1
|
Gu S, Huang Q, Jie Y, Sun C, Wen C, Yang N. Transcriptomic and epigenomic landscapes of muscle growth during the postnatal period of broilers. J Anim Sci Biotechnol 2024; 15:91. [PMID: 38961455 PMCID: PMC11223452 DOI: 10.1186/s40104-024-01049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/12/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Broilers stand out as one of the fastest-growing livestock globally, making a substantial contribution to animal meat production. However, the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear. This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers. We measured the growth performance of Cornish (CC) and White Plymouth Rock (RR) over a 42-d period. Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching (D21) and D42 for RNA-seq and ATAC-seq library construction. RESULTS The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured, with CC outpacing RR in terms of weight at each stage of development. Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages, respectively. A total of 75,149 ATAC-seq peaks were annotated in promoter, exon, intron and intergenic regions, with a higher number of peaks in the promoter and intronic regions. The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis. The results spotlighted the upregulation of ACTC1 and FDPS at D21, which were primarily associated with muscle structure development by gene cluster enrichment. Additionally, a noteworthy upregulation of MUSTN1, FOS and TGFB3 was spotted in broiler chickens at D42, which were involved in cell differentiation and muscle regeneration after injury, suggesting a regulatory role of muscle growth and repair. CONCLUSIONS This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration. Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration. These findings provide a foundation for future research to investigate the functional aspects of muscle development.
Collapse
Affiliation(s)
- Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
| | - Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
| | - Yuchen Jie
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Hainan, 572025, China.
| |
Collapse
|
2
|
Kim CJ, Hadjiargyrou M. Mustn1 in Skeletal Muscle: A Novel Regulator? Genes (Basel) 2024; 15:829. [PMID: 39062608 PMCID: PMC11276411 DOI: 10.3390/genes15070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Skeletal muscle is a complex organ essential for locomotion, posture, and metabolic health. This review explores our current knowledge of Mustn1, particularly in the development and function of skeletal muscle. Mustn1 expression originates from Pax7-positive satellite cells in skeletal muscle, peaks during around the third postnatal month, and is crucial for muscle fiber differentiation, fusion, growth, and regeneration. Clinically, Mustn1 expression is potentially linked to muscle-wasting conditions such as muscular dystrophies. Studies have illustrated that Mustn1 responds dynamically to injury and exercise. Notably, ablation of Mustn1 in skeletal muscle affects a broad spectrum of physiological aspects, including glucose metabolism, grip strength, gait, peak contractile strength, and myofiber composition. This review summarizes our current knowledge of Mustn1's role in skeletal muscle and proposes future research directions, with a goal of elucidating the molecular function of this regulatory gene.
Collapse
Affiliation(s)
- Charles J. Kim
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Michael Hadjiargyrou
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
3
|
Ducommun S, Jannig PR, Cervenka I, Murgia M, Mittenbühler MJ, Chernogubova E, Dias JM, Jude B, Correia JC, Van Vranken JG, Ocana-Santero G, Porsmyr-Palmertz M, McCann Haworth S, Martínez-Redondo V, Liu Z, Carlström M, Mann M, Lanner JT, Teixeira AI, Maegdefessel L, Spiegelman BM, Ruas JL. Mustn1 is a smooth muscle cell-secreted microprotein that modulates skeletal muscle extracellular matrix composition. Mol Metab 2024; 82:101912. [PMID: 38458566 PMCID: PMC10950823 DOI: 10.1016/j.molmet.2024.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE Skeletal muscle plasticity and remodeling are critical for adapting tissue function to use, disuse, and regeneration. The aim of this study was to identify genes and molecular pathways that regulate the transition from atrophy to compensatory hypertrophy or recovery from injury. Here, we have used a mouse model of hindlimb unloading and reloading, which causes skeletal muscle atrophy, and compensatory regeneration and hypertrophy, respectively. METHODS We analyzed mouse skeletal muscle at the transition from hindlimb unloading to reloading for changes in transcriptome and extracellular fluid proteome. We then used qRT-PCR, immunohistochemistry, and bulk and single-cell RNA sequencing data to determine Mustn1 gene and protein expression, including changes in gene expression in mouse and human skeletal muscle with different challenges such as exercise and muscle injury. We generated Mustn1-deficient genetic mouse models and characterized them in vivo and ex vivo with regard to muscle function and whole-body metabolism. We isolated smooth muscle cells and functionally characterized them, and performed transcriptomics and proteomics analysis of skeletal muscle and aorta of Mustn1-deficient mice. RESULTS We show that Mustn1 (Musculoskeletal embryonic nuclear protein 1, also known as Mustang) is highly expressed in skeletal muscle during the early stages of hindlimb reloading. Mustn1 expression is transiently elevated in mouse and human skeletal muscle in response to intense exercise, resistance exercise, or injury. We find that Mustn1 expression is highest in smooth muscle-rich tissues, followed by skeletal muscle fibers. Muscle from heterozygous Mustn1-deficient mice exhibit differences in gene expression related to extracellular matrix and cell adhesion, compared to wild-type littermates. Mustn1-deficient mice have normal muscle and aorta function and whole-body glucose metabolism. We show that Mustn1 is secreted from smooth muscle cells, and that it is present in arterioles of the muscle microvasculature and in muscle extracellular fluid, particularly during the hindlimb reloading phase. Proteomics analysis of muscle from Mustn1-deficient mice confirms differences in extracellular matrix composition, and female mice display higher collagen content after chemically induced muscle injury compared to wild-type littermates. CONCLUSIONS We show that, in addition to its previously reported intracellular localization, Mustn1 is a microprotein secreted from smooth muscle cells into the muscle extracellular space. We explore its role in muscle ECM deposition and remodeling in homeostasis and upon muscle injury. The role of Mustn1 in fibrosis and immune infiltration upon muscle injury and dystrophies remains to be investigated, as does its potential for therapeutic interventions.
