1
|
Halder N, Yadav S, Lal G. Neuroimmune communication of the cholinergic system in gut inflammation and autoimmunity. Autoimmun Rev 2024; 23:103678. [PMID: 39500481 DOI: 10.1016/j.autrev.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Neuroimmune communication in the body forms a bridge between two central regulatory systems of the body, i.e., nervous and immune systems. The cholinergic system is a crucial modulatory neurotransmitter in the central and peripheral nervous system. It includes the neurotransmitter acetylcholine (ACh), the enzyme required for the synthesis of ACh (choline acetyltransferase, ChAT), the enzyme required for its degradation (acetylcholinesterase, AChE), and cholinergic receptors (Nicotinic acetylcholine receptors and muscarinic acetylcholine receptors). The cholinergic system in neurons is well known for its role in cognitive function, sensory perception, motor control, learning, and memory processes. It has been shown that the non-neuronal cholinergic system (NNCS) is present in various tissues and immune cells and forms a neuroimmune communications system. In the present review, we discussed the NNCS on immune cells, its role in homeostasis and inflammatory reactions in the gut, and how it can be exploited in treating inflammatory responses.
Collapse
Affiliation(s)
- Namrita Halder
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Sourabh Yadav
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
2
|
McKay DM, Defaye M, Rajeev S, MacNaughton WK, Nasser Y, Sharkey KA. Neuroimmunophysiology of the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2024; 326:G712-G725. [PMID: 38626403 PMCID: PMC11376980 DOI: 10.1152/ajpgi.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/18/2024]
Abstract
Gut physiology is the epicenter of a web of internal communication systems (i.e., neural, immune, hormonal) mediated by cell-cell contacts, soluble factors, and external influences, such as the microbiome, diet, and the physical environment. Together these provide the signals that shape enteric homeostasis and, when they go awry, lead to disease. Faced with the seemingly paradoxical tasks of nutrient uptake (digestion) and retarding pathogen invasion (host defense), the gut integrates interactions between a variety of cells and signaling molecules to keep the host nourished and protected from pathogens. When the system fails, the outcome can be acute or chronic disease, often labeled as "idiopathic" in nature (e.g., irritable bowel syndrome, inflammatory bowel disease). Here we underscore the importance of a holistic approach to gut physiology, placing an emphasis on intercellular connectedness, using enteric neuroimmunophysiology as the paradigm. The goal of this opinion piece is to acknowledge the pace of change brought to our field via single-cell and -omic methodologies and other techniques such as cell lineage tracing, transgenic animal models, methods for culturing patient tissue, and advanced imaging. We identify gaps in the field and hope to inspire and challenge colleagues to take up the mantle and advance awareness of the subtleties, intricacies, and nuances of intestinal physiology in health and disease by defining communication pathways between gut resident cells, those recruited from the circulation, and "external" influences such as the central nervous system and the gut microbiota.
Collapse
Affiliation(s)
- Derek M McKay
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yasmin Nasser
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Gonzaga ACR, Quintão JLD, Galdino G, Romero TRL, da Silva GC, Lemos VS, Campolina-Silva GH, de Oliveira CA, Mahecha GAB, Duarte IDG. Endogenous Cholinergic System Involved in Peripheral Analgesic Control in Mice Is Activated by TNF-α, CXCL-1, and IL-1β. Pharmacology 2024:1-18. [PMID: 38643765 DOI: 10.1159/000538995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Tissue injury results in the release of inflammatory mediators, including a cascade of algogenic substances, which contribute to the development of hyperalgesia. During this process, endogenous analgesic substances are peripherally released to counterbalance hyperalgesia. The present study aimed to investigate whether inflammatory mediators TNF-α, IL-1β, CXCL1, norepinephrine (NE), and prostaglandin E2 (PGE2) may be involved in the deflagration of peripheral endogenous modulation of inflammatory pain by activation of the cholinergic system. METHODS Male Swiss mice were subjected to paw withdrawal test. All the substances were injected via the intraplantar route. RESULTS The main findings of this study were as follows: (1) carrageenan (Cg), TNF-α, CXCL-1, IL1-β, NE, and PGE2 induced hyperalgesia; (2) the acetylcholinesterase enzyme inhibitor, neostigmine, reversed the hyperalgesia observed after Cg, TNF-α, CXCL-1, and IL1-β injection; (3) the non-selective muscarinic receptor antagonist, atropine, and the selective muscarinic type 1 receptor (m1AChr) antagonist, telenzepine, potentiated the hyperalgesia induced by Cg and CXCL-1; (4) mecamylamine, a non-selective nicotinic receptor antagonist, potentiated the hyperalgesia induced by Cg, TNF-α, CXCL-1, and IL1-β; (5) Cg, CXCL-1, and PGE2 increased the expression of the m1AChr and nicotinic receptor subunit α4protein. CONCLUSION These results suggest that the cholinergic system may modulate the inflammatory pain induced by Cg, PGE2, TNF-α, CXCL-1, and IL1-β.
Collapse
Affiliation(s)
- Amanda Cristina Reis Gonzaga
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jayane Laís Dias Quintão
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Giovane Galdino
- Motricity Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Grazielle Caroline da Silva
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Virgínia Soares Lemos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Cleida Aparecida de Oliveira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Germán Arturo Bohórquez Mahecha
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
4
|
Burns GL, Keely S. Understanding food allergy through neuroimmune interactions in the gastrointestinal tract. Ann Allergy Asthma Immunol 2023; 131:576-584. [PMID: 37331592 DOI: 10.1016/j.anai.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
Food allergies are adverse immune reactions to food proteins in the absence of oral tolerance, and the incidence of allergies to food, including peanut, cow's milk, and shellfish, has been increasing globally. Although advancements have been made toward understanding the contributions of the type 2 immune response to allergic sensitization, crosstalk between these immune cells and neurons of the enteric nervous system is an area of emerging interest in the pathophysiology of food allergy, given the close proximity of neuronal cells of the enteric nervous system and type 2 effector cells, including eosinophils and mast cells. At mucosal sites, such as the gastrointestinal tract, neuroimmune interactions contribute to the sensing and response to danger signals from the epithelial barrier. This communication is bidirectional, as immune cells express receptors for neuropeptides and transmitters, and neurons express cytokine receptors, allowing for the detection of and response to inflammatory insults. In addition, it seems that neuromodulation of immune cells including mast cells, eosinophils, and innate lymphoid cells is critical for amplification of the type 2 allergic immune response. As such, neuroimmune interactions may be critical targets for future food allergy therapies. This review evaluates the contributions of local enteric neuroimmune interactions to the underlying immune response in food allergy and discusses considerations for future investigations into targeting neuroimmune pathways for treatment of food allergies.
