effect. We aimed to determine whether vasodilators relevant to skeletal muscle contraction [potassium chloride (KCl), adenosine (ADO) and nitric oxide] inhibit one another and, in addition, to investigate the mechanisms for this interaction. We used the hamster cremaster muscle and intravital microscopy to directly visualize 2A arterioles when exposed to a range of concentrations of one vasodilator [10(-8) to 10(-5) M S-nitroso-N-acetyl penicillamine (SNAP), 10(-8) to 10(-5) M ADO, 10 and 20 mM KCl] in the absence and then in the presence of a second vasodilator (10(-7) M ADO, 10(-7) M SNAP, 10 mM KCl). We found that KCl significantly attenuated SNAP-induced vasodilatations by ∼65.8% and vasodilatations induced by 10(-8) to 10(-6) M ADO by ∼72.8%. Furthermore, we observed that inhibition of KCl vasodilatation, by antagonizing either Na(+)/K(+) ATPase using ouabain or inward rectifying potassium channels using barium chloride, could restore the SNAP-induced vasodilatation by up to ∼53.9% and 30.6%, respectively, and also restore the ADO-induced vasodilatations by up to ∼107% and 76.7%, respectively. Our data show that vasodilators relevant to muscle contraction can interact in a way that alters the effectiveness of other vasodilators. These data suggest that active hyperaemia may be the result of complex interactions between multiple vasodilators via a redundant control paradigm.
Collapse
Affiliation(s)
- Iain R Lamb
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Murrant CL, Sarelius IH. Local control of blood flow during active hyperaemia: what kinds of integration are important? J Physiol 2015; 593:4699-711. [PMID: 26314391 DOI: 10.1113/jp270205] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023] Open
Abstract
The focus of this review is on local mechanisms modifying arteriolar resistance to match blood flow to metabolism. In skeletal muscle many local mediators are known, including K(+) , nitric oxide (NO), purines and prostaglandins. Each accounts for about 30% of the response; it is widely held that these act redundantly: this concept awaits systematic testing. Understanding signal integration also requires consideration of microvascular network morphology in relation to local communication pathways between endothelial and smooth muscle cells (which are critical for many local responses, including dilatation to skeletal muscle contraction) and in relation to the spread of vasodilator signals up- and downstream throughout the network. Mechanisms mediating the spread of dilatation from local to remote sites have been well studied using acetylcholine (ACh), but remote dilatations to contraction of skeletal muscle fibres also occur. Importantly, these mechanisms clearly differ from those initiated by ACh, but much remains undefined. Furthermore, capillaries contribute to metabolic dilatation as they dilate arterioles directly upstream in response to vasoactive agents or contraction of adjacent muscle fibres. Given the dispersed arrangement of motor units, precise matching of flow to metabolism is not attainable unless signals are initiated only by 'active' capillaries. As motor units are recruited, signals that direct blood flow towards these active fibres will eventually be supported by local and spreading responses in the arterioles associated with those fibres. Thus, mechanisms of integration of vasodilator signalling across elements of the microvasculature remain an important area of focus for new studies.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Ingrid H Sarelius
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
10
|
Poitras VJ, Bentley RF, Hopkins-Rosseel DH, LaHaye SA, Tschakovsky ME. Independent effect of type 2 diabetes beyond characteristic comorbidities and medications on immediate but not continued knee extensor exercise hyperemia. J Appl Physiol (1985) 2015; 119:202-12. [PMID: 26048976 DOI: 10.1152/japplphysiol.00758.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 06/01/2015] [Indexed: 01/23/2023] Open
Abstract
We tested the hypothesis that type 2 diabetes (T2D), when present in the characteristic constellation of comorbidities (obesity, hypertension, dyslipidemia) and medications, slows the dynamic adjustment of exercising muscle perfusion and blunts the steady state relative to that of controls matched for age, body mass index, fitness, comorbidities, and non-T2D medications. Thirteen persons with T2D and 11 who served as controls performed rhythmic single-leg isometric quadriceps exercise (rest-to-6 kg and 6-to-12 kg transitions, 5 min at each intensity). Measurements included leg blood flow (LBF, femoral artery ultrasound), mean arterial pressure (MAP, finger photoplethysmography), and leg vascular conductance (LVK, calculated). Dynamics were quantified using mean response time (MRT). Measures of amplitude were also used to compare response adjustment: the change from baseline to 1) the peak initial response (greatest 1-s average in the first 10 s; ΔLBFPIR, ΔLVKPIR) and 2) the on-transient (average from curve fit at 15, 45, and 75 s; ΔLBFON, ΔLVKON). ΔLBFPIR was significantly blunted in T2D vs. control individuals (P = 0.037); this was due to a tendency for reduced ΔLVKPIR (P = 0.063). In contrast, the overall response speed was not different between groups (MRT P = 0.856, ΔLBFON P = 0.150) nor was the change from baseline to steady state (P = 0.204). ΔLBFPIR, ΔLBFON, and LBF MRT did not differ between rest-to-6 kg and 6-to-12 kg workload transitions (all P > 0.05). Despite a transient amplitude impairment at the onset of exercise, there is no robust or consistent effect of T2D on top of the comorbidities and medications typical of this population on the overall dynamic adjustment of LBF, or the steady-state levels achieved during low- or moderate-intensity exercise.