Collapse
Affiliation(s)
- Serge Ducommun
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Paulo R Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy; Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Melanie J Mittenbühler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ekaterina Chernogubova
- Department of Medicine, Cardiovascular Unit, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - José M Dias
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden; Nanomedicine and Spatial Biology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Baptiste Jude
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jorge C Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Gabriel Ocana-Santero
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Margareta Porsmyr-Palmertz
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sarah McCann Haworth
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Vicente Martínez-Redondo
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Zhengye Liu
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Johanna T Lanner
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ana I Teixeira
- Nanomedicine and Spatial Biology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine, Cardiovascular Unit, Karolinska Institutet, 171 77 Stockholm, Sweden; Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; German Center for Cardiovascular Research DZHK, Partner Site Munich Heart Alliance, 10785 Berlin, Germany
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Pharmacology and Stanley and Judith Frankel Institute for Heart & Brain Health, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Kim CJ, Singh C, Kaczmarek M, O'Donnell M, Lee C, DiMagno K, Young MW, Letsou W, Ramos RL, Granatosky MC, Hadjiargyrou M. Mustn1 ablation in skeletal muscle results in functional alterations. FASEB Bioadv 2023; 5:541-557. [PMID: 38094159 PMCID: PMC10714068 DOI: 10.1096/fba.2023-00082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/01/2024] Open
Abstract
Mustn1, a gene expressed exclusively in the musculoskeletal system, was shown in previous in vitro studies to be a key regulator of myogenic differentiation and myofusion. Other studies also showed Mustn1 expression associated with skeletal muscle development and hypertrophy. However, its specific role in skeletal muscle function remains unclear. This study sought to investigate the effects of Mustn1 in a conditional knockout (KO) mouse model in Pax7 positive skeletal muscle satellite cells. Specifically, we investigated the potential effects of Mustn1 on myogenic gene expression, grip strength, alterations in gait, ex vivo investigations of isolated skeletal muscle isometric contractions, and potential changes in the composition of muscle fiber types. Results indicate that Mustn1 KO mice did not present any substantial phenotypic changes or significant variations in genes related to myogenic differentiation and fusion. However, an approximately 10% decrease in overall grip strength was observed in the 2-month-old KO mice in comparison to the control wild type (WT), but this decrease was not significant when normalized by weight. KO mice also generated approximately 8% higher vertical force than WT at 4 months in the hindlimb. Ex vivo experiments revealed decreases in about 20 to 50% in skeletal muscle contractions and about 10%-20% fatigue in soleus of both 2- and 4-month-old KO mice, respectively. Lastly, immunofluorescent analyses showed a persistent increase of Type IIb fibers up to 15-fold in the KO mice while Type I fibers decreased about 20% and 30% at both 2 and 4 months, respectively. These findings suggest a potential adaptive or compensatory mechanism following Mustn1 loss, as well as hinting at an association between Mustn1 and muscle fiber typing. Collectively, Mustn1's complex roles in skeletal muscle physiology requires further research, particularly in terms of understanding the potential role of Mustn1 in muscle repair and regeneration, as well as with influence of exercise. Collectively, these will offer valuable insights into Mustn1's key biological functions and regulatory pathways.
Collapse
Affiliation(s)
- Charles J. Kim
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Chanpreet Singh
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Marina Kaczmarek
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Madison O'Donnell
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Christine Lee
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Kevin DiMagno
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Melody W. Young
- Department of Anatomy, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - William Letsou
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Raddy L. Ramos
- Department of Biomedical Sciences, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Michael C. Granatosky
- Department of Anatomy, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
- Center for Biomedical InnovationNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Michael Hadjiargyrou
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| |
Collapse
|
5
|
Cai C, Wan P, Wang H, Cai X, Wang J, Chai Z, Wang J, Wang H, Zhang M, Yang N, Wu Z, Zhu J, Yang X, Li Y, Yue B, Dang R, Zhong J. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing. Cell Prolif 2023; 56:e13430. [PMID: 36855961 PMCID: PMC10472525 DOI: 10.1111/cpr.13430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle is a complex heterogeneous tissue and characterizing its cellular heterogeneity and transcriptional and epigenetic signatures are important for understanding the details of its ontogeny. In our study, we applied scRNA-seq and scATAC-seq to investigate the cell types, molecular features, transcriptional and epigenetic regulation, and patterns of developing bovine skeletal muscle from gestational, lactational and adult stages. Detailed molecular analyses were used to dissect cellular heterogeneity, and we deduced the differentiation trajectory of myogenic cells and uncovered their dynamic gene expression profiles. SCENIC analysis was performed to demonstrate key regulons during cell fate decisions. We explored the future expression states of these heterogeneous cells by RNA velocity analysis and found extensive networks of intercellular communication using the toolkit CellChat. Moreover, the transcriptomic and chromatin accessibility modalities were confirmed to be highly concordant, and integrative analysis of chromatin accessibility and gene expression revealed key transcriptional regulators acting during myogenesis. In bovine skeletal muscle, by scRNA-seq and scATAC-seq analysis, different cell types such as adipocytes, endothelial cells, fibroblasts, lymphocytes, monocytes, pericyte cells and eight skeletal myogenic subpopulations were identified at the three developmental stages. The pseudotime trajectory exhibited a distinct sequential ordering for these myogenic subpopulations and eight distinct gene clusters were observed according to their expression pattern. Moreover, specifically expressed TFs (such as MSC, MYF5, MYOD1, FOXP3, ESRRA, BACH1, SIX2 and ATF4) associated with muscle development were predicted, and likely future transcriptional states of individual cells and the developmental dynamics of differentiation among neighbouring cells were predicted. CellChat analysis on the scRNA-seq data set then classified many ligand-receptor pairs among these cell clusters, which were further categorized into significant signalling pathways, including BMP, IGF, WNT, MSTN, ANGPTL, TGFB, TNF, VEGF and FGF. Finally, scRNA-seq and scATAC-seq results were successfully integrated to reveal a series of specifically expressed TFs that are likely to be candidates for the promotion of cell fate transition during bovine skeletal muscle development. Overall, our results outline a single-cell dynamic chromatin/transcriptional landscape for normal bovine skeletal muscle development; these provide an important resource for understanding the structure and function of mammalian skeletal muscle, which will promote research into its biology.