Collapse
Affiliation(s)
- Grace L Burns
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia; National Health and Medical Research Council Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia; Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia; National Health and Medical Research Council Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia; Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
5
|
Lobbes LA, Schütze MA, Droeser R, Arndt M, Pozios I, Lauscher JC, Hering NA, Weixler B. Muscarinic Acetylcholine Receptor M3 Expression and Survival in Human Colorectal Carcinoma-An Unexpected Correlation to Guide Future Treatment? Int J Mol Sci 2023; 24:ijms24098198. [PMID: 37175905 PMCID: PMC10179005 DOI: 10.3390/ijms24098198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Muscarinic acetylcholine receptor M3 (M3R) has repeatedly been shown to be prominently expressed in human colorectal cancer (CRC), playing roles in proliferation and cell invasion. Its therapeutic targetability has been suggested in vitro and in animal models. We aimed to investigate the clinical role of MR3 expression in CRC for human survival. Surgical tissue samples from 754 CRC patients were analyzed for high or low immunohistochemical M3R expression on a clinically annotated tissue microarray (TMA). Immunohistochemical analysis was performed for established immune cell markers (CD8, TIA-1, FOXP3, IL 17, CD16 and OX 40). We used Kaplan-Meier curves to evaluate patients' survival and multivariate Cox regression analysis to evaluate prognostic significance. High M3R expression was associated with increased survival in multivariate (hazard ratio (HR) = 0.52; 95% CI = 0.35-0.78; p = 0.001) analysis, as was TIA-1 expression (HR = 0.99; 95% CI = 0.94-0.99; p = 0.014). Tumors with high M3R expression were significantly more likely to be grade 2 compared to tumors with low M3R expression (85.7% vs. 67.1%, p = 0.002). The 5-year survival analysis showed a trend of a higher survival rate in patients with high M3R expression (46%) than patients with low M3R expression CRC (42%) (p = 0.073). In contrast to previous in vitro and animal model findings, this study demonstrates an increased survival for CRC patients with high M3R expression. This evidence is highly relevant for translation of basic research findings into clinically efficient treatments.
Collapse
Affiliation(s)
- Leonard A Lobbes
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Marcel A Schütze
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Raoul Droeser
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, CH-4058 Basel, Switzerland
| | - Marco Arndt
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ioannis Pozios
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Johannes C Lauscher
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nina A Hering
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Benjamin Weixler
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
6
|
Uwada J, Nakazawa H, Muramatsu I, Masuoka T, Yazawa T. Role of Muscarinic Acetylcholine Receptors in Intestinal Epithelial Homeostasis: Insights for the Treatment of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:ijms24076508. [PMID: 37047478 PMCID: PMC10095461 DOI: 10.3390/ijms24076508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, is an intestinal disorder that causes prolonged inflammation of the gastrointestinal tract. Currently, the etiology of IBD is not fully understood and treatments are insufficient to completely cure the disease. In addition to absorbing essential nutrients, intestinal epithelial cells prevent the entry of foreign antigens (micro-organisms and undigested food) through mucus secretion and epithelial barrier formation. Disruption of the intestinal epithelial homeostasis exacerbates inflammation. Thus, the maintenance and reinforcement of epithelial function may have therapeutic benefits in the treatment of IBD. Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors for acetylcholine that are expressed in intestinal epithelial cells. Recent studies have revealed the role of mAChRs in the maintenance of intestinal epithelial homeostasis. The importance of non-neuronal acetylcholine in mAChR activation in epithelial cells has also been recognized. This review aimed to summarize recent advances in research on mAChRs for intestinal epithelial homeostasis and the involvement of non-neuronal acetylcholine systems, and highlight their potential as targets for IBD therapy.
