1
|
Ungsudechachai T, Jittikoon J, Honsawek S, Udomsinprasert W. Protective effect of clusterin against interleukin-1β-induced apoptosis and inflammation in human knee osteoarthritis chondrocytes. Clin Transl Sci 2024; 17:e13881. [PMID: 38982592 PMCID: PMC11233271 DOI: 10.1111/cts.13881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
Chondrocyte apoptosis is recognized as one of the pathological features involved in cartilage degeneration driving the onset and progression of knee osteoarthritis (OA). This study aimed to determine the molecular mechanism underlying the effect of clusterin (CLU), anti-apoptotic molecule, in human knee OA chondrocytes. Primary knee OA chondrocytes were isolated from the cartilage of knee OA patients and divided into five groups: (1) the cells treated with interleukin (IL)-1β, (2) CLU alone, (3) a combination of IL-1β and CLU, (4) LY294002 (PI3K inhibitor) along with IL-1β and CLU, and (5) the untreated cells. Production of apoptotic, inflammatory, anabolic, and catabolic mediators in knee OA chondrocytes was determined after treatment for 24 h. Our in vitro study uncovered that CLU significantly suppressed the production of inflammatory mediators [nitric oxide (NO), IL6, and tumor necrosis factor (TNF)-α] and apoptotic molecule (caspase-3, CASP3). CLU significantly upregulated messenger ribonucleic acid (mRNA) expressions of anabolic factors [SRY-box transcription factor-9 (SOX9) and aggrecan (ACAN)], but significantly downregulated mRNA expressions of IL6, nuclear factor kappa-B (NF-κB), CASP3, and matrix metalloproteinase-13 (MMP13). Anti-apoptotic and anti-inflammatory effects of CLU were mediated through activating PI3K/Akt signaling pathway. The findings suggest that CLU might have beneficial effects on knee OA chondrocytes by exerting anti-apoptotic and anti-inflammatory functions via PI3K/Akt pathway, making CLU a promising target for potential therapeutic interventions in knee OA.
Collapse
Affiliation(s)
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of PharmacyMahidol UniversityBangkokThailand
| | - Sittisak Honsawek
- Department of Biochemistry, Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyChulalongkorn UniversityBangkokThailand
| | | |
Collapse
|
2
|
Zhang J, Yu H, Li G. Engineered cell membrane-coated nanoparticles based cancer therapy: A robust weapon against the lethal and challenging hepatocellular carcinoma. Biointerphases 2024; 19:020801. [PMID: 38607255 DOI: 10.1116/6.0003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/05/2024] [Indexed: 04/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has become an important public health problem, and there are still challenges to overcome in clinical treatment. The nanodrug delivery system (NDDS) has developed tremendously in recent years, and many researchers have explored NDDS for the treatment of HCC. Engineered cell membrane-coated nanoparticles (ECNPs) have emerged, combining the unique functions of cell membranes with the engineering versatility of synthetic nanoparticles (NPs) to effectively deliver therapeutic drugs. It is designed to have the capabilities: specific active targeting, immune evasion, prolonging the circulation blood time, controlled drug release delivery, and reducing drugs systematic toxicity. Thus, ECNPs are a promising bionic tool in the treatment of HCC and have operability to achieve combination and integrated therapy. This review focuses on the mechanism and strategy of ECNPs for the treatment of HCC and summarizes its research progress in the treatment of HCC in recent years.