Collapse
Affiliation(s)
- Veronica J Poitras
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Robert F Bentley
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Diana H Hopkins-Rosseel
- Cardiac Rehabilitation Centre, Hotel Dieu Hospital, Kingston, Ontario, Canada; and School of Rehabilitation Therapy, Queen's University, Kingston, Ontario, Canada
| | - Stephen A LaHaye
- Cardiac Rehabilitation Centre, Hotel Dieu Hospital, Kingston, Ontario, Canada; and
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada;
| |
Collapse
|
11
|
Calbet JAL, Boushel R, Robach P, Hellsten Y, Saltin B, Lundby C. Chronic hypoxia increases arterial blood pressure and reduces adenosine and ATP induced vasodilatation in skeletal muscle in healthy humans. Acta Physiol (Oxf) 2014; 211:574-84. [PMID: 24920313 DOI: 10.1111/apha.12325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/10/2014] [Accepted: 06/05/2014] [Indexed: 01/11/2023]
Abstract
AIMS To determine the role played by adenosine, ATP and chemoreflex activation on the regulation of vascular conductance in chronic hypoxia. METHODS The vascular conductance response to low and high doses of adenosine and ATP was assessed in ten healthy men. Vasodilators were infused into the femoral artery at sea level and then after 8-12 days of residence at 4559 m above sea level. At sea level, the infusions were carried out while the subjects breathed room air, acute hypoxia (FI O2 = 0.11) and hyperoxia (FI O2 = 1); and at altitude (FI O2 = 0.21 and 1). Skeletal muscle P2Y2 receptor protein expression was determined in muscle biopsies after 4 weeks at 3454 m by Western blot. RESULTS At altitude, mean arterial blood pressure was 13% higher (91 ± 2 vs. 102 ± 3 mmHg, P < 0.05) than at sea level and was unaltered by hyperoxic breathing. Baseline leg vascular conductance was 25% lower at altitude than at sea level (P < 0.05). At altitude, the high doses of adenosine and ATP reduced mean arterial blood pressure by 9-12%, independently of FI O2 . The change in vascular conductance in response to ATP was lower at altitude than at sea level by 24 and 38%, during the low and high ATP doses respectively (P < 0.05), and by 22% during the infusion with high adenosine doses. Hyperoxic breathing did not modify the response to vasodilators at sea level or at altitude. P2Y2 receptor expression remained unchanged with altitude residence. CONCLUSIONS Short-term residence at altitude increases arterial blood pressure and reduces the vasodilatory responses to adenosine and ATP.