Collapse
|
7
|
Sun Y, Cai D, Hu W, Fang T. Identifying hub genes and miRNAs in Crohn’s disease by bioinformatics analysis. Front Genet 2022; 13:950136. [PMID: 36118873 PMCID: PMC9471261 DOI: 10.3389/fgene.2022.950136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction: Crohn’s disease (CD) is a disease that manifests mainly as chronic inflammation of the gastrointestinal tract, which is still not well understood in terms of its pathogenesis. The aim of this study was to use bioinformatics analysis to identify differentially expressed genes (DEGs) and miRNAs with diagnostic and therapeutic potential in CD. Materials and methods: Three CD datasets (GSE179285, GSE102133, GSE75214) were downloaded from the Gene Expression Omnibus (GEO) database. DEGs between normal and CD tissues were identified using the GEO2R online tool. The Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were conducted using the clusterProfiler function in the R package. Protein-protein interaction network (PPI) analysis and visualization were performed with STRING and Cytoscape. Ten hub genes were identified using cytoHubba’s MCC algorithm and validated with datasets GSE6731 and GSE52746. Finally, the miRNA gene regulatory network was constructed by Cytoscape and NetworkAnalyst to predict potential microRNAs (miRNAs) associated with DEGs. Results: A total of 97 DEGs were identified, consisting of 88 downregulated genes and 9 upregulated genes. The enriched functions and pathways of the DEGs include immune system process, response to stress, response to cytokine and extracellular region. KEGG pathway analysis indicates that the genes were significantly enriched in Cytokine-cytokine receptor interaction, IL-17 signaling pathway, Rheumatoid arthritis and TNF signaling pathway. In combination with the results of the protein-protein interaction (PPI) network and CytoHubba, 10 hub genes including IL1B, CXCL8, CXCL10, CXCL1, CXCL2, CXCL5, ICAM1, IL1RN, TIMP1 and MMP3 were selected. Based on the DEG-miRNAs network construction, 5 miRNAs including hsa-mir-21-5p, hsa-mir-93-5p, hsa-mir-98-5p, hsa-mir-1-3p and hsa-mir-335-5p were identified as potential critical miRNAs. Conclusion: In conclusion, a total of 97 DEGs, 10 hub genes and 5 miRNAs that may be involved in the progression or occurrence of CD were identified in this study, which could be regarded as biomarkers of CD.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Daxing Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Weitao Hu
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- *Correspondence: Taiyong Fang,
| |
Collapse
|
8
|
Müller I, Kym U, Galati V, Tharakan S, Subotic U, Krebs T, Stathopoulos E, Schmittenbecher P, Cholewa D, Romero P, Reingruber B, Holland-Cunz S, Keck S. Cholinergic Signaling Attenuates Pro-Inflammatory Interleukin-8 Response in Colonic Epithelial Cells. Front Immunol 2022; 12:781147. [PMID: 35069554 PMCID: PMC8770536 DOI: 10.3389/fimmu.2021.781147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Infants affected by Hirschsprung disease (HSCR), a neurodevelopmental congenital disorder, lack ganglia of the intrinsic enteric nervous system (aganglionosis) in a variable length of the colon, and are prone to developing severe Hirschsprung-associated enterocolitis (HAEC). HSCR patients typically show abnormal dense innervation of extrinsic cholinergic nerve fibers throughout the aganglionic rectosigmoid. Cholinergic signaling has been reported to reduce inflammatory response. Consequently, a sparse extrinsic cholinergic innervation in the mucosa of the rectosigmoid correlates with increased inflammatory immune cell frequencies and higher incidence of HAEC in HSCR patients. However, whether cholinergic signals influence the pro-inflammatory immune response of intestinal epithelial cells (IEC) is unknown. Here, we analyzed colonic IEC isolated from 43 HSCR patients with either a low or high mucosal cholinergic innervation density (fiber-low versus fiber-high) as well as from control tissue. Compared to fiber-high samples, IEC purified from fiber-low rectosigmoid expressed significantly higher levels of IL-8 but not TNF-α, IL-10, TGF-β1, Muc-2 or tight junction proteins. IEC from fiber-low rectosigmoid showed higher IL-8 protein concentrations in cell lysates as well as prominent IL-8 immunoreactivity compared to IEC from fiber-high tissue. Using the human colonic IEC cell line SW480 we demonstrated that cholinergic signals suppress lipopolysaccharide-induced IL-8 secretion via the alpha 7 nicotinic acetylcholine receptor (a7nAChR). In conclusion, we showed for the first time that the presence of a dense mucosal cholinergic innervation is associated with decreased secretion of IEC-derived pro-inflammatory IL-8 in the rectosigmoid of HSCR patients likely dependent on a7nAChR activation. Owing to the association between IL-8 and enterocolitis-prone, fiber-low HSCR patients, targeted therapies against IL-8 might be a promising immunotherapy candidate for HAEC treatment.
Collapse
Affiliation(s)
- Isabelle Müller
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Urs Kym
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Virginie Galati
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Sasha Tharakan
- Department of Pediatric Surgery, University Children's Hospital Zürich, Zürich, Switzerland
| | - Ulrike Subotic
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland.,Department of Pediatric Surgery, University Children's Hospital Zürich, Zürich, Switzerland
| | - Thomas Krebs
- Department of Pediatric Surgery, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Eleuthere Stathopoulos
- Department of Pediatric Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | | | - Dietmar Cholewa
- Department of Pediatric Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Romero
- Department of Pediatric Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Bertram Reingruber
- Department of Pediatric Surgery, Florence Nightingale Hospital, Düsseldorf, Germany
| | | | - Stefan Holland-Cunz
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Simone Keck
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Li H, Su YS, He W, Zhang JB, Zhang Q, Jing XH, Zhan LB. The nonneuronal cholinergic system in the colon: A comprehensive review. FASEB J 2022; 36:e22165. [PMID: 35174565 DOI: 10.1096/fj.202101529r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/07/2023]
Abstract
Acetylcholine (ACh) is found not only in cholinergic nerve termini but also in the nonneuronal cholinergic system (NNCS). ACh is released from cholinergic nerves by vesicular ACh transporter (VAChT), but ACh release from the NNCS is mediated by organic cation transporter (OCT). Recent studies have suggested that components of the NNCS are located in intestinal epithelial cells (IECs), crypt-villus organoids, immune cells, intestinal stem cells (ISCs), and vascular endothelial cells (VECs). When ACh enters the interstitial space, its self-modulation or effects on adjacent tissues are part of the range of its biological functions. This review focuses on the current understanding of the mechanisms of ACh synthesis and release in the NNCS. Furthermore, studies on ACh functions in colonic disorders suggest that ACh from the NNCS contributes to immune regulation, IEC and VEC repair, ISC differentiation, colonic movement, and colonic tumor development. As indicated by the features of some colonic disorders, ACh and the NNCS have positive and negative effects on these disorders. Furthermore, the NNCS is located in multiple colonic organs, and the specific effects and cross-talk involving ACh from the NNCS in different colonic tissues are explored.