Collapse
Affiliation(s)
- Jiachen Zhang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Hongjuan Yu
- Shanghai Pudong New Area Caolu Community Health Service Center, Shanghai 201209, China
| | - Gang Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Zhao F, Chen Y, Xie Y, Kong S, Song L, Li H, Guo C, Yin Y, Zhang W, Zhu T. Identification of Zip8-correlated hub genes in pulmonary hypertension by informatic analysis. PeerJ 2023; 11:e15939. [PMID: 37663293 PMCID: PMC10470448 DOI: 10.7717/peerj.15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background Pulmonary hypertension (PH) is a syndrome characterized by marked remodeling of the pulmonary vasculature and increased pulmonary vascular resistance, ultimately leading to right heart failure and even death. The localization of Zrt/Irt-like Protein 8 (ZIP8, a metal ion transporter, encoded by SLC39A8) was abundantly in microvasculature endothelium and its pivotal role in the lung has been demonstrated. However, the role of Zip8 in PH remains unclear. Methods Bioinformatics analysis was employed to identify SLC39A8 expression patterns and differentially expressed genes (DEGs) between PH patients and normal controls (NC), based on four datasets (GSE24988, GSE113439, GSE117261, and GSE15197) from the Biotechnology Gene Expression Omnibus (NCBI GEO) database. Gene set enrichment analysis (GSEA) was performed to analyze signaling pathways enriched for DEGs. Hub genes were identified by cytoHubba analysis in Cytoscape. Reverse transcriptase-polymerase chain reaction was used to validate SLC39A8 and its correlated metabolic DEGs expression in PH (SU5416/Hypoxia) mice. Results SLC39A8 expression was downregulated in PH patients, and this expression pattern was validated in PH (SU5416/Hypoxia) mouse lung tissue. SLC39A8-correlated genes were mainly enriched in the metabolic pathways. Within these SLC39A8-correlated genes, 202 SLC39A8-correlated metabolic genes were screened out, and seven genes were identified as SLC39A8-correlated metabolic hub genes. The expression patterns of hub genes were analyzed between PH patients and controls and further validated in PH mice. Finally, four genes (Fasn, Nsdhl, Acat2, and Acly) were downregulated in PH mice. However, there were no significant differences in the expression of the other three hub genes between PH mice and controls. Of the four genes, Fasn and Acly are key enzymes in fatty acids synthesis, Nsdhl is involved in cholesterol synthesis, and Acat2 is implicated in cholesterol metabolic transformation. Taken together, these results provide novel insight into the role of Zip8 in PH.
Collapse
Affiliation(s)
- FanRong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yujing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yuliang Xie
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Shuang Kong
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - LiaoFan Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Hanfei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Chao Guo
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yanyan Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Weifang Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Departments of Pharmacy, The Second Affiliated Hospital, Nanchang, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| |
Collapse
|
4
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Zhang Q, Yue Y, Zheng R. Clusterin as a serum biomarker candidate contributes to the lung fibroblasts activation in chronic obstructive pulmonary disease. Chin Med J (Engl) 2022; 135:1076-1086. [PMID: 35191419 PMCID: PMC9276345 DOI: 10.1097/cm9.0000000000002065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Fibrosis in the peripheral airways contributes to airflow limitation in patients with chronic obstructive pulmonary disease (COPD). However, the key proteins involved in its development are still poorly understood. Thus, we aimed to identify the differentially expressed proteins (DEPs) between smoker patients with and without COPD and elucidate the molecular mechanisms involved by investigating the effects of the identified biomarker candidate on lung fibroblasts. METHODS The potential DEPs were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis. The messenger RNA and protein levels of clusterin (CLU) in COPD patients and 12% cigarette smoke extract (CSE)-treated human bronchial epithelial cells were determined at the indicated time points. Furthermore, an in vitro COPD model was established via the administration of 8% CSE to normal human lung fibroblasts (NHLFs) at indicated time points. The effects of CSE treatment and CLU silencing on proliferation and activation of lung fibroblasts were analyzed. RESULTS A total of 144 DEPs were identified between COPD patients and normal smokers. The iTRAQ-based proteomics and bioinformatics analyses identified CLU as a serum biomarker candidate. We also discovered that CLU levels were significantly increased ( P < 0.0001) in Global Initiative for Obstructive Lung Disease II, III, and IV patients and correlated ( P < 0.0001) with forced expiratory volume in 1 s ( R = -0.7705), residual volume (RV) ( R = 0.6281), RV/total lung capacity ( R = 0.5454), and computerized tomography emphysema ( R = 0.7878). Similarly, CLU levels were significantly increased in CSE-treated cells at indicated time points ( P < 0.0001). The CSE treatment significantly inhibited the proliferation, promoted the inflammatory response, differentiation of NHLFs, and collagen matrix deposition, and induced the apoptosis of NHLFs; however, these effects were partially reversed by CLU silencing. CONCLUSION Our findings suggest that CLU may play significant roles during airway fibrosis in COPD by regulating lung fibroblast activation.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110014, China
