1
|
Abdulla MH, AlMarabeh S, Bolger T, Lucking EF, O'Halloran KD, Johns EJ. Effects of intrarenal pelvic infusion of tumour necrosis factor-α and interleukin 1-β on reno-renal reflexes in anaesthetised rats. J Hypertens 2024; 42:1027-1038. [PMID: 38690904 DOI: 10.1097/hjh.0000000000003689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
OBJECTIVE Reno-renal reflexes are disturbed in cardiovascular and hypertensive conditions when elevated levels of pro-inflammatory mediators/cytokines are present within the kidney. We hypothesised that exogenously administered inflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL)-1β modulate the renal sympatho-excitatory response to chemical stimulation of renal pelvic sensory nerves. METHODS In anaesthetised rats, intrarenal pelvic infusions of vehicle [0.9% sodium chloride (NaCl)], TNF-α (500 and 1000 ng/kg) and IL-1β (1000 ng/kg) were maintained for 30 min before chemical activation of renal pelvic sensory receptors was performed using randomized intrarenal pelvic infusions of hypertonic NaCl, potassium chloride (KCl), bradykinin, adenosine and capsaicin. RESULTS The increase in renal sympathetic nerve activity (RSNA) in response to intrarenal pelvic hypertonic NaCl was enhanced during intrapelvic TNF-α (1000 ng/kg) and IL-1β infusions by almost 800% above vehicle with minimal changes in mean arterial pressure (MAP) and heart rate (HR). Similarly, the RSNA response to intrarenal pelvic adenosine in the presence of TNF-α (500 ng/kg), but not IL-1β, was almost 200% above vehicle but neither MAP nor HR were changed. There was a blunted sympatho-excitatory response to intrapelvic bradykinin in the presence of TNF-α (1000 ng/kg), but not IL-1β, by almost 80% below vehicle, again without effect on either MAP or HR. CONCLUSION The renal sympatho-excitatory response to renal pelvic chemoreceptor stimulation is modulated by exogenous TNF-α and IL-1β. This suggests that inflammatory mediators within the kidney can play a significant role in modulating the renal afferent nerve-mediated sympatho-excitatory response.
Collapse
Affiliation(s)
- Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Sara AlMarabeh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Tom Bolger
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Edward J Johns
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Li S, Yuan H, Yang K, Li Q, Xiang M. Pancreatic sympathetic innervation disturbance in type 1 diabetes. Clin Immunol 2023; 250:109319. [PMID: 37024024 DOI: 10.1016/j.clim.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Pancreatic sympathetic innervation can directly affect the function of islet. The disorder of sympathetic innervation in islets during the occurrence of type 1 diabetes (T1D) has been reported to be controversial with the inducing factor unclarified. Several studies have uncovered the critical role that sympathetic signals play in controlling the local immune system. The survival and operation of endocrine cells can be regulated by immune cell infiltration in islets. In the current review, we focused on the impact of sympathetic signals working on islets cell regulation, and discussed the potential factors that can induce the sympathetic innervation disorder in the islets. We also summarized the effect of interference with the islet sympathetic signals on the T1D occurrence. Overall, complete understanding of the regulatory effect of sympathetic signals on islet cells and local immune system could facilitate to design better strategies to control inflammation and protect β cells in T1D therapy.