Collapse
Affiliation(s)
- Han Li
- Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China.,Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang-Shuai Su
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei He
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Bin Zhang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Zhang
- Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Xiang-Hong Jing
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Bin Zhan
- Nanjing University of Chinese Medicine, Nanjing, China.,Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
10
|
Kim Y, Quach A, Das S, Barrett KE. Potentiation of calcium-activated chloride secretion and barrier dysfunction may underlie EGF receptor tyrosine kinase inhibitor-induced diarrhea. Physiol Rep 2021; 8:e14490. [PMID: 32652816 PMCID: PMC7354088 DOI: 10.14814/phy2.14490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFr TKIs) are first‐line therapies for various cancers, and cause dose‐limiting severe diarrhea in many patients. We hypothesized that diarrhea caused by EGFr TKIs might reflect actions on epithelial transport, barrier function, or both, which we tested using cell cultures including murine and human enteroid‐derived monolayers (EDMs), analyzed using electrophysiological and other relevant methods. EGFr TKIs (such as afatinib, erlotinib, and osimertinib) reversed the acute inhibitory effect of EGF on chloride secretion induced by carbachol (CCh) across T84 human colonic epithelial cells, which correlated with the diarrhea‐inducing effect of each agent clinically. EGFr TKIs also reduced transepithelial electrical resistance (TEER), whereas co‐treatment with CCh delayed the decrease in TEER compared with that of cells co‐treated with EGF. Furthermore, afatinib and erlotinib prevented EGF‐ or CCh‐induced EGFr phosphorylation. EGFr TKIs also suppressed phosphorylation of extracellular signal‐regulated kinase (Erk)1/2 in response to EGF, whereas they had weaker effects on CCh‐induced Erk1/2 phosphorylation. In human EDMs, EGF potentiated ion transport induced by CCh, whereas afatinib reversed this effect. The ability of EGFr TKIs to reverse the effects of EGF on calcium‐dependent chloride secretion could contribute to the diarrheal side effects of these agents, and their disruption of epithelial barrier dysfunction is likely also pathophysiologically significant. CCh‐activated Erk1/2 phosphorylation was relatively insensitive to EGFr TKIs and delayed the deleterious effects of EGFr TKIs on barrier function. These findings confirm and extend those of other authors, and may be relevant to designing strategies to overcome the diarrheal side effects of EGFr TKIs.
Collapse
Affiliation(s)
- Younjoo Kim
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Division of Gastroenterology, Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Andrew Quach
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Kim E Barrett
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Magalhães DDA, Batista JA, Sousa SG, Ferreira JDS, da Rocha Rodrigues L, Pereira CMC, do Nascimento Lima JV, de Albuquerque IF, Bezerra NLSD, Monteiro CEDS, Franco AX, da Costa Filho HB, Ferreira FCS, Havt A, Di Lenardo D, Vasconcelos DFP, de Oliveira JS, Soares PMG, Barbosa ALDR. McN-A-343, a muscarinic agonist, reduces inflammation and oxidative stress in an experimental model of ulcerative colitis. Life Sci 2021; 272:119194. [PMID: 33609541 DOI: 10.1016/j.lfs.2021.119194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
AIM The aim of the present study was to investigate the anti-inflammatory response mediated of the M1 muscarinic acetylcholine receptor (mAChR) during experimental colitis. MATERIAL AND METHODS After the induction of 6% acetic acid colitis, mice were treated with McN-A-343 0.5, 1.0, and 1.5 mg/kg or dexamethasone (DEXA, 2.0 mg/kg) or pirenzepine (PIR, 10 mg/kg; M1 mAChR antagonist). Colonic inflammation was assessed by macroscopic and microscopic lesion scores, colonic wet weight, myeloperoxidase (MPO) activity, interleukin-1 beta (IL1-β) levels and tumor necrosis factor alpha (TNF-α), glutathione (GSH), malondialdehyde (MDA) and nitrate and nitrite (NO3/NO2), mRNA expression of IKKα, nuclear factor kappa beta (NF-kB) and cyclooxygenase-2 (COX-2), as well protein expression of NF-kB and COX-2. RESULTS Treatment with McN-A-343 at a concentration of 1.5 mg/kg showed a significant reduction in intestinal damage as well as a decrease in wet weight, MPO activity, pro-inflammatory cytokine concentration, markers of oxidative stress and expression of inflammatory mediators. The action of the M1 agonist by the administration of pirenzepine, which promoted the blocking of the mAChR M1-mediated anti-inflammatory response, has also been proven. CONCLUSION The results suggest that peripheral colonic M1 mAChR is involved in reversing the pro-inflammatory effect of experimentally induced colitis, which may represent a promising therapeutic alternative for patients with ulcerative colitis.
Collapse
Affiliation(s)
- Diva de Aguiar Magalhães
- Laboratory of Experimental Physiopharmacology, LAFFEX, Federal University of Piauí, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Jalles Arruda Batista
- Laboratory of Experimental Physiopharmacology, LAFFEX, Federal University of Piauí, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Stefany Guimarães Sousa
- Laboratory of Experimental Physiopharmacology, LAFFEX, Federal University of Piauí, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Jayro Dos Santos Ferreira
- Laboratory of Experimental Physiopharmacology, LAFFEX, Federal University of Piauí, Parnaíba, Brazil
| | | | | | | | | | | | | | - Alvaro Xavier Franco
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, LEFFAG, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Alexandre Havt
- Laboratory of Molecular Toxinology, LTM, Federal University of Ceará, Fortaleza, CE, Brazil
| | - David Di Lenardo
- Laboratory of Analysis and Histological Processing, LAPHIS, Department of Biomedicine, Federal University of Piauí, Parnaíba, Brazil
| | - Daniel Fernando Pereira Vasconcelos
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil; Laboratory of Analysis and Histological Processing, LAPHIS, Department of Biomedicine, Federal University of Piauí, Parnaíba, Brazil
| | - Jefferson Soares de Oliveira
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil; Biochemistry Laboratory of Laticifers Plants (LABPL), Department of Biomedicine, Federal University of Piauí, Parnaíba, Brazil
| | - Pedro Marcos Gomes Soares
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, LEFFAG, Federal University of Ceará, Fortaleza, Brazil
| | - André Luiz Dos Reis Barbosa
- Laboratory of Experimental Physiopharmacology, LAFFEX, Federal University of Piauí, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil.
| |
Collapse
|
12
|
Goncalves DF, Guzman MS, Gros R, Massensini AR, Bartha R, Prado VF, Prado MAM. Striatal Acetylcholine Helps to Preserve Functional Outcomes in a Mouse Model of Stroke. ASN Neuro 2020; 12:1759091420961612. [PMID: 32967452 PMCID: PMC7521057 DOI: 10.1177/1759091420961612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Acetylcholine (ACh) has been suggested to facilitate plasticity and
improve functional recovery after different types of brain lesions.