| | - Yuanyi Yue
- Department of Gastroenterology Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110014, China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110014, China
| |
Collapse
|
6
|
Zhang Y, Chen Q, Chen D, Zhao W, Wang H, Yang M, Xiang Z, Yuan H. SerpinA3N attenuates ischemic stroke injury by reducing apoptosis and neuroinflammation. CNS Neurosci Ther 2021; 28:566-579. [PMID: 34897996 PMCID: PMC8928918 DOI: 10.1111/cns.13776] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022] Open
Abstract
Objective To assess the effect of serine protein inhibitor A3N (serpinA3N) in ischemic stroke and to explore its mechanism of action. Methods Mouse ischemic stroke model was induced by transient middle cerebral artery occlusion followed by reperfusion. The expression pattern of serpinA3N was assessed using immunofluorescence, Western blot analysis, and real‐time quantitative PCR. An adeno‐associated virus (AAV) and recombinant serpinA3N were administered. Additionally, co‐immunoprecipitation‐mass spectrometry and immunofluorescence co‐staining were used to identify protein interactions. Results SerpinA3N was upregulated in astrocytes and neurons within the ischemic penumbra after stroke in the acute phase. The expression of serpinA3N gradually increased 6 h after reperfusion, peaked on the day 2–3, and then decreased by day 7. Overexpression of serpinA3N by AAV significantly reduced the infarct size and improved motor function, associated with alleviated inflammation and oxidative stress. SerpinA3N treatment also reduced apoptosis both in vivo and in vitro. Co‐immunoprecipitation‐mass spectrometry and Western blotting revealed that clusterin interacts with serpinA3N, and Akt‐mTOR pathway members were upregulated by serpinA3N both in vivo and in vitro. Conclusions SerpinA3N is expressed in astrocytes and penumbra neurons after stroke in mice. It reduces brain damage possibly via interacting with clusterin and inhibiting neuronal apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Dashuang Chen
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wenqi Zhao
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Haowei Wang
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mei Yang
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhenghua Xiang
- Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Naval Medical University, Shanghai, China
| | - Hongbin Yuan
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Mao C, Ma Z, Jia Y, Li W, Xie N, Zhao G, Ma B, Yu F, Sun J, Zhou Y, Cui Q, Fu Y, Kong W. Nidogen-2 Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells and Prevents Neointima Formation via Bridging Jagged1-Notch3 Signaling. Circulation 2021; 144:1244-1261. [PMID: 34315224 DOI: 10.1161/circulationaha.120.053361] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: How the extracellular matrix (ECM) microenvironment modulates the contractile phenotype of vascular smooth muscle cells (VSMCs) and confers vascular homeostasis remains elusive. Methods: To explore the key ECM proteins in the maintenance of the contractile phenotype of VSMCs, we applied protein-protein interaction (PPI) network analysis to explore novel ECM proteins associated with the VSMC phenotype. By combining in vitro and in vivo genetic mice vascular injury model, we identified nidogen-2, a basement membrane (BM) glycoprotein, as a key ECM protein for maintenance of vascular smooth muscle cell identity. Results: We collected a VSMC phenotype-related gene dataset (VSMCPRG dataset) by using Gene Ontology (GO) annotation combined with a literature search. A computational analysis of protein-protein interactions between ECM protein genes and the genes from the VSMCPRG dataset revealed the candidate gene nidogen-2, a BM glycoprotein involved in regulation of the VSMC phenotype. Indeed, nidogen-2-deficient VSMCs exhibited loss of contractile phenotype in vitro, and compared with wild-type (WT) mice, nidogen-2-/- mice showed aggravated post-wire injury neointima formation of carotid arteries. Further bioinformatics analysis, co-immunoprecipitation assays and luciferase assays revealed that nidogen-2 specifically interacted with Jagged1, a conventional Notch ligand. Nidogen-2 maintained the VSMC contractile phenotype via Jagged1-Notch3 signaling but not Notch1 or Notch2 signaling. Notably, nidogen-2 enhanced Jagged1 and Notch3 interaction and subsequent Notch3 activation. Reciprocally, Jagged1 and Notch3 interaction, signaling activation, and Jagged1-triggered VSMC differentiation were significantly repressed in nidogen-2-deficient VSMCs. In accordance, the suppressive effect of Jagged1 overexpression on neointima formation was attenuated in nidogen-2-/- mice compared to wild-type mice. Conclusions: Nidogen-2 maintains the contractile phenotype of VSMCs through Jagged1-Notch3 signaling in vitro and in vivo. Nidogen-2 is required for Jagged1-Notch3 signaling.