Collapse
Affiliation(s)
- Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huimin Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Keshan Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Zhou J, Yin P, Zhao Q, Hu Z, Wang Y, Ma G, Wu X, Lu L, Shi Y. Electroacupuncture improves follicular development and metabolism and regulates the expression of adiponectin, AMPK and ACC in an obese rat model of polycystic ovary syndrome. Acupunct Med 2022:9645284221107690. [PMID: 35831955 DOI: 10.1177/09645284221107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by hyperandrogenism and follicular arrest. Electroacupuncture (EA) has been shown to be effective at improving hyperandrogenism and follicular arrest in PCOS; however, its mechanism of action remains to be deciphered. OBJECTIVE In this study, we investigated whether EA improved follicular development in an obese rat model of PCOS and regulated the expression of adiponectin, AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). METHODS EA was administered at CV3, CV4 and ST40. Changes in body weight, paraovarian fat, estrus cycle, ovarian morphology, levels of related hormones, and glucose and lipid metabolism were evaluated. In addition, protein and mRNA expression of adiponectin, AMPK and ACC was measured. RESULTS The body weight and paraovarian fat of rats in the EA group were reduced, while estrus cyclicity and ovarian morphology improved. Levels of free fatty acids, triglycerides, total cholesterol and low-density lipoprotein cholesterol were significantly reduced in the EA group, as well as blood glucose levels. Furthermore, levels of testosterone and luteinizing hormone were reduced in the EA group, while estradiol levels were increased. Protein and mRNA expression of adiponectin, AMPKα1 and liver kinase B1 (LKB1) was found to be increased in the EA group, while protein and mRNA expression of ACC were significantly reduced.Conclusion: Our findings suggest that EA improved follicular development and metabolism and regulated expression levels of adiponectin, AMPKα1, LKB1 and ACC in our obese rat model of PCOS.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Yin
- Reproduction Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyi Zhao
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhihai Hu
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guizhi Ma
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Wu
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Reproduction Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin Shi
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Interplay between baroreflex sensitivity, obesity and related cardiometabolic risk factors (Review). Exp Ther Med 2021; 23:67. [PMID: 34934438 PMCID: PMC8649854 DOI: 10.3892/etm.2021.10990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022] Open
Abstract
The baroreflex represents a rapid negative feedback system implicated in blood pressure regulation, which aims to prevent blood pressure variations by regulating peripheral vascular tone and cardiac output. The aim of the present review was to highlight the association between baroreflex sensitivity (BRS) and obesity, including factors associated with obesity, such as metabolic syndrome, hypertension, cardiovascular disease and diabetes. For the present review, a literature search was conducted using the PubMed database until August 21, 2021. The searched terms included ‘baroreflex’, and other terms such as ‘sensitivity’, ‘obesity’, ‘metabolic syndrome’, ‘hypertension’, ‘diabetes’, ‘gender’, ‘aging’, ‘children’, ‘adolescents’, ‘physical activity’, ‘bariatric surgery’, ‘autonomous nervous system’ and ‘cardiometabolic risk factors’. Obesity and its related metabolic disorders can influence baroreflex functionality and decrease BRS, mostly by potentiating sympathetic nervous system activity. Obesity induces inflammation, which can increase sympathetic system activity and lead to a higher incidence of cardiovascular events. Obesity also represents an important risk factor for hypertension through numerous mechanisms; in this setting, dysfunctional baroreceptors are not able to protect against constantly elevated blood pressure. Furthermore, diabetes mellitus and oxidative stress result in deterioration of BRS, whereas aging is also generally related to reduced cardiovagal BRS. Differences in BRS have also been observed between men and women, and overall cardiovagal BRS in healthy women is less intense compared with that in men. BRS appears lower in children with obesity compared with that in children of a healthy weight. Notably, physical exercise can increase BRS in both hypertensive and normotensive subjects, and BRS can also be significantly improved following bariatric surgery and weight loss. In conclusion, obesity and its related metabolic disorders may influence baroreflex functionality and decrease BRS, and baroreceptors cannot protect against the constantly elevated blood pressure in obesity. However, following bariatric surgery and weight loss, BRS can be significantly improved. The present review summarizes the role of obesity and related metabolic risk factors in BRS, providing details on possible mechanisms and shedding light on their interplay leading to autonomic neuropathy.