Interestingly, numerous studies have shown that striatal cholinergic
interneurons are relatively resistant to acute ischemic insults, but
whether ACh released by these neurons enhances functional recovery
after stroke is unknown. We investigated the role of endogenous
striatal ACh in stroke lesion volume and functional outcomes following
middle cerebral artery occlusion to induce focal ischemia in
striatum-selective vesicular acetylcholine transporter-deficient mice
(stVAChT-KO). As transporter expression is almost completely
eliminated in the striatum of stVAChT-KO mice, ACh release is nearly
abolished in this area. Conversely, in other brain areas, VAChT
expression and ACh release are preserved. Our results demonstrate a
larger infarct size after ischemic insult in stVAChT-KO mice, with
more pronounced functional impairments and increased mortality than in
littermate controls. These changes are associated with increased
activation of GSK-3, decreased levels of β-catenin, and a higher
permeability of the blood–brain barrier in mice with loss of VAChT in
striatum neurons. These results support a framework in which
endogenous ACh secretion originating from cholinergic interneurons in
the striatum helps to protect brain tissue against ischemia-induced
damage and facilitates brain recovery by supporting blood–brain
barrier function.
Collapse
Affiliation(s)
- Daniela F Goncalves
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Neuroscience Centre, Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Monica S Guzman
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - Robert Gros
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - André R Massensini
- Neuroscience Centre, Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Bartha
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| |
Collapse
|
13
|
Gonkowski S, Gajęcka M, Makowska K. Mycotoxins and the Enteric Nervous System. Toxins (Basel) 2020; 12:toxins12070461. [PMID: 32707706 PMCID: PMC7404981 DOI: 10.3390/toxins12070461] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by various fungal species. They are commonly found in a wide range of agricultural products. Mycotoxins contained in food enter living organisms and may have harmful effects on many internal organs and systems. The gastrointestinal tract, which first comes into contact with mycotoxins present in food, is particularly vulnerable to the harmful effects of these toxins. One of the lesser-known aspects of the impact of mycotoxins on the gastrointestinal tract is the influence of these substances on gastrointestinal innervation. Therefore, the present study is the first review of current knowledge concerning the influence of mycotoxins on the enteric nervous system, which plays an important role, not only in almost all regulatory processes within the gastrointestinal tract, but also in adaptive and protective reactions in response to pathological and toxic factors in food.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland;
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
14
|
Greig CJ, Armenia SJ, Cowles RA. The M1 muscarinic acetylcholine receptor in the crypt stem cell compartment mediates intestinal mucosal growth. Exp Biol Med (Maywood) 2020; 245:1194-1199. [PMID: 32611198 DOI: 10.1177/1535370220938375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
IMPACT STATEMENT Localization of a specific subtype of the muscarinic acetylcholine receptor in the crypt stem cell compartment suggests a critical role in intestinal mucosal homeostasis. Here we demonstrate the localization of the M1 muscarinic acetylcholine receptor to the stem cell compartment and demonstrate increase morphometric and proliferative parameters when this is stimulated in vivo. These data provide novel information about this complex signaling microenvironment and offer potential future therapeutic targets for future study.
Collapse
Affiliation(s)
- Chasen J Greig
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sarah J Armenia
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Robert A Cowles
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
15
|
Hosic S, Lake W, Stas E, Koppes R, Breault DT, Murthy SK, Koppes AN. Cholinergic Activation of Primary Human Derived Intestinal Epithelium Does Not Ameliorate TNF-α Induced Injury. Cell Mol Bioeng 2020; 13:487-505. [PMID: 33184579 DOI: 10.1007/s12195-020-00633-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction The intestinal epithelium contains specialized cells including enterocytes, goblet, Paneth, enteroendocrine, and stem cells. Impaired barrier integrity in Inflammatory Bowel Disease is characterized by elevated levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α). Prior studies in immortalized lines such as Caco-2, without native epithelial heterogeneity, demonstrate the amelioration of TNF-α compromised barrier integrity via nicotinic (nAChR) or muscarinic (mAChR) acetylcholine receptor activation. Methods A tissue-engineered model of primary human small intestinal epithelium was derived from dissociated organoids cultured on collagen-coated Transwells. Differentiation was accomplished with serum-containing media and compared to Caco-2 and HT-29 regarding alkaline phosphatase expression, transepithelial electrical resistance (TEER), and IL-8 secretion. Inflammation was modeled via basal stimulation with TNF-α (25 ng/mL) with or without nicotine (nAChR agonist) or bethanechol (mAChR agonist). Apoptosis, density (cells/cm2), TEER, lucifer yellow permeability, 70 kDa dextran transport, cell morphology, and IL-8 secretion were characterized. Results Primary intestinal epithelium demonstrates significant functional differences compared to immortalized cells, including increased barrier integrity, IL-8 expression, mucus production, and the presence of absorptive and secretory cells. Exposure to TNF-α impaired barrier integrity, increased apoptosis, altered morphology, and increased secretion of IL-8. Stimulation of nAChR with nicotine did not ameliorate TNF-α induced permeability nor alter 70 kDa dextran transport. However, stimulation of mAChR with bethanechol decreased transport of 70 kDa dextran but did not ameliorate TNF-α induced paracellular permeability. Conclusions A primary model of intestinal inflammation was evaluated, demonstrating nAChR or mAChR activation does not have the same protective effects compared to immortalized epithelium. Inclusion of other native stromal support cells are underway.