Collapse
Affiliation(s)
- Cuicui Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Guyuan BranchNingxia Academy of Agriculture and Forestry SciencesGuyuanChina
| | - Peng Wan
- Guyuan BranchNingxia Academy of Agriculture and Forestry SciencesGuyuanChina
| | - Hui Wang
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Xin Cai
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Jiabo Wang
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Zhixin Chai
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Jikun Wang
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Haibo Wang
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Ming Zhang
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Nan Yang
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Zhijuan Wu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Xueyao Yang
- Guyuan BranchNingxia Academy of Agriculture and Forestry SciencesGuyuanChina
| | - Yulian Li
- Guyuan BranchNingxia Academy of Agriculture and Forestry SciencesGuyuanChina
| | - Binglin Yue
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Jincheng Zhong
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of EducationSouthwest Minzu UniversityChengduChina
| |
Collapse
|
6
|
Kim CJ, Singh C, Lee C, DiMagno K, O'Donnell M, Kaczmarek M, Ahmed A, Salvo‐Schaich J, Perez A, Letsou W, Sepulveda MC, Ramos RL, Hadjiargyrou M. Mustn1 ablation in skeletal muscle results in increased glucose tolerance concomitant with upregulated GLUT expression in male mice. Physiol Rep 2023; 11:e15674. [PMID: 37170065 PMCID: PMC10175242 DOI: 10.14814/phy2.15674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023] Open
Abstract
Glucose homeostasis is closely regulated to maintain energy requirements of vital organs and skeletal muscle plays a crucial role in this process. Mustn1 is expressed during embryonic and postnatal skeletal muscle development and its function has been implicated in myogenic differentiation and myofusion. Whether Mustn1 plays a role in glucose homeostasis in anyway remains largely unknown. As such, we deleted Mustn1 in skeletal muscle using a conditional knockout (KO) mouse approach. KO mice did not reveal any specific gross phenotypic alterations in skeletal muscle. However, intraperitoneal glucose tolerance testing (IPGTT) revealed that 2-month-old male KO mice had significantly lower glycemia than their littermate wild type (WT) controls. These findings coincided with mRNA changes in genes known to be involved in glucose metabolism, tolerance, and insulin sensitivity; 2-month-old male KO mice had significantly higher expression of GLUT1 and GLUT10 transporters, MUP-1 while OSTN expression was lower. These differences in glycemia and gene expression were statistically insignificant after 4 months. Identical experiments in female KO and WT control mice did not indicate any differences at any age. Our results suggest a link between Mustn1 expression and glucose homeostasis during a restricted period of skeletal muscle development/maturation. While this is an observational study, Mustn1's relationship to glucose homeostasis appears to be more complex with a possible connection to other key proteins such as GLUTs, MUP-1, and OSTN. Additionally, our data indicate temporal and sex differences. Lastly, our findings strengthen the notion that Mustn1 plays a role in the metabolic capacity of skeletal muscle.
Collapse
Affiliation(s)
- Charles J. Kim
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Chanpreet Singh
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Christine Lee
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Kevin DiMagno
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Madison O'Donnell
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Marina Kaczmarek
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Arhum Ahmed
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Jessica Salvo‐Schaich
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Alexis Perez
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - William Letsou
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| | | | - Raddy L. Ramos
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Michael Hadjiargyrou
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| |
Collapse
|
7
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
8
|
Hu Z, Xu H, Lu Y, He Q, Yan C, Zhao X, Tian Y, Yang C, Zhang Z, Qiu M, Wang Y. MUSTN1 is an indispensable factor in the proliferation, differentiation and apoptosis of skeletal muscle satellite cells in chicken. Exp Cell Res 2021; 407:112833. [PMID: 34536390 DOI: 10.1016/j.yexcr.2021.112833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
The yield and quality of the skeletal muscle are important economic traits in livestock and poultry production. The musculoskeletal embryonic nuclear protein 1 (MUSTN1) gene has been shown to be associated with embryonic development, postnatal growth, bone and skeletal muscle regeneration; however, its function in the skeletal muscle development of chicken remains unclear. Therefore, in this study, we observed that the expression level of MUSTN1 increased in conjunction with the proliferation of chicken skeletal muscle satellite cells (SMSCs). Knockdown of MUSTN1 in SMSCs downregulated the expression of cell proliferation genes as Pax7, CDK-2 and differentiation-relate genes including MyoD, MyoG, MyHC and MyH1B, whereas it upregulates the expression of cell apoptosis gene (Caspase-3) (P < 0.05). However, the combined analysis of CCK-8 and EdU showed that the cell vitality and EdU-positive cells of the si-MUSTN1 transfected group were significantly lower than those of the negative siRNA group (P < 0.05). In addition, the knockdown of MUSTN1 significantly increased the cell population in the G0/G1 phase and significantly decreased the cell population in the G2/M phase (P < 0.05), whereas the overexpression of MUSTN1 showed opposite effect. Taken together, our findings indicates that MUSTN1 is an important molecular factor that is responsible for regulating muscle growth and development in chickens, particularly, proliferation and differentiation of SMSCs.
Collapse
Affiliation(s)
- Zhi Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Yuxiang Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Qijian He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Chaoyang Yan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Zengrong Zhang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China.
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China.