Collapse
|
5
|
Sucedaram Y, Johns EJ, Husain R, Abdul Sattar M, H Abdulla M, Nelli G, Rahim NS, Khalilpourfarshbafi M, Abdullah NA. Exposure to High-Fat Style Diet Induced Renal and Liver Structural Changes, Lipid Accumulation and Inflammation in Intact and Ovariectomized Female Rats. J Inflamm Res 2021; 14:689-710. [PMID: 33716510 PMCID: PMC7944944 DOI: 10.2147/jir.s299083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose We hypothesized that low estrogen levels aggravate obesity-related complications. Diet-induced obesity can cause distinct pathologies, including impaired glucose tolerance, inflammation, and organ injury that leads to fatty liver and chronic kidney diseases. To test this hypothesis, ovariectomized (OVX) rats were fed a high-fat style diet (HFSD), and we examined structural changes and inflammatory response in the kidney and liver. Methods Sprague-Dawley female rats were ovariectomized or sham-operated and divided into four groups: sham-operated rats fed a normal diet (ND); ovariectomized rats fed a normal diet (OVX-ND); sham-operated rats fed a HFSD; ovariectomized rats fed a high-fat style diet (OVX-HFSD). Mean blood pressure and fasting blood glucose were measured on weeks 0 and 10. The rats were sacrificed 10 weeks after initiation of ND or HFSD, the kidney and liver were harvested for histological, immunohistochemical and immunofluorescence studies. Results HFSD-fed rats presented a significantly greater adiposity index compared to their ND counterparts. Liver index, fasting blood glucose and mean blood pressure was increased in OVX-HFSD rats compared to HFSD rats at study terminal. Histological and morphometric studies showed focal interstitial mononuclear cell infiltration in the kidney of HFSD rats with mesangial expansion being greater in the OVX-HFSD rats. Both HFSD fed groups showed increased expressions of renal inflammatory markers, namely TNF-alpha, IL-6 and MCP-1, and infiltrating M1 macrophages with some influence of ovarian hormonal status. HFSD-feeding also caused hepatocellular steatosis which was aggravated in ovariectomized rats fed the same diet. Furthermore, hepatocellular ballooning was observed only in the OVX-HFSD rats. Similarly, HFSD-fed rats showed increased expressions of the inflammatory markers and M1 macrophage infiltration in the liver; however, only IL-6 expression was magnified in the OVX-HFSD. Conclusion Our data suggest that some of the structural changes and inflammatory response in the kidney and liver of rats fed a HFSD are exacerbated by ovariectomy.
Collapse
Affiliation(s)
- Yamuna Sucedaram
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Edward James Johns
- Department of Physiology, University College Cork, Cork, T12 K8AF, Ireland
| | - Ruby Husain
- Department of Physiology, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Munavvar Abdul Sattar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Pulau Pinang, Malaysia
| | - Mohammed H Abdulla
- Department of Physiology, University College Cork, Cork, T12 K8AF, Ireland
| | - Giribabu Nelli
- Department of Physiology, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Nur Syahrina Rahim
- Faculty of Medicine & Health Science, Universiti Sains Islam Malaysia, Nilai, 71800, Malaysia
| | | | - Nor Azizan Abdullah
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
6
|
AlMarabeh S, O'Neill J, Cavers J, Lucking EF, O'Halloran KD, Abdulla MH. Chronic intermittent hypoxia impairs diuretic and natriuretic responses to volume expansion in rats with preserved low-pressure baroreflex control of the kidney. Am J Physiol Renal Physiol 2021; 320:F1-F16. [PMID: 33166181 DOI: 10.1152/ajprenal.00377.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
We examined the effects of exposure to chronic intermittent hypoxia (CIH) on baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory responses to volume expansion (VE) before and after intrarenal transient receptor potential vanilloid 1 (TRPV1) blockade by capsaizepine (CPZ). Male Wistar rats were exposed to 96 cycles of hypoxia per day for 14 days (CIH) or normoxia. Urine flow and absolute Na+ excretion during VE were less in CIH-exposed rats, but the progressive decrease in RSNA during VE was preserved. Assessment of the high-pressure baroreflex revealed an increase in the operating and response range of RSNA and decreased slope in CIH-exposed rats with substantial hypertension [+19 mmHg basal mean arterial pressure (MAP)] but not in a second cohort with modest hypertension (+12 mmHg). Intrarenal CPZ caused diuresis, natriuresis, and a reduction in MAP in sham-exposed (sham) and CIH-exposed rats. After intrarenal CPZ, diuretic and natriuretic responses to VE in CIH-exposed rats were equivalent to those of sham rats. TRPV1 expression in the renal pelvic wall was similar in both experimental groups. Exposure to CIH did not elicit glomerular hypertrophy, renal inflammation, or oxidative stress. We conclude that exposure to CIH 1) does not impair the low-pressure baroreflex control of RSNA; 2) has modest effects on the high-pressure baroreflex control of RSNA, most likely indirectly due to hypertension; 3) can elicit hypertension in the absence of kidney injury; and 4) impairs diuretic and natriuretic responses to fluid overload. Our results suggest that exposure to CIH causes renal dysfunction, which may be relevant to obstructive sleep apnea.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Julie O'Neill