Collapse
Affiliation(s)
- Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Will Lake
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Eric Stas
- Division of Endocrinology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Ryan Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA.,Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA.,Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA 02138 USA
| | - Shashi K Murthy
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA.,Department of Biology, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| |
Collapse
|
16
|
Cannabinoid agonists possibly mediate interaction between cholinergic and cannabinoid systems in regulating intestinal inflammation. Med Hypotheses 2020; 139:109613. [DOI: 10.1016/j.mehy.2020.109613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
|
17
|
Zeng Z, Mukherjee A, Varghese AP, Yang XL, Chen S, Zhang H. Roles of G protein-coupled receptors in inflammatory bowel disease. World J Gastroenterol 2020; 26:1242-1261. [PMID: 32256014 PMCID: PMC7109274 DOI: 10.3748/wjg.v26.i12.1242] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/18/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex disease with multiple pathogenic factors. Although the pathogenesis of IBD is still unclear, a current hypothesis suggests that genetic susceptibility, environmental factors, a dysfunctional immune system, the microbiome, and the interactions of these factors substantially contribute to the occurrence and development of IBD. Although existing and emerging drugs have been proven to be effective in treating IBD, none can cure IBD permanently. G protein-coupled receptors (GPCRs) are critical signaling molecules implicated in the immune response, cell proliferation, inflammation regulation and intestinal barrier maintenance. Breakthroughs in the understanding of the structures and functions of GPCRs have provided a driving force for exploring the roles of GPCRs in the pathogenesis of diseases, thereby leading to the development of GPCR-targeted medication. To date, a number of GPCRs have been shown to be associated with IBD, significantly advancing the drug discovery process for IBD. The associations between GPCRs and disease activity, disease severity, and disease phenotypes have also paved new avenues for the precise management of patients with IBD. In this review, we mainly focus on the roles of the most studied proton-sensing GPCRs, cannabinoid receptors, and estrogen-related GPCRs in the pathogenesis of IBD and their potential clinical values in IBD and some other diseases.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| | - Arjudeb Mukherjee
- West China School of Medicine, Sichuan University, Chengdu 410061, Sichuan Province, China
| | | | - Xiao-Li Yang
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| | - Sha Chen
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| | - Hu Zhang
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| |
Collapse
|
18
|
|
19
|
Wani KA, Goswamy D, Irazoqui JE. Nervous system control of intestinal host defense in C. elegans. Curr Opin Neurobiol 2019; 62:1-9. [PMID: 31790812 DOI: 10.1016/j.conb.2019.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
Interplay between the nervous and immune systems is critical for homeostasis, and its dysfunction underlies pathologies such as multiple sclerosis, autism, leukemia, and inflammation. The nematode Caenorhabditis elegans provides an opportunity to define evolutionarily conserved mechanisms of regulation of host innate immunity and inflammation in a genetically tractable whole-animal system. In the past few years, the C. elegans nervous system has emerged as an integral part of host defense against pathogens, acting through diverse mechanisms to repress or induce protective transcriptional responses to infection in distal tissues. In this review, we discuss current knowledge of the mechanisms through which the C. elegans nervous system controls the expression of host defense genes in the intestinal epithelium. Although still incomplete, the insights derived from such work have broad implications for neural regulation of epithelial function at mucosal barriers in higher organisms in health and disease.
Collapse
Affiliation(s)
- Khursheed A Wani
- Department of Microbiology and Physiological Systems and Program in Innate Immunity, University of Massachusetts Medical School, Worcester, USA
| | - Debanjan Goswamy
- Department of Microbiology and Physiological Systems and Program in Innate Immunity, University of Massachusetts Medical School, Worcester, USA
| | - Javier E Irazoqui
- Department of Microbiology and Physiological Systems and Program in Innate Immunity, University of Massachusetts Medical School, Worcester, USA.
| |
Collapse
|
20
|
Bosmans G, Appeltans I, Stakenborg N, Gomez‐Pinilla PJ, Florens MV, Aguilera‐Lizarraga J, Matteoli G, Boeckxstaens GE. Vagus nerve stimulation dampens intestinal inflammation in a murine model of experimental food allergy. Allergy 2019; 74:1748-1759. [PMID: 30897213 PMCID: PMC6790670 DOI: 10.1111/all.13790] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022]
Abstract
Background The vagus nerve has emerged as an important modulator of the intestinal immune system. Its anti‐inflammatory properties have been previously shown in innate and Th1/Th17 predominant inflammatory models. To what extent the vagus nerve is of importance in Th2 inflammatory responses like food allergy is still unclear. In this study, we therefore aimed to investigate the effect of vagotomy (VGX) and vagus nerve stimulation (VNS), on the development and severity of experimental food allergy. Methods Balb/C mice were first sensitized with ovalbumin (OVA) in the presence of alum. Prior to oral challenges with OVA, mice were subjected to VGX or VNS. Disease severity was determined by assessing severity and onset of diarrhoea, OVA‐specific antibody production, mast cell number and activity, inflammatory gene expression in duodenal tissue and lamina propria immune cells by flow cytometry analysis. Results When compared to control mice, VGX did not significantly affect the development and severity of the disease in our model of food allergy. VNS, on the other hand, resulted in a significant amelioration of the different inflammatory parameters assessed. This effect was independent of α7nAChR and is possibly mediated through the dampening of mast cells and increased phagocytosis of OVA by CX3CR1hi macrophages. Conclusions These results underscore the anti‐inflammatory properties of the vagus nerve and the potential of neuro‐immune interactions in the intestine. Further insight into the underlying mechanisms could ultimately lead to novel therapeutic approaches in the treatment of not only food allergy but also other immune‐mediated diseases.