Collapse
Affiliation(s)
- J. A. L. Calbet
- Copenhagen Muscle Research Center; Rigshospitalet; Copenhagen Denmark
- Department of Physical Education; University of Las Palmas de Gran Canaria; Canary Islands Spain
- Research Institute of Biomedical and Health Sciences (IUIBS); Las Palmas de Gran Canaria; Canary Islands Spain
| | - R. Boushel
- Copenhagen Muscle Research Center; Rigshospitalet; Copenhagen Denmark
- Åstrand Laboratory; The Swedish School of Sport and Health Sciences; Stockholm Sweden
| | - P. Robach
- Ecole Nationale de Ski et D'Alpinisme; Chamonix France
| | - Y. Hellsten
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - B. Saltin
- Copenhagen Muscle Research Center; Rigshospitalet; Copenhagen Denmark
| | - C. Lundby
- Copenhagen Muscle Research Center; Rigshospitalet; Copenhagen Denmark
- Center for Integrative Human Physiology; Institute of Physiology; University of Zurich; Zurich Switzerland
- Food & Nutrition & Sport Science; Gothenburg University; Gothenburg Sweden
| |
Collapse
|
12
|
Novielli NM, Jackson DN. Contraction-evoked vasodilation and functional hyperaemia are compromised in branching skeletal muscle arterioles of young pre-diabetic mice. Acta Physiol (Oxf) 2014; 211:371-84. [PMID: 24703586 DOI: 10.1111/apha.12297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/14/2013] [Accepted: 03/28/2014] [Indexed: 12/25/2022]
Abstract
AIM To investigate the effects of pre-diabetes on microvascular network function in contracting skeletal muscle. We hypothesized that pre-diabetes compromises contraction-evoked vasodilation of branching second-order (2A), third-order (3A) and fourth-order (4A) arterioles, where distal arterioles would be affected the greatest. METHODS Intravital video microscopy was used to measure arteriolar diameter (in 2A, 3A and 4A) and blood flow (in 2A and 3A) changes to electrical field stimulation of the gluteus maximus muscle in pre-diabetic (The Pound Mouse, PD) and control (c57bl6, CTRL) mice. RESULTS Baseline diameter and blood flow were similar between groups (2A: ~20 μm, 3A: ~14 μm and 4A: ~8 μm; 2A: ~1 nL s(-1) and 3A: ~0.5 nL s(-1) ). Single tetanic contraction (100 Hz; 200, 400, 800 ms duration) evoked rapid-onset vasodilation (ROV) and blood flow responses that were blunted by ~50% and up to 81%, respectively, in PD vs. CTRL (P < 0.05). The magnitude of ROV was up to 2-fold greater at distal arterioles (3A and 4A) vs. proximal arterioles (2A) in CTRL; however, in PD, ROV of only 4A was greater than 2A (P < 0.05). Rhythmic contraction (2 and 8 Hz, 30 s) evoked vasodilatory and blood flow responses that were also attenuated by ~50% and up to 71%, respectively, in PD vs. CTRL (P < 0.05). The magnitude of vasodilatory responses to rhythmic contraction was also up to 2.5-fold greater at 4A vs. 2A in CTRL; however spatial differences in vasodilation across arteriolar branch orders was disrupted in PD. CONCLUSIONS Arteriolar dysregulation in pre-diabetes causes deficits in contraction-evoked dilation and blood flow, where greatest deficits occur at distal arterioles.
Collapse
Affiliation(s)
- N. M. Novielli
- Department of Medical Biophysics; Western University; London ON Canada
| | - D. N. Jackson
- Department of Medical Biophysics; Western University; London ON Canada
- Biomedical Engineering Graduate Program; Western University; London ON Canada
| |
Collapse
|
13
|
Maimon N, Titus PA, Sarelius IH. Pre-exposure to adenosine, acting via A(2A) receptors on endothelial cells, alters the protein kinase A dependence of adenosine-induced dilation in skeletal muscle resistance arterioles. J Physiol 2014; 592:2575-90. [PMID: 24687580 DOI: 10.1113/jphysiol.2013.265835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine (ADO) is an endogenous vasodilatory purine widely recognized to be a significant contributor to functional hyperaemia. Despite this, many aspects of the mechanisms by which ADO induces dilation in small resistance arterioles are not established, or appear contradictory. These include: identification of the primary receptor subtype; its location on endothelial (EC) or vascular smooth muscle cells; whether ADO acts on KATP channels in these resistance vessels; and the contribution of cAMP/protein kinase A (PKA) signalling to the response. In intravital microscopy studies of intact or EC-denuded skeletal muscle arterioles, we show that ADO acts via A2A receptors located on ECs to produce vasodilation via activation of KATP channels located on vascular smooth muscle cells. Importantly, we found that the signalling pathway involves cAMP as expected, but that a requirement for PKA activation is demonstrable only if the vessel is not pre-exposed to ADO. That is, PKA-dependent signalling varies with pre-exposure to ADO. Further, we show that PKA activation alone is not sufficient to dilate these arterioles; an additional EC calcium-dependent signalling mechanism is required for vasodilation to ADO. The ability of arterioles in situ to respond to occupancy of a specific receptor by utilizing different cell signalling pathways under different conditions to produce the same response allows the arteriole to respond to key homeostatic requirements using more than a single signalling mechanism. Clearly, this is likely to be physiologically advantageous, but the role for this signalling flexibility in the integrated arteriolar response that underlies functional hyperaemia will require further exploration.