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Jeremy Cavers
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Hall JE, Mouton AJ, da Silva AA, Omoto ACM, Wang Z, Li X, do Carmo JM. Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovasc Res 2020; 117:1859-1876. [PMID: 33258945 DOI: 10.1093/cvr/cvaa336] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/01/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Obesity contributes 65-75% of the risk for human primary (essential) hypertension (HT) which is a major driver of cardiovascular and kidney diseases. Kidney dysfunction, associated with increased renal sodium reabsorption and compensatory glomerular hyperfiltration, plays a key role in initiating obesity-HT and target organ injury. Mediators of kidney dysfunction and increased blood pressure include (i) elevated renal sympathetic nerve activity (RSNA); (ii) increased antinatriuretic hormones such as angiotensin II and aldosterone; (iii) relative deficiency of natriuretic hormones; (iv) renal compression by fat in and around the kidneys; and (v) activation of innate and adaptive immune cells that invade tissues throughout the body, producing inflammatory cytokines/chemokines that contribute to vascular and target organ injury, and exacerbate HT. These neurohormonal, renal, and inflammatory mechanisms of obesity-HT are interdependent. For example, excess adiposity increases the adipocyte-derived cytokine leptin which increases RSNA by stimulating the central nervous system proopiomelanocortin-melanocortin 4 receptor pathway. Excess visceral, perirenal and renal sinus fat compress the kidneys which, along with increased RSNA, contribute to renin-angiotensin-aldosterone system activation, although obesity may also activate mineralocorticoid receptors independent of aldosterone. Prolonged obesity, HT, metabolic abnormalities, and inflammation cause progressive renal injury, making HT more resistant to therapy and often requiring multiple antihypertensive drugs and concurrent treatment of dyslipidaemia, insulin resistance, diabetes, and inflammation. More effective anti-obesity drugs are needed to prevent the cascade of cardiorenal, metabolic, and immune disorders that threaten to overwhelm health care systems as obesity prevalence continues to increase.
Collapse
Affiliation(s)
- John E Hall
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Clinical and Translational Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| | - Alan J Mouton
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| | - Alexandre A da Silva
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| | - Ana C M Omoto
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| | - Zhen Wang
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| | - Xuan Li
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| | - Jussara M do Carmo
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| |
Collapse
|
8
|
Sucedaram Y, Johns EJ, Husain R, Sattar MA, Abdulla M, Khalilpourfarshbafi M, Abdullah NA. Comparison of high-fat style diet-induced dysregulation of baroreflex control of renal sympathetic nerve activity in intact and ovariectomized female rats: Renal sympathetic nerve activity in high-fat style diet fed intact and ovariectomized female rats. Exp Biol Med (Maywood) 2020; 245:761-776. [PMID: 32212858 DOI: 10.1177/1535370220915673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
IMPACT STATEMENT Over activation of renal sensory nerve in obesity blunts the normal regulation of renal sympathetic nerve activity. To date, there is no investigation that has been carried out on baroreflex regulation of renal sympathetic nerve activity in obese ovarian hormones deprived rat model, and the effect of renal denervation on the baroreflex regulation of renal sympathetic nerve activity. Thus, we investigated the role of renal innervation on baroreflex regulation of renal sympathetic nerve activity in obese intact and ovariectomized female rats. Our data demonstrated that in obese states, the impaired baroreflex control is indistinguishable between ovarian hormones deprived and non-deprived states. This study will be of substantial interest to researchers working on the impact of diet-induced hypertension in pre- and postmenopausal women. This study provides insight into health risks amongst obese women regardless of their ovarian hormonal status and may be integrated in preventive health strategies.