| |
Collapse
|
9
|
Wang Z, Liang W, Li X, Zhang Y, Xu Q, Chen G, Zhang H, Chang G. Characterization and expression of MUSTN1 gene from different duck breeds. Anim Biotechnol 2020; 33:723-730. [DOI: 10.1080/10495398.2020.1828905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | - Wenshuang Liang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | - Xiangxiang Li
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
10
|
Yanay N, Elbaz M, Konikov-Rozenman J, Elgavish S, Nevo Y, Fellig Y, Rabie M, Mitrani-Rosenbaum S, Nevo Y. Pax7, Pax3 and Mamstr genes are involved in skeletal muscle impaired regeneration of dy2J/dy2J mouse model of Lama2-CMD. Hum Mol Genet 2020; 28:3369-3390. [PMID: 31348492 DOI: 10.1093/hmg/ddz180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Congenital muscular dystrophy type-1A (Lama2-CMD) and Duchenne muscular dystrophy (DMD) result from deficiencies of laminin-α2 and dystrophin proteins, respectively. Although both proteins strengthen the sarcolemma, they are implicated in clinically distinct phenotypes. We used RNA-deep sequencing (RNA-Seq) of dy2J/dy2J, Lama2-CMD mouse model, skeletal muscle at 8 weeks of age to elucidate disease pathophysiology. This study is the first report of dy2J/dy2J model whole transcriptome profile. RNA-Seq of the mdx mouse model of DMD and wild-type (WT) mouse was carried as well in order to enable a novel comparison of dy2J/dy2J to mdx. A large group of shared differentially expressed genes (DEGs) was found in dy2J/dy2J and mdx models (1834 common DEGs, false discovery rate [FDR] < 0.05). Enrichment pathway analysis using ingenuity pathway analysis showed enrichment of inflammation, fibrosis, cellular movement, migration and proliferation of cells, apoptosis and necrosis in both mouse models (P-values 3E-10-9E-37). Via canonical pathway analysis, actin cytoskeleton, integrin, integrin-linked kinase, NF-kB, renin-angiotensin, epithelial-mesenchymal transition, and calcium signaling were also enriched and upregulated in both models (FDR < 0.05). Interestingly, significant downregulation of Pax7 was detected in dy2J/dy2J compared to upregulation of this key regeneration gene in mdx mice. Pax3 and Mamstr genes were also downregulated in dy2J/dy2J compared to WT mice. These results may explain the distinct disease course and severity in these models. While the mdx model at that stage shows massive regeneration, the dy2J/dy2J shows progressive dystrophic process. Our data deepen our understanding of the molecular pathophysiology and suggest new targets for additional therapies to upregulate regeneration in Lama2-CMD.
Collapse
Affiliation(s)
- Nurit Yanay
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Moran Elbaz
- Pediatric Neuromuscular Laboratory, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jenya Konikov-Rozenman
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Sharona Elgavish
- Info-CORE, I-CORE Bioinformatics Unit, The Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, I-CORE Bioinformatics Unit, The Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Malcolm Rabie
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yoram Nevo
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Neurology, Schneider Children's Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
11
|
Cai Q, Wu G, Zhu M, Ge H, Xue C, Zhang Q, Cheng B, Xu S, Wu P. FGF6 enhances muscle regeneration after nerve injury by relying on ERK1/2 mechanism. Life Sci 2020; 248:117465. [PMID: 32105707 DOI: 10.1016/j.lfs.2020.117465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Severe peripheral nerve injury leads to skeletal muscle atrophy and impaired limb function that is not sufficiently improved by existing treatments. Fibroblast growth factor 6 (FGF6) is involved in tissue regeneration and is dysregulated in denervated rat muscles. However, the way that FGF6 affects skeletal muscle repair after peripheral nerve injury has not been fully elucidated. METHODS In this study, we investigated the role of FGF6 in the regeneration of denervated muscles using myoblast cells and an in vivo model of peripheral nerve injury. RESULTS FGF6 promoted the viability and migration of C2C12 and primary myoblasts in a dose-dependent manner through FGFR1-mediated upregulation of cyclin D1. Low concentrations of FGF6 promoted myoblast differentiation through FGFR4-mediated activation of ERK1/2, which upregulated expression of MyHC, MyoD, and myogenin. FGFR-1, FGFR4, MyoD, and myogenin were not upregulated when FGF6 expression was inhibited in myoblasts by shRNA-mediated knockdown. Injection of FGF6 into denervated rat muscles enhanced the MyHC-IIb muscle fiber phenotype and prevented muscular atrophy. CONCLUSION These findings indicate that FGF6 reduces skeletal muscle atrophy by relying on the ERK1/2 mechanism and enhances the conversion of slow muscle to fast muscle fibers, thereby promoting functional recovery of regenerated skeletal muscle after innervation.
Collapse
Affiliation(s)
- Qiuchen Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Genbin Wu
- Department of Joint Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Min Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Heng''an Ge
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Chao Xue
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Qing''gang Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Biao Cheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Sudan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
12
|
Huang H, Scheffler TL, Gerrard DE, Larsen MR, Lametsch R. Quantitative Proteomics and Phosphoproteomics Analysis Revealed Different Regulatory Mechanisms of Halothane and Rendement Napole Genes in Porcine Muscle Metabolism. J Proteome Res 2018; 17:2834-2849. [PMID: 29916714 DOI: 10.1021/acs.jproteome.8b00294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pigs with the Halothane (HAL) or Rendement Napole (RN) gene mutations demonstrate abnormal muscle energy metabolism patterns and produce meat with poor quality, classified as pale, soft, and exudative (PSE) meat, but it is not well understood how HAL and RN mutations regulate glucose and energy metabolism in porcine muscle. To investigate the potential signaling pathways and phosphorylation events related to these mutations, muscle samples were collected from four genotypes of pigs, wild type, RN, HAL, and RN-HAL double mutations, and subjected to quantitative proteomic and phosphoproteomic analysis using the TiO2 enrichment strategy. The study led to the identification of 932 proteins from the nonmodified peptide fractions and 1885 phosphoproteins with 9619 phosphorylation sites from the enriched fractions. Among them, 128 proteins at total protein level and 323 phosphosites from 91 phosphoproteins were significantly regulated in mutant genotypes. The quantitative analysis revealed that the RN mutation mainly affected the protein expression abundance in muscle. Specifically, high expression was observed for proteins related to mitochondrial respiratory chain and energy metabolism, thereby enhancing the muscle oxidative capacity. The high content of UDP-glucose pyrophosphorylase 2 (UGP2) in RN mutant animals may contribute to high glycogen storage. However, the HAL mutation mainly contributes to the up-regulation of phosphorylation in proteins related to calcium signaling, muscle contraction, glycogen, glucose, and energy metabolism, and cellular stress. The increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CAMK2) in HAL mutation may act as a key regulator in these processes of muscle. Our findings indicate the different regulatory mechanisms of RN and HAL mutations in relation to porcine muscle energy metabolism and meat quality.