Collapse
Affiliation(s)
- Goele Bosmans
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Iris Appeltans
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Nathalie Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Pedro J. Gomez‐Pinilla
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Morgane V. Florens
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Javier Aguilera‐Lizarraga
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Guy E. Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| |
Collapse
|
21
|
Neuroimmune Interactions in the Gut and Their Significance for Intestinal Immunity. Cells 2019; 8:cells8070670. [PMID: 31269754 PMCID: PMC6679154 DOI: 10.3390/cells8070670] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) have a complex, multifactorial pathophysiology with an unmet need for effective treatment. This calls for novel strategies to improve disease outcome and quality of life for patients. Increasing evidence suggests that autonomic nerves and neurotransmitters, as well as neuropeptides, modulate the intestinal immune system, and thereby regulate the intestinal inflammatory processes. Although the autonomic nervous system is classically divided in a sympathetic and parasympathetic branch, both play a pivotal role in the crosstalk with the immune system, with the enteric nervous system acting as a potential interface. Pilot clinical trials that employ vagus nerve stimulation to reduce inflammation are met with promising results. In this paper, we review current knowledge on the innervation of the gut, the potential of cholinergic and adrenergic systems to modulate intestinal immunity, and comment on ongoing developments in clinical trials.
Collapse
|
22
|
Labed SA, Wani KA, Jagadeesan S, Hakkim A, Najibi M, Irazoqui JE. Intestinal Epithelial Wnt Signaling Mediates Acetylcholine-Triggered Host Defense against Infection. Immunity 2019; 48:963-978.e3. [PMID: 29768179 DOI: 10.1016/j.immuni.2018.04.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/02/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
Regulated antimicrobial peptide expression in the intestinal epithelium is key to defense against infection and to microbiota homeostasis. Understanding the mechanisms that regulate such expression is necessary for understanding immune homeostasis and inflammatory disease and for developing safe and effective therapies. We used Caenorhabditis elegans in a preclinical approach to discover mechanisms of antimicrobial gene expression control in the intestinal epithelium. We found an unexpected role for the cholinergic nervous system. Infection-induced acetylcholine release from neurons stimulated muscarinic signaling in the epithelium, driving downstream induction of Wnt expression in the same tissue. Wnt induction activated the epithelial canonical Wnt pathway, resulting in the expression of C-type lectin and lysozyme genes that enhanced host defense. Furthermore, the muscarinic and Wnt pathways are linked by conserved transcription factors. These results reveal a tight connection between the nervous system and the intestinal epithelium, with important implications for host defense, immune homeostasis, and cancer.
Collapse
Affiliation(s)
- Sid Ahmed Labed
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Khursheed A Wani
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sakthimala Jagadeesan
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Abdul Hakkim
- Department of Molecular Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Mehran Najibi
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Javier Elbio Irazoqui
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
23
|
Fornai M, van den Wijngaard RM, Antonioli L, Pellegrini C, Blandizzi C, de Jonge WJ. Neuronal regulation of intestinal immune functions in health and disease. Neurogastroenterol Motil 2018; 30:e13406. [PMID: 30058092 DOI: 10.1111/nmo.13406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Nerve-mucosa interactions control various elements of gastrointestinal functions, including mucosal host defense, gut barrier function, and epithelial cell growth and differentiation. In both intestinal and extra-intestinal diseases, alterations of autonomic nerve activity have been observed to be concurrent with the disease course, such as in inflammatory and functional bowel diseases, and neurodegenerative diseases. This is relevant as the extrinsic autonomic nervous system is increasingly recognized to modulate gut inflammatory responses. The molecular and cellular mechanisms through which the extrinsic and intrinsic nerve pathways may regulate digestive mucosal functions have been investigated in several pre-clinical and clinical studies. PURPOSE The present review focuses on the involvement of neural pathways in gastrointestinal disease, and addresses the current strategies to intervene with neuronal pathway as a means of treatment.
Collapse
Affiliation(s)
- M Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - R M van den Wijngaard
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - L Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - W J de Jonge
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Lovastatin inhibits visceral allodynia and increased colonic permeability induced by lipopolysaccharide or repeated water avoidance stress in rats. Eur J Pharmacol 2018; 818:228-234. [DOI: 10.1016/j.ejphar.2017.10.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022]
|
25
|
Bosmans G, Shimizu Bassi G, Florens M, Gonzalez-Dominguez E, Matteoli G, Boeckxstaens GE. Cholinergic Modulation of Type 2 Immune Responses. Front Immunol 2017; 8:1873. [PMID: 29312347 PMCID: PMC5742746 DOI: 10.3389/fimmu.2017.01873] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022] Open
Abstract
In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Goele Bosmans
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Gabriel Shimizu Bassi
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Morgane Florens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Erika Gonzalez-Dominguez
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Role of Cholinergic Anti-Inflammatory Pathway in Treatment of Intestinal Ischemia-Reperfusion Injury by Electroacupuncture at Zusanli. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6471984. [PMID: 29333186 PMCID: PMC5733189 DOI: 10.1155/2017/6471984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/17/2017] [Accepted: 10/29/2017] [Indexed: 11/17/2022]
Abstract
Electroacupuncture (EA) at Zusanli is a widely used method for the treatment of intestinal ischemic disease. The current study attempts to investigate the possible mechanism from the point of cholinergic anti-inflammatory pathway (CAP) in rats. Thirty rats were divided into five groups: control group, I/R group, EA group (I/R + EA), PNU group (I/R + α7 nAChR agonist), and α-BGT group (I/R + EA + α7 nAChR antagonist). EA and medicine injection were performed immediately after ischemia. After 2 h of reperfusion, blood and intestine samples were collected and intestinal histopathological score, mRNA expression of mucosal α7 nAChR and NF-κBp65, and serum cytokine levels (IL-6, TNF-α) were examined. Compared with the I/R group, the EA group and PNU group could significantly attenuate the mucosal damage, promote α7 nAChR mRNA expression, and reduce levels of NF-κBp65, IL-6, and TNF-α. Compared with the EA group, α7 nAChR mRNA was decreased, while concentrations of NF-κBp65, IL-6, and TNF-α increased in the α-BGT group. EA at Zusanli could inhibit NF-κBp65 and proinflammatory cytokines production after intestinal I/R injury; its mechanism may be related to the cholinergic anti-inflammatory pathway.