Collapse
Affiliation(s)
- Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Weihao Li
- Department of Vascular Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Guizhen Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Baihui Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jinpeng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
8
|
Meng L, Yuan W, Chi H, Han R, Zhang Y, Pan X, Meng J, Liu Y, Song J, Zhong J, Liu X. Genetic deletion of CMG2 exacerbates systemic-to-pulmonary shunt-induced pulmonary arterial hypertension. FASEB J 2021; 35:e21421. [PMID: 33749907 DOI: 10.1096/fj.202000299r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 11/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) secondary to congenital heart disease (CHD-PAH) with systemic-to-pulmonary shunt (SPS) is characterized by proliferative vascular remodeling. Capillary morphogenesis gene-2 (CMG2) plays a key role in cell proliferation and apoptosis. This study aimed to determine the role of CMG2 in the pathogenesis of SPS-induced PAH. CMG2 levels were significantly downregulated in pulmonary arterioles from patients with Eisenmenger syndrome and rats with SPS-induced PAH. CMG2 was highly expressed in several cells including human pulmonary arterial smooth muscle cells (HPASMCs). CMG2-/- rats exhibited more severe PAH and pulmonary vascular remodeling than wild-type rats when exposed to SPS for 8 weeks. Overexpression of CMG2 significantly inhibited proliferation and promoted apoptosis of HPASMCs, while knockdown of CMG2 promoted cell proliferation and inhibited cell apoptosis. Next-generation sequencing and subsequent validation results suggested that PI3K-AKT was the most prominent signaling pathway regulated by differentially expressed genes (DEGs) in CMG2-/- rat lungs. Our work identified a novel role for CMG2 in SPS-induced PAH based on the findings that CMG2 deficiency exacerbates SPS-induced vascular remodeling in the development of PAH, indicating that CMG2 might act as a potential target for the treatment of CHD-PAH.
Collapse
Affiliation(s)
- Liukun Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Yuan
- Medical Research Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongjie Chi
- Heart Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ruijuan Han
- Department of Cardiology, Baotou Central hospital, Inner Mongolia, China
| | - Yeping Zhang
- Heart Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiangbin Pan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Liu
- Heart Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiawei Song
- Heart Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiuchang Zhong
- Heart Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Liu
- Medical Research Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Heart Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
Affiliation(s)
| | | | | | | | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Pereira RM, Mekary RA, da Cruz Rodrigues KC, Anaruma CP, Ropelle ER, da Silva ASR, Cintra DE, Pauli JR, de Moura LP. Protective molecular mechanisms of clusterin against apoptosis in cardiomyocytes. Heart Fail Rev 2019; 23:123-129. [PMID: 28948410 DOI: 10.1007/s10741-017-9654-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Loss of cardiomyocytes occurs with aging and contributes to cardiovascular complications. In the present study, we highlighted the role of clusterin, a protein that has recently been associated with the protection of cardiomyocytes from apoptosis. Clusterin protects cardiac cells against damage from myocardial infarction, transplant, or myocarditis. Clusterin can act directly or indirectly on apoptosis by regulating several intracellular pathways. These pathways include (1) the oxidant and inflammatory program, (2) insulin growth factor 1 (IGF-1) pathway, (3) KU70 / BCL-2-associated X protein (BAX) pathway, (4) tumor necrosis factor alpha (TNF-α) pathway, (5) BCL-2 antagonist of cell death (BAD) pathway, and (6) mitogen-activated protein kinase (MAPK) pathway. Given the key role of clusterin in preventing loss of cardiac tissue, modulating the expression and function of this protein carries the potential of improving cardiovascular care in the future.