Collapse
Affiliation(s)
- Honggang Huang
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark.,Department of Food Science, Faculty of Science , University of Copenhagen , DK-1958 Frederiksberg , Denmark.,The Danish Diabetes Academy , 5000 Odense , Denmark.,Arla Foods Ingredients Group P/S , Soenderupvej 26 , 6920 Videbaek , Denmark
| | - Tracy L Scheffler
- Department of Animal Sciences , University of Florida , Gainesville , Florida 32608 , United States
| | - David E Gerrard
- Department of Animal and Poultry Sciences , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - René Lametsch
- Department of Food Science, Faculty of Science , University of Copenhagen , DK-1958 Frederiksberg , Denmark
| |
Collapse
|
13
|
Hadjiargyrou M. Mustn1: A Developmentally Regulated Pan-Musculoskeletal Cell Marker and Regulatory Gene. Int J Mol Sci 2018; 19:ijms19010206. [PMID: 29329193 PMCID: PMC5796155 DOI: 10.3390/ijms19010206] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/26/2017] [Accepted: 01/06/2018] [Indexed: 02/07/2023] Open
Abstract
The Mustn1 gene encodes a small nuclear protein (~9.6 kDa) that does not belong to any known family. Its genomic organization consists of three exons interspersed by two introns and it is highly homologous across vertebrate species. Promoter analyses revealed that its expression is regulated by the AP family of transcription factors, especially c-Fos, Fra-2 and JunD. Mustn1 is predominantly expressed in the major tissues of the musculoskeletal system: bone, cartilage, skeletal muscle and tendon. Its expression has been associated with normal embryonic development, postnatal growth, exercise, and regeneration of bone and skeletal muscle. Moreover, its expression has also been detected in various musculoskeletal pathologies, including arthritis, Duchenne muscular dystrophy, other skeletal muscle myopathies, clubfoot and diabetes associated muscle pathology. In vitro and in vivo functional perturbation revealed that Mustn1 is a key regulatory molecule in myogenic and chondrogenic lineages. This comprehensive review summarizes our current knowledge of Mustn1 and proposes that it is a new developmentally regulated pan-musculoskeletal marker as well as a key regulatory protein for cell differentiation and tissue growth.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| |
Collapse
|
14
|
Suarez-Bregua P, Chien CJ, Megias M, Du S, Rotllant J. Promoter architecture and transcriptional regulation of musculoskeletal embryonic nuclear protein 1b (mustn1b) gene in zebrafish. Dev Dyn 2017; 246:992-1000. [PMID: 28891223 DOI: 10.1002/dvdy.24591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/09/2017] [Accepted: 09/06/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Mustn1 is a specific musculoskeletal protein that plays a critical role in myogenesis and chondrogenesis in vertebrates. Whole-mount in situ hybridization revealed that mustn1b mRNAs are specifically expressed in skeletal and cardiac muscles in Zebrafish embryos. However, the precise function and the regulatory elements required for its muscle-specific expression are largely unknown. RESULTS The purpose of this study was to explore and uncover the target genomic regions that regulate mustn1b gene expression by in vivo functional characterization of the mustn1b promoter. We report here stable expression analyses of eGFP from fluorescent transgenic reporter Zebrafish line containing a 0.8kb_mustn1b-Tol2-eGFP construct. eGFP expression was specifically found in the skeletal and cardiac muscle tissues. We show that reporter Zebrafish lines generated replicate the endogenous mustn1b expression pattern in early Zebrafish embryos. Specific site directed-mutagenesis analysis revealed that promoter activity resides in two annotated genomic regulatory regions, each one corresponding to a specific functional transcription factor binding site. CONCLUSIONS Our data indicate that mustn1b is specifically expressed in skeletal and cardiac muscle tissues and its muscle specificity is controlled by the 0.2-kb promoter and flanking sequences and in vivo regulated by the action of two sequence-specific families of transcription factors. Developmental Dynamics 246:992-1000, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Chien-Ju Chien
- Department of Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Manuel Megias
- Department of Functional Biology and Health Science, University of Vigo, Vigo, Spain
| | - Shaojun Du
- Department of Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Josep Rotllant
- Aquatic Molecular Pathobiology Lab, IIM-CSIC, Vigo, Pontevedra, Spain
| |
Collapse
|
15
|
Racimo F, Marnetto D, Huerta-Sánchez E. Signatures of Archaic Adaptive Introgression in Present-Day Human Populations. Mol Biol Evol 2017; 34:296-317. [PMID: 27756828 PMCID: PMC5400396 DOI: 10.1093/molbev/msw216] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Comparisons of DNA from archaic and modern humans show that these groups interbred, and in some cases received an evolutionary advantage from doing so. This process-adaptive introgression-may lead to a faster rate of adaptation than is predicted from models with mutation and selection alone. Within the last couple of years, a series of studies have identified regions of the genome that are likely examples of adaptive introgression. In many cases, once a region was ascertained as being introgressed, commonly used statistics based on both haplotype as well as allele frequency information were employed to test for positive selection. Introgression by itself, however, changes both the haplotype structure and the distribution of allele frequencies, thus confounding traditional tests for detecting positive selection. Therefore, patterns generated by introgression alone may lead to false inferences of positive selection. Here we explore models involving both introgression and positive selection to investigate the behavior of various statistics under adaptive introgression. In particular, we find that the number and allelic frequencies of sites that are uniquely shared between archaic humans and specific present-day populations are particularly useful for detecting adaptive introgression. We then examine the 1000 Genomes dataset to characterize the landscape of uniquely shared archaic alleles in human populations. Finally, we identify regions that were likely subject to adaptive introgression and discuss some of the most promising candidate genes located in these regions.