Collapse
Affiliation(s)
- Yamuna Sucedaram
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Edward James Johns
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | - Ruby Husain
- Department of Physiology, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Munavvar Abdul Sattar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM Pulau Pinang 11800, Malaysia.,Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Malaysia
| | - Mohammed Abdulla
- Department of Physiology, University College Cork, Cork T12 K8AF, Ireland
| | | | - Nor Azizan Abdullah
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
9
|
Abstract
Background Oxidative stress and high salt intake could be independent or intertwined risk factors in the origin of hypertension. Kidneys are the major organ to regulate sodium homeostasis and blood pressure and the renal dopamine system plays a pivotal role in sodium regulation during sodium replete conditions. Oxidative stress has been implicated in renal dopamine dysfunction and development of hypertension, especially in salt‐sensitive animal models. Here we show the nexus between high salt intake and oxidative stress causing renal tubular dopamine oxidation, which leads to mitochondrial and lysosomal dysfunction and subsequently causes renal inflammation and hypertension. Methods and Results Male Sprague Dawley rats were divided into the following groups, vehicle (V)—tap water, high salt (HS)—1% NaCl, L‐buthionine‐sulfoximine (BSO), a prooxidant, and HS plus BSO without and with antioxidant resveratrol (R) for 6 weeks. Oxidative stress was significantly higher in BSO and HS+BSO–treated rat compared with vehicle; however, blood pressure was markedly higher in the HS+BSO group whereas an increase in blood pressure in the BSO group was modest. HS+BSO–treated rats had significant renal dopamine oxidation, lysosomal and mitochondrial dysfunction, and increased renal inflammation; however, HS alone had no impact on organelle function or inflammation. Resveratrol prevented oxidative stress, dopamine oxidation, organelle dysfunction, inflammation, and hypertension in BSO and HS+BSO rats. Conclusions These data suggest that dopamine oxidation, especially during increased sodium intake and oxidative milieu, leads to lysosomal and mitochondrial dysfunction and renal inflammation with subsequent increase in blood pressure. Resveratrol, while preventing oxidative stress, protects renal function and mitigates hypertension.
Collapse
Affiliation(s)
- Anees A Banday
- Heart and Kidney Institute College of Pharmacy University of Houston TX
| | | |
Collapse
|
10
|
Abdulla MH, Brennan N, Ryan E, Sweeney L, Manning J, Johns EJ. Tacrolimus restores the high‐ and low‐pressure baroreflex control of renal sympathetic nerve activity in cisplatin‐induced renal injury rats. Exp Physiol 2019; 104:1726-1736. [DOI: 10.1113/ep087829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammed H. Abdulla
- Department of Physiology, Western Gateway Building University College Cork College Road Cork Ireland
| | - Nicola Brennan
- Department of Physiology, Western Gateway Building University College Cork College Road Cork Ireland
| | - Eimear Ryan
- Department of Physiology, Western Gateway Building University College Cork College Road Cork Ireland
| | - Linda Sweeney
- Department of Physiology, Western Gateway Building University College Cork College Road Cork Ireland
| | - Jennifer Manning
- Department of Physiology, Western Gateway Building University College Cork College Road Cork Ireland
| | - Edward J. Johns
- Department of Physiology, Western Gateway Building University College Cork College Road Cork Ireland
| |
Collapse
|
11
|
Cardiovascular and hidroelectrolytic changes in rats fed with high-fat diet. Behav Brain Res 2019; 373:112075. [PMID: 31284013 DOI: 10.1016/j.bbr.2019.112075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/14/2019] [Accepted: 07/05/2019] [Indexed: 01/18/2023]
Abstract