Collapse
|
27
|
Erratum. Acta Physiol (Oxf) 2017; 220:501. [PMID: 28734038 DOI: 10.1111/apha.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Greig CJ, Cowles RA. Muscarinic acetylcholine receptors participate in small intestinal mucosal homeostasis. J Pediatr Surg 2017; 52:1031-1034. [PMID: 28359586 DOI: 10.1016/j.jpedsurg.2017.03.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/09/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Intestinal mucosal homeostasis is controlled by multiple factors and an intact, functional mucosa is essential for survival. Maintenance of the epithelium begins with crypt base stem cells which eventually give rise to all epithelial cell types. Evidence suggests an important role of the enteric cholinergic nervous system in these processes. We hypothesized that mice with altered muscarinic signaling would exhibit differences in mucosal morphometric and proliferative parameters compared to wild-type mice. METHODS Mouse lines specifically deficient in one of the five muscarinic acetylcholine receptors (M1KO-M5KO) were used for experiments. Distal ileal segments were obtained and histologic sections created. Villus height and crypt depth were measured using H&E-stained sections, while crypt proliferation index (CPI) was calculated using Ki67-stained sections. RESULTS The ileal mucosa from mice deficient in mAChRs exhibited differences from wild-type ileal mucosa in nearly all measured parameters. Knockout of mAChR2, mAChR3 and mAChR5 resulted in changes in all measured parameters. Ileal mucosa from M2KO mice showed an unexpected combination decreased VH but paradoxically increased CD and CPI. CONCLUSIONS Alterations in mAChR signaling causes change in ileal mucosal morphometry and crypt cell proliferation. While all mAChR subtypes may be involved, mAChR2, mAChR3, and mAChR5 appear to be critical for mucosal homeostasis. Further characterization of these pathways is warranted.
Collapse
Affiliation(s)
- Chasen J Greig
- Section of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Robert A Cowles
- Section of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
29
|
van Bilsen JHM, Sienkiewicz-Szłapka E, Lozano-Ojalvo D, Willemsen LEM, Antunes CM, Molina E, Smit JJ, Wróblewska B, Wichers HJ, Knol EF, Ladics GS, Pieters RHH, Denery-Papini S, Vissers YM, Bavaro SL, Larré C, Verhoeckx KCM, Roggen EL. Application of the adverse outcome pathway (AOP) concept to structure the available in vivo and in vitro mechanistic data for allergic sensitization to food proteins. Clin Transl Allergy 2017; 7:13. [PMID: 28507730 PMCID: PMC5429547 DOI: 10.1186/s13601-017-0152-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). MAIN BODY The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. CONCLUSION The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación, Madrid, Spain
| | | | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Harry J Wichers
- Wageningen University and Research, Wageningen, The Netherlands
| | - Edward F Knol
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | - Simona L Bavaro
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | | | | | | |
Collapse
|
30
|
Activation of muscarinic receptors prevents TNF-α-mediated intestinal epithelial barrier disruption through p38 MAPK. Cell Signal 2017; 35:188-196. [PMID: 28412413 DOI: 10.1016/j.cellsig.2017.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 02/08/2023]
Abstract
Intestinal epithelial cells form a tight barrier to act as selective physical barriers, repelling hostile substances. Tumor necrosis factor-α (TNF-α) is a well characterized pro-inflammatory cytokine which can compromise intestinal barrier function and the suppression of TNF-α function is important for treatment of inflammatory bowel disease (IBD). In this study, we investigated the contribution of G-protein-coupled receptor (GPCR)-induced signalling pathways to the maintenance of epithelial barrier function. We first demonstrated the existence of functional muscarinic M3 and histamine H1 receptors in colonic epithelial cell HT-29/B6. As we previously reported, muscarinic M3 receptor prevented TNF-α-induced barrier disruption through acceleration of TNF receptor (TNFR) shedding which is carried out by TNF-α converting enzyme (TACE). M3 receptor-mediated suppression of TNF-α function depends on Gαq/11 protein, however, histamine H1 receptor could not ameliorate TNF-α function, while which could induce Gαq/11 dependent intracellular Ca2+ mobilization. We found that p38 MAPK was predominantly phosphorylated by M3 receptor through Gαq/11 protein, whereas H1 receptor barely upregulated the phosphorylation. Inhibition of p38 MAPK abolished M3 receptor-mediated TNFR shedding and suppression of TNF-α-induced NF-κB signalling. The p38 MAPK was also involved in TACE- mediated EGFR transactivation followed by ERK1/2 phosphorylation. These results indicate that not H1 but M3 receptor-induced activation of p38 MAPK might contribute to the maintenance of epithelial barrier function through down-regulation of TNF-α signalling and activation of EGFR.
Collapse
|
31
|
Khan MRI, Uwada J, Yazawa T, Islam MT, Krug SM, Fromm M, Karaki SI, Suzuki Y, Kuwahara A, Yoshiki H, Sada K, Muramatsu I, Anisuzzaman ASM, Taniguchi T. Activation of muscarinic cholinoceptor ameliorates tumor necrosis factor-α-induced barrier dysfunction in intestinal epithelial cells. FEBS Lett 2015; 589:3640-7. [DOI: 10.1016/j.febslet.2015.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/08/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022]
|