Collapse
Affiliation(s)
- Fernando Racimo
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Davide Marnetto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | | |
Collapse
|
16
|
Camarata T, Vasilyev A, Hadjiargyrou M. Cloning of zebrafish Mustn1 orthologs and their expression during early development. Gene 2016; 593:235-241. [DOI: 10.1016/j.gene.2016.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
17
|
Umansky KB, Gruenbaum-Cohen Y, Tsoory M, Feldmesser E, Goldenberg D, Brenner O, Groner Y. Runx1 Transcription Factor Is Required for Myoblasts Proliferation during Muscle Regeneration. PLoS Genet 2015; 11:e1005457. [PMID: 26275053 PMCID: PMC4537234 DOI: 10.1371/journal.pgen.1005457] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/21/2015] [Indexed: 01/09/2023] Open
Abstract
Following myonecrosis, muscle satellite cells proliferate, differentiate and fuse, creating new myofibers. The Runx1 transcription factor is not expressed in naïve developing muscle or in adult muscle tissue. However, it is highly expressed in muscles exposed to myopathic damage yet, the role of Runx1 in muscle regeneration is completely unknown. Our study of Runx1 function in the muscle’s response to myonecrosis reveals that this transcription factor is activated and cooperates with the MyoD and AP-1/c-Jun transcription factors to drive the transcription program of muscle regeneration. Mice lacking dystrophin and muscle Runx1 (mdx-/Runx1f/f), exhibit impaired muscle regeneration leading to age-dependent muscle waste, gradual decrease in motor capabilities and a shortened lifespan. Runx1-deficient primary myoblasts are arrested at cell cycle G1 and consequently differentiate. Such premature differentiation disrupts the myoblasts’ normal proliferation/differentiation balance, reduces the number and size of regenerating myofibers and impairs muscle regeneration. Our combined Runx1-dependent gene expression, ChIP-seq, ATAC-seq and histone H3K4me1/H3K27ac modification analyses revealed a subset of Runx1-regulated genes that are co-occupied by MyoD and c-Jun in mdx-/Runx1f/f muscle. The data provide unique insights into the transcriptional program driving muscle regeneration and implicate Runx1 as an important participant in the pathology of muscle wasting diseases. In response to muscle injury, the muscle initiates a repair process that calls for the proliferation of muscle stem cells, which differentiate and fuse to create the myofibers that regenerate the tissue. Maintaining the balance between myoblast proliferation and differentiation is crucial for proper regeneration, with disruption leading to impaired regeneration characteristic of muscle-wasting diseases. Our study highlights the important role the Runx1 transcription factor plays in muscle regeneration and in regulating the balance between muscle stem cell proliferation and differentiation. While not expressed in healthy muscle tissue, Runx1 level significantly increases in response to various types of muscle damage. This aligns with our finding that mice lacking Runx1 in their muscles suffer from impaired muscle regeneration. Their muscles contained a significantly low number of regenerating myofibers, which were also relatively smaller in size, resulting in loss of muscle mass and motor capabilities. Our results indicate that Runx1 regulates muscle regeneration by preventing premature differentiation of proliferating myoblasts, thereby facilitating the buildup of the myoblast pool required for proper regeneration. Through genome-wide gene-expression analysis we identify a set of Runx1-regulated genes responsible for muscle regeneration thereby implicating Runx1 in the pathology of muscle wasting diseases such as Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Kfir Baruch Umansky
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Yael Gruenbaum-Cohen
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Grand Israel National Center for Personalized Medicine (INCPM), The Weizmann Institute of Science, Rehovot, Israel
| | - Dalia Goldenberg
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Yoram Groner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
18
|
Al-Sajee D, Nissar AA, Coleman SK, Rebalka IA, Chiang A, Wathra R, van der Ven PFM, Orfanos Z, Hawke TJ. Xin-deficient mice display myopathy, impaired contractility, attenuated muscle repair and altered satellite cell functionality. Acta Physiol (Oxf) 2015; 214:248-60. [PMID: 25582411 DOI: 10.1111/apha.12455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/20/2014] [Accepted: 01/07/2015] [Indexed: 12/26/2022]
Abstract
AIM Xin is an F-actin-binding protein expressed during development of cardiac and skeletal muscle. We used Xin-/- mice to determine the impact of Xin deficiency on different aspects of skeletal muscle health, including functionality and regeneration. METHODS Xin-/- skeletal muscles and their satellite cell (SC) population were investigated for the presence of myopathic changes by a series of histological and immunofluorescent stains on resting uninjured muscles. To further understand the effect of Xin loss on muscle health and its SCs, we studied SCs responses following cardiotoxin-induced muscle injury. Functional data were determined using in situ muscle stimulation protocol. RESULTS Compared to age-matched wild-type (WT), Xin-/- muscles exhibited generalized myopathy and increased fatigability with a significantly decreased force recovery post-fatiguing contractions. Muscle regeneration was attenuated in Xin-/- mice. This impaired regeneration prompted an investigation into SC content and functionality. Although SC content was not different, significantly more activated SCs were present in Xin-/- vs. WT muscles. Primary Xin-/- myoblasts displayed significant reductions (approx. 50%) in proliferative capacity vs. WT; a finding corroborated by significantly decreased MyoD-positive nuclei in 3 days post-injury Xin-/- muscle vs. WT. As more activated SCs did not translate to more proliferating myoblasts, we investigated whether Xin-/- SCs displayed an exaggerated loss by apoptosis. More apoptotic SCs (TUNEL+/Pax7+) were present in Xin-/- muscle vs. WT. Furthermore, more Xin-/- myoblasts were expressing nuclear caspase-3 compared to WT at 3 days post-injury. CONCLUSION Xin deficiency leads to a myopathic condition characterized by increased muscle fatigability, impaired regeneration and SC dysfunction.
Collapse
Affiliation(s)
- D. Al-Sajee
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - A. A. Nissar
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - S. K. Coleman
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - I. A. Rebalka
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - A. Chiang
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - R. Wathra
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | | | - Z. Orfanos
- Institute for Cell Biology; University of Bonn; Bonn Germany
| | - T. J. Hawke
- Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| |
Collapse
|
19
|
Robriquet F, Lardenois A, Babarit C, Larcher T, Dubreil L, Leroux I, Zuber C, Ledevin M, Deschamps JY, Fromes Y, Cherel Y, Guevel L, Rouger K. Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation. PLoS One 2015; 10:e0123336. [PMID: 25955839 PMCID: PMC4425432 DOI: 10.1371/journal.pone.0123336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. RESULTS In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. CONCLUSIONS Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex molecular/cellular effects associated with muscle repair and the clinical efficacy of MuStem cell-based therapy.