Collapse
Affiliation(s)
- Nir Maimon
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Patricia A Titus
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Ingrid H Sarelius
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
14
|
Crecelius AR, Kirby BS, Luckasen GJ, Larson DG, Dinenno FA. Mechanisms of rapid vasodilation after a brief contraction in human skeletal muscle. Am J Physiol Heart Circ Physiol 2013; 305:H29-40. [PMID: 23645465 DOI: 10.1152/ajpheart.00298.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A monophasic increase in skeletal muscle blood flow is observed after a brief single forearm contraction in humans, yet the underlying vascular signaling pathways remain largely undetermined. Evidence from experimental animals indicates an obligatory role of vasodilation via K⁺-mediated smooth muscle hyperpolarization, and human data suggest little to no independent role for nitric oxide (NO) or vasodilating prostaglandins (PGs). We tested the hypothesis that K⁺-mediated vascular hyperpolarization underlies the rapid vasodilation in humans and that combined inhibition of NO and PGs would have a minimal effect on this response. We measured forearm blood flow (Doppler ultrasound) and calculated vascular conductance 10 s before and for 30 s after a single 1-s dynamic forearm contraction at 10%, 20%, and 40% maximum voluntary contraction in 16 young adults. To inhibit K⁺-mediated vasodilation, BaCl₂ and ouabain were infused intra-arterially to inhibit inwardly rectifying K⁺ channels and Na⁺-K⁺-ATPase, respectively. Combined enzymatic inhibition of NO and PG synthesis occurred via NG-monomethyl-L-arginine (L-NMMA; NO synthase) and ketorolac (cyclooxygenase), respectively. In protocol 1 (n = 8), BaCl₂ + ouabain reduced peak vasodilation (range: 30-45%, P < 0.05) and total postcontraction vasodilation (area under the curve, ~55-75% from control) at all intensities. Contrary to our hypothesis, L-NMMA + ketorolac had a further impact (peak: ~60% and area under the curve: ~80% from control). In protocol 2 (n = 8), the order of inhibitors was reversed, and the findings were remarkably similar. We conclude that K⁺-mediated hyperpolarization and NO and PGs, in combination, significantly contribute to contraction-induced rapid vasodilation and that inhibition of these signaling pathways nearly abolishes this phenomenon in humans.
Collapse
Affiliation(s)
- Anne R Crecelius
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
15
|
Willcox JM, Summerlee AJS, Murrant CL. Relaxin induces rapid, transient vasodilation in the microcirculation of hamster skeletal muscle. J Endocrinol 2013; 218:179-91. [PMID: 23720398 DOI: 10.1530/joe-13-0115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Relaxin produces a sustained decrease in total peripheral resistance, but the effects of relaxin on skeletal muscle arterioles, an important contributor to systemic resistance, are unknown. Using the intact, blood-perfused hamster cremaster muscle preparation in situ, we tested the effects of relaxin on skeletal muscle arteriolar microvasculature by applying 10(-10) M relaxin to second-, third- and fourth-order arterioles and capillaries. The mechanisms responsible for relaxin-induced dilations were explored by applying 10(-10) M relaxin to second-order arterioles in the presence of 10(-5) M N(G)-nitro-l-arginine methyl ester (l-NAME, nitric oxide (NO) synthase inhibitor), 10(-5) M glibenclamide (GLIB, ATP-dependent potassium (K(+)) channel inhibitor), 10(-3) M tetraethylammonium (TEA) or 10(-7) M iberiotoxin (IBTX, calcium-associated K(+) channel inhibitor). Relaxin caused second- (peak change in diameter: 8.3 ± 1.7 μm) and third (4.5 ± 1.1 μm)-order arterioles to vasodilate transiently while fourth-order arterioles did not (0.01 ± 0.04 μm). Relaxin-induced vasodilations were significantly inhibited by l-NAME, GLIB, TEA and IBTX. Relaxin stimulated capillaries to induce a vasodilation in upstream fourth-order arterioles (2.1 ± 0.3 μm), indicating that relaxin can induce conducted responses vasodilation that travels through blood vessel walls via gap junctions. We confirmed gap junction involvement by showing that gap junction uncouplers (18-β-glycyrrhetinic acid (40 × 10(-6) M) or 0.07% halothane) inhibited upstream vasodilations to localised relaxin stimulation of second-order arterioles. Therefore, relaxin produces transient NO- and K(+) channel-dependent vasodilations in skeletal muscle arterioles and stimulates capillaries to initiate conducted responses. The transient nature of the arteriolar dilation brings into question the role of skeletal muscle vascular beds in generating the sustained systemic haemodynamic effects induced by relaxin.
Collapse
Affiliation(s)
- Jordan M Willcox
- Department of Biomedical Sciences Human Health, University of Guelph, ANNU Bldg, Room 350, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|