Collapse
Affiliation(s)
- Rodrigo Martins Pereira
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rania A Mekary
- Department of Pharmaceutical Business and Administrative Sciences, MCPHS University, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kellen Cristina da Cruz Rodrigues
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Chadi Pellegrini Anaruma
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil. .,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
11
|
Zhang M, Feng Z, Huang R, Sun C, Xu Z. Characteristics of Pulmonary Vascular Remodeling in a Novel Model of Shunt-Associated Pulmonary Arterial Hypertension. Med Sci Monit 2018; 24:1624-1632. [PMID: 29554080 PMCID: PMC5870112 DOI: 10.12659/msm.905654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Establishing a shunt-induced pulmonary arterial hypertension (PAH) model in mice would be of great scientific value, but no such models have been reported to date. Here, we established a shunt-associated PAH in mice to investigate the characteristics of pulmonary vascular remodeling, which provides a new platform for the in-depth study of PAH associated with congenital heart disease (CHD). MATERIAL AND METHODS Eighty mice were randomly divided into the heavy shunt group (n=32), the small shunt group (n=32), the sham operation group (n=8), and the control group (n=8). The septum of the abdominal aorta and inferior vena cava was cut directly to create a heavy abdominal aortocaval shunt. Pulmonary artery pressure, right ventricular hypertrophy index, and lung tissue morphology were evaluated in the 4th, 6th, 8th, and 12th weeks in the shunt groups. RESULTS Shunt-associated PAH by abdominal aortocaval shunt in mice was successfully established. The shunt patency rate was significantly higher in the heavy shunt group. Significant differences were observed between the heavy shunt group and other groups in terms of pulmonary artery pressure and the right ventricular hypertrophy index. Tissue sections revealed a thickened pulmonary intimal layer and muscular layer and stenosis of the lumen in the shunt groups. Immunofluorescent assay results showed significant proliferations of PAH smooth muscle cells and endothelial cells, consistent with the clinical pulmonary vascular remodeling seen in human patients with severe PAH. CONCLUSIONS Shunt-associated PAH established by directly cutting the septum between the abdominal aorta and inferior vena cava is a stable and reliable model for research on PAH associated with CHD.
Collapse
Affiliation(s)
- Mingjie Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong Universtiy School of Medicine, Shanghai, China (mainland)
| | - Zhiyu Feng
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong Universtiy School of Medicine, Shanghai, China (mainland)
| | - Rui Huang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong Universtiy School of Medicine, Shanghai, China (mainland)
| | - Chongrui Sun
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong Universtiy School of Medicine, Shanghai, China (mainland)
| | - Zhuoming Xu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong Universtiy School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
12
|
Peix L, Evans IC, Pearce DR, Simpson JK, Maher TM, McAnulty RJ. Diverse functions of clusterin promote and protect against the development of pulmonary fibrosis. Sci Rep 2018; 8:1906. [PMID: 29382921 PMCID: PMC5789849 DOI: 10.1038/s41598-018-20316-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/16/2018] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis is a progressive scarring disorder of the lung with dismal prognosis and no curative therapy. Clusterin, an extracellular chaperone and regulator of cell functions, is reduced in bronchoalveolar lavage fluid of patients with pulmonary fibrosis. However, its distribution and role in normal and fibrotic human lung are incompletely characterized. Immunohistochemical localization of clusterin revealed strong staining associated with fibroblasts in control lung and morphologically normal areas of fibrotic lung but weak or undetectable staining in fibrotic regions and particularly fibroblastic foci. Clusterin also co-localized with elastin in vessel walls and additionally with amorphous elastin deposits in fibrotic lung. Analysis of primary lung fibroblast isolates in vitro confirmed the down-regulation of clusterin expression in fibrotic compared with control lung fibroblasts and further demonstrated that TGF-β1 is capable of down-regulating fibroblast clusterin expression. shRNA-mediated down-regulation of clusterin did not affect TGF-β1-induced fibroblast-myofibroblast differentiation but inhibited fibroblast proliferative responses and sensitized to apoptosis. Down-regulation of clusterin in fibrotic lung fibroblasts at least partly due to increased TGF-β1 may therefore represent an appropriate but insufficient response to limit fibroproliferation. Reduced expression of clusterin in the lung may also limit its extracellular chaperoning activity contributing to dysregulated deposition of extracellular matrix proteins.