Collapse
Affiliation(s)
- Florence Robriquet
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- Université de Nantes, Nantes, France
| | - Aurélie Lardenois
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Candice Babarit
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Thibaut Larcher
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Laurence Dubreil
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Isabelle Leroux
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Céline Zuber
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Mireille Ledevin
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Jack-Yves Deschamps
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Yves Fromes
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- Laboratoire RMN AIM-CEA, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Yan Cherel
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Laetitia Guevel
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- Université de Nantes, Nantes, France
- * E-mail:
| | - Karl Rouger
- INRA, UMR703 PAnTher, Nantes, France
- LUNAM Université, Oniris, École nationale vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| |
Collapse
|
20
|
Persson PB. Skeletal muscle satellite cells as myogenic progenitors for muscle homoeostasis, growth, regeneration and repair. Acta Physiol (Oxf) 2015; 213:537-8. [PMID: 25565243 DOI: 10.1111/apha.12451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
21
|
Halievski K, Mo K, Westwood JT, Monks DA. Transcriptional profile of muscle following acute induction of symptoms in a mouse model of Kennedy's disease/spinobulbar muscular atrophy. PLoS One 2015; 10:e0118120. [PMID: 25719894 PMCID: PMC4341878 DOI: 10.1371/journal.pone.0118120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/07/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Kennedy's disease/Spinobulbar muscular atrophy (KD/SBMA) is a degenerative neuromuscular disease affecting males. This disease is caused by polyglutamine expansion mutations of the androgen receptor (AR) gene. Although KD/SBMA has been traditionally considered a motor neuron disease, emerging evidence points to a central etiological role of muscle. We previously reported a microarray study of genes differentially expressed in muscle of three genetically unique mouse models of KD/SBMA but were unable to detect those which are androgen-dependent or are associated with onset of symptoms. METHODOLOGY/PRINCIPAL FINDINGS In the current study we examined the time course and androgen-dependence of transcriptional changes in the HSA-AR transgenic (Tg) mouse model, in which females have a severe phenotype after acute testosterone treatment. Using microarray analysis we identified differentially expressed genes at the onset and peak of muscle weakness in testosterone-treated Tg females. We found both transient and persistent groups of differentially expressed genes and analysis of gene function indicated functional groups such as mitochondrion, ion and nucleotide binding, muscle development, and sarcomere maintenance. CONCLUSIONS/SIGNIFICANCE By comparing the current results with those from the three previously reported models we were able to identify KD/SBMA candidate genes that are androgen dependent, and occur early in the disease process, properties which are promising for targeted therapeutics.
Collapse
Affiliation(s)
- Katherine Halievski
- Department of Psychology, University of Toronto Mississauga,
Mississauga, Ontario, Canada
| | - Kaiguo Mo
- Department of Psychology, University of Toronto Mississauga,
Mississauga, Ontario, Canada
| | - J. Timothy Westwood
- Department of Psychology, University of Toronto Mississauga,
Mississauga, Ontario, Canada
| | - Douglas A. Monks
- Department of Psychology, University of Toronto Mississauga,
Mississauga, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Silva MT, Wensing LA, Brum PC, Câmara NO, Miyabara EH. Impaired structural and functional regeneration of skeletal muscles from β2-adrenoceptor knockout mice. Acta Physiol (Oxf) 2014; 211:617-33. [PMID: 24938737 PMCID: PMC4660878 DOI: 10.1111/apha.12329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/09/2013] [Accepted: 06/12/2014] [Indexed: 12/28/2022]
Abstract
Aims β2-adrenergic stimulation causes beneficial effects on structure and function of regenerating muscles; thus, the β2-adrenoceptor may play an important role in the muscle regenerative process. Here, we investigated the role of the β2-adrenoceptor in skeletal muscle regeneration. Methods Tibialis anterior (TA) muscles from β2-adrenoceptor knockout (β2KO) mice were cryolesioned and analysed after 1, 3, 10 and 21 days. The role of β2-adrenoceptor on regenerating muscles was assessed through the analysis of morphological and contractile aspects, M1 and M2 macrophage profile, cAMP content, and activation of TGF-β signalling elements. Results Regenerating muscles from β2KO mice showed decreased calibre of regenerating myofibres and reduced muscle contractile function at 10 days when compared with those from wild type. The increase in cAMP content in muscles at 10 days post-cryolesion was attenuated in the absence of the β2-adrenoceptor. Furthermore, there was an increase in inflammation and in the number of macrophages in regenerating muscles lacking the β2-adrenoceptor at 3 and 10 days, a predominance of M1 macrophage phenotype, a decrease in TβR-I/Smad2/3 activation, and in the Smad4 expression at 3 days, while akirin1 expression increased at 10 days in muscles from β2KO mice when compared to those from wild type. Conclusions Our results suggest that the β2-adrenoceptor contributes to the regulation of the initial phases of muscle regeneration, especially in the control of macrophage recruitment in regenerating muscle through activation of TβR-I/Smad2/3 and reduction in akirin1 expression. These findings have implications for the future development of better therapeutic approaches to prevent or treat muscle injuries.
Collapse
Affiliation(s)
- M. T. Silva
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - L. A. Wensing
- Department of Immunology Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - P. C. Brum
- Department of Biodynamics School of Physical Education and Sport University of Sao Paulo Sao Paulo Brazil
| | - N. O. Câmara
- Department of Immunology Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - E. H. Miyabara
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| |
Collapse
|
23
|
Otis JS, Niccoli S, Hawdon N, Sarvas JL, Frye MA, Chicco AJ, Lees SJ. Pro-inflammatory mediation of myoblast proliferation. PLoS One 2014; 9:e92363. [PMID: 24647690 PMCID: PMC3960233 DOI: 10.1371/journal.pone.0092363] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/20/2014] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle satellite cell function is largely dictated by the surrounding environment following injury. Immune cell infiltration dominates the extracellular space in the injured area, resulting in increased cytokine concentrations. While increased pro-inflammatory cytokine expression has been previously established in the first 3 days following injury, less is known about the time course of cytokine expression and the specific mechanisms of cytokine induced myoblast function. Therefore, the expression of IL-1β and IL-6 at several time points following injury, and their effects on myoblast proliferation, were examined. In order to do this, skeletal muscle was injured using barium chloride in mice and tissue was collected 1, 5, 10, and 28 days following injury. Mechanisms of cytokine induced proliferation were determined in cell culture using both primary and C2C12 myoblasts. It was found that there is a ∼20-fold increase in IL-1β (p≤0.05) and IL-6 (p = 0.06) expression 5 days following injury. IL-1β increased proliferation of both primary and C2C12 cells ∼25%. IL-1β stimulation also resulted in increased NF-κB activity, likely contributing to the increased proliferation. These data demonstrate for the first time that IL-1β alone can increase the mitogenic activity of primary skeletal muscle satellite cells and offer insight into the mechanisms dictating satellite cell function following injury.
Collapse
Affiliation(s)
- Jeffrey S. Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States of America
| | - Sarah Niccoli
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Nicole Hawdon
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Jessica L. Sarvas
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Melinda A. Frye
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Adam J. Chicco
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Simon J. Lees
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
24
|
Wall BT, Dirks ML, Snijders T, Senden JMG, Dolmans J, van Loon LJC. Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol (Oxf) 2014; 210:600-11. [PMID: 24168489 DOI: 10.1111/apha.12190] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/31/2013] [Accepted: 10/24/2013] [Indexed: 11/29/2022]
Abstract
AIM The impact of disuse on the loss of skeletal muscle mass and strength has been well documented. Given that most studies have investigated muscle atrophy after more than 2 weeks of disuse, few data are available on the impact of shorter periods of disuse. We assessed the impact of 5 and 14 days of disuse on skeletal muscle mass, strength and associated intramuscular molecular signalling responses. METHODS Twenty-four healthy, young (23 ± 1 year) males were subjected to either 5 (n = 12) or 14 (n = 12) days of one-legged knee immobilization using a full leg cast. Before and immediately after the immobilization period, quadriceps muscle cross-sectional area (CSA), leg lean mass and muscle strength were assessed, and biopsies were collected from the vastus lateralis. RESULTS Quadriceps muscle CSA declined from baseline by 3.5 ± 0.5 (P < 0.0001) and 8.4 ± 2.8% (P < 0.001), leg lean mass was reduced by 1.4 ± 0.7 (P = 0.07) and 3.1 ± 0.7% (P < 0.01) and strength was decreased by 9.0 ± 2.3 (P < 0.0001) and 22.9 ± 2.6% (P < 0.001) following 5 and 14 days of immobilization respectively. Muscle myostatin mRNA expression doubled following immobilization (P < 0.05) in both groups, while the myostatin precursor isoform protein content decreased after 14 days only (P < 0.05). Muscle MAFBx mRNA expression increased from baseline by a similar magnitude following either 5 or 14 days of disuse, whereas MuRF1 mRNA expression had increased significantly only after 5 days. CONCLUSION We conclude that even short periods of muscle disuse can cause substantial loss of skeletal muscle mass and strength and are accompanied by an early catabolic molecular signalling response.
Collapse
Affiliation(s)
- B. T. Wall
- Department of Human Movement Sciences; NUTRIM School for Nutrition; Toxicology and Metabolism Maastricht University Medical Centre; Maastricht the Netherlands
| | - M. L. Dirks
- Department of Human Movement Sciences; NUTRIM School for Nutrition; Toxicology and Metabolism Maastricht University Medical Centre; Maastricht the Netherlands
| | - T. Snijders
- Department of Human Movement Sciences; NUTRIM School for Nutrition; Toxicology and Metabolism Maastricht University Medical Centre; Maastricht the Netherlands
| | - J. M. G. Senden
- Department of Human Movement Sciences; NUTRIM School for Nutrition; Toxicology and Metabolism Maastricht University Medical Centre; Maastricht the Netherlands
| | - J. Dolmans
- Department of Surgery; Maastricht University Medical Centre; Maastricht the Netherlands
| | - L. J. C. van Loon
- Department of Human Movement Sciences; NUTRIM School for Nutrition; Toxicology and Metabolism Maastricht University Medical Centre; Maastricht the Netherlands
| |
Collapse
|
25
|
Pearen MA, Goode JM, Fitzsimmons RL, Eriksson NA, Thomas GP, Cowin GJ, Wang SCM, Tuong ZK, Muscat GEO. Transgenic muscle-specific Nor-1 expression regulates multiple pathways that effect adiposity, metabolism, and endurance. Mol Endocrinol 2013; 27:1897-917. [PMID: 24065705 DOI: 10.1210/me.2013-1205] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mRNA encoding Nor-1/NR4A3 is rapidly and strikingly induced by β2-adrenergic signaling in glycolytic and oxidative skeletal muscle. In skeletal muscle cells, Nor-1 expression is important for the regulation of oxidative metabolism. Transgenic skeletal muscle-specific expression of activated Nor-1 resulted in the acquisition of an endurance phenotype, an increase in type IIA/X oxidative muscle fibers, and increased numbers of mitochondria. In the current study, we used dual-energy x-ray absorptiometry and magnetic resonance imaging analysis to demonstrate decreased adiposity in transgenic (Tg) Nor-1 mice relative to that in wild-type littermates. Furthermore, the Tg-Nor-1 mice were resistant to diet-induced weight gain and maintained fasting glucose at normoglycemic levels. Expression profiling and RT-quantitative PCR analysis revealed significant increases in genes involved in glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and glycogen synthesis, in concordance with the lean phenotype. Moreover, expression profiling identified several Z-disc and sarcomeric binding proteins that modulate fiber type phenotype and endurance, eg, α-actinin-3. In addition, we demonstrated that the Tg-Nor-1 mouse line has significantly higher glycogen content in skeletal muscle relative to that in wild-type littermates. Finally, we identified a decreased NAD(+)/NADH ratio with a concordant increase in peroxisome proliferator-activated receptor γ coactivator-1α1 protein/mRNA expression. Increased NADH was associated with an induction of the genes involved in the malate-aspartate shuttle and a decrease in the glycerol 3-phosphate shuttle, which maximizes aerobic ATP production. In conclusion, skeletal muscle-specific Nor-1 expression regulates genes and pathways that regulate adiposity, muscle fiber type metabolic capacity, and endurance.
Collapse
Affiliation(s)
- Michael A Pearen
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|