Collapse
Affiliation(s)
- Lizzy Peix
- UCL Respiratory Centre for Inflammation and Tissue Repair, Rayne Building, University College London, London, WC1E 6JF, UK
- GlaxoSmithKline, Stevenage, UK
| | - Iona C Evans
- UCL Respiratory Centre for Inflammation and Tissue Repair, Rayne Building, University College London, London, WC1E 6JF, UK
- UCL Institute for Woman's Health, University College London, London, UK
| | - David R Pearce
- UCL Respiratory Centre for Inflammation and Tissue Repair, Rayne Building, University College London, London, WC1E 6JF, UK
| | | | - Toby M Maher
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
- Fibrosis Research Group, National Heart and Lung Institute, Imperial College, London, UK
| | - Robin J McAnulty
- UCL Respiratory Centre for Inflammation and Tissue Repair, Rayne Building, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
13
|
Habiel DM, Camelo A, Espindola M, Burwell T, Hanna R, Miranda E, Carruthers A, Bell M, Coelho AL, Liu H, Pilataxi F, Clarke L, Grant E, Lewis A, Moore B, Knight DA, Hogaboam CM, Murray LA. Divergent roles for Clusterin in Lung Injury and Repair. Sci Rep 2017; 7:15444. [PMID: 29133960 PMCID: PMC5684342 DOI: 10.1038/s41598-017-15670-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023] Open
Abstract
Lung fibrosis is an unabated wound healing response characterized by the loss and aberrant function of lung epithelial cells. Herein, we report that extracellular Clusterin promoted epithelial cell apoptosis whereas intracellular Clusterin maintained epithelium viability during lung repair. Unlike normal and COPD lungs, IPF lungs were characterized by significantly increased extracellular Clusterin whereas the inverse was evident for intracellular Clusterin. In vitro and in vivo studies demonstrated that extracellular Clusterin promoted epithelial cell apoptosis while intercellular Clusterin modulated the expression of the DNA repair proteins, MSH2, MSH6, OGG1 and BRCA1. The fibrotic response in Clusterin deficient (CLU-/-) mice persisted after bleomycin and it was associated with increased DNA damage, reduced DNA repair responses, and elevated cellular senescence. Remarkably, this pattern mirrored that observed in IPF lung tissues. Together, our results show that cellular localization of Clusterin leads to divergent effects on epithelial cell regeneration and lung repair during fibrosis.
Collapse
Affiliation(s)
- David M Habiel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Ana Camelo
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd, Cambridge, United Kingdom
| | - Milena Espindola
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Timothy Burwell
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Richard Hanna
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Elena Miranda
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, USA
| | - Alan Carruthers
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd, Cambridge, United Kingdom
| | - Matthew Bell
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd, Cambridge, United Kingdom
| | - Ana Lucia Coelho
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hao Liu
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, USA
| | | | - Lori Clarke
- Molecular Biology, MedImmune LLC, Gaithersburg, MD, USA
| | - Ethan Grant
- Translational Medicine, MedImmune LLC, Gaithersburg, MD, USA
| | - Arthur Lewis
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd, Cambridge, United Kingdom
| | - Bethany Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Cory M Hogaboam
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lynne A Murray
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd, Cambridge, United Kingdom.
| |
Collapse
|
14
|
Liu X, Yuan W, Li J, Yang L, Cai J. ANTXR2 Knock-Out Does Not Result in the Development of Hypertension in Rats. Am J Hypertens 2017; 30:182-187. [PMID: 28077422 DOI: 10.1093/ajh/hpw125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Our recent genetic study as well as robust evidences reported by previous genome-wide association studies (GWASs) have indicated that the single nucleotide polymorphism rs16998073, located near gene anthrax toxin receptor 2 (ANTXR2), was significantly associated with hypertension in Asians and Europeans. The aim of the present study was to determine whether ANTXR2 is the causal gene of hypertension at the 4q21 locus using an ANTXR2 knock-out model. METHODS Relative expression of ANTXR2 in Wistar-Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) were determined by real-time quantitative polymerase chain reaction and western blot analysis. ANTXR2 knock-out rats were created using CRISPR/Cas9-mediated genome editing and blood pressure values were measured in ANTXR2-/- and wild type (WT) rats by tail-cuff method and carotid arterial catheterization method. RESULTS Neither the mRNA nor protein levels of ANTXR2 were significantly different between tissues from SHRs and WKYs. To create ANTXR2-/- rats, 67 base pairs were deleted in exon 1 of ANTXR2 using CRISPR/Cas9-mediated genome editing. ANTXR2 protein decreased significantly in aortas of ANTXR2-/- rats, suggesting sufficient efficiency of ANTXR2 knock-out in this model. However, ANTXR2-/- rats exhibited nearly the same blood pressure as WT rats at baseline conditions as well as during Angiotensin II (400ng/kg/min) infusion or high-salt diet treatment. CONCLUSIONS These findings suggest that ANTXR2 might not be associated with hypertension and thus further functional analysis is warranted to identify the causal gene at this locus.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wen Yuan
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypertension, Beijing, China
| | - Lei Yang
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Cai
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China;
- Beijing Key Laboratory of Hypertension, Beijing, China
| |
Collapse
|