Obesity activates the renin-angiotensin and sympathetic systems facilitating hypertension and changes in the hydroelectrolytic balance. In the present study, in rats fed with high-fat diet (HFD), we investigated daily water intake and urinary excretion, prandial consumption of water and the changes in blood pressure and water intake to intracerebroventricular (icv) angiotensin II (ANG II). Male Holtzman rats (290-320 g) were fed with standard diet (SD, 11% calories from fat) or HFD (45% calories from fat) for 6 weeks. Part of the animals received a stainless steel cannula in the lateral ventricle (LV) at the 6th week after the beginning of the diets and the experiments were performed at the 7th week. The pressor effect, but not the dipsogenic response to acute icv injection of ANG II, was potentiated in the HFD rats. Daily water intake and urinary volume were reduced in rats fed with HFD with no significant changes in sodium excretion. Prandial water consumption was also reduced in rats ingesting HFD, an effect almost totally reverted blocking salivation with atropine. These results show a potentiation of the pressor response to icv ANG II in HFD-fed rats, without changing icv ANG II-induced water intake. In addition, prandial and daily water intake and urinary volume were reduced in HFD-fed rats, without changing sodium excretion. Salivation in rats ingesting HFD may play a role in the reduced prandial and daily water intake.
Collapse
|
12
|
Herold K, Mrowka R. Inflammation-Dysregulated inflammatory response and strategies for treatment. Acta Physiol (Oxf) 2019; 226:e13284. [PMID: 31009174 DOI: 10.1111/apha.13284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Kristina Herold
- Klinik für Innere Medizin III, AG Experimentelle Nephrologie Universitätsklinikum Jena Jena Germany
| | - Ralf Mrowka
- Klinik für Innere Medizin III, AG Experimentelle Nephrologie Universitätsklinikum Jena Jena Germany
| |
Collapse
|
13
|
AlMarabeh S, Abdulla MH, O'Halloran KD. Is Aberrant Reno-Renal Reflex Control of Blood Pressure a Contributor to Chronic Intermittent Hypoxia-Induced Hypertension? Front Physiol 2019; 10:465. [PMID: 31105584 PMCID: PMC6491928 DOI: 10.3389/fphys.2019.00465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Renal sensory nerves are important in the regulation of body fluid and electrolyte homeostasis, and blood pressure. Activation of renal mechanoreceptor afferents triggers a negative feedback reno-renal reflex that leads to the inhibition of sympathetic nervous outflow. Conversely, activation of renal chemoreceptor afferents elicits reflex sympathoexcitation. Dysregulation of reno-renal reflexes by suppression of the inhibitory reflex and/or activation of the excitatory reflex impairs blood pressure control, predisposing to hypertension. Obstructive sleep apnoea syndrome (OSAS) is causally related to hypertension. Renal denervation in patients with OSAS or in experimental models of chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoeas (pauses in breathing), results in a decrease in circulating norepinephrine levels and attenuation of hypertension. The mechanism of the beneficial effect of renal denervation on blood pressure control in models of CIH and OSAS is not fully understood, since renal denervation interrupts renal afferent signaling to the brain and sympathetic efferent signals to the kidneys. Herein, we consider the currently proposed mechanisms involved in the development of hypertension in CIH disease models with a focus on oxidative and inflammatory mediators in the kidneys and their potential influence on renal afferent control of blood pressure, with wider consideration of the evidence available from a variety of hypertension models. We draw focus to the potential contribution of aberrant renal afferent signaling in the development, maintenance and progression of high blood pressure, which may have relevance to CIH-induced hypertension.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
McPherson KC, Shields CA, Poudel B, Fizer B, Pennington A, Szabo-Johnson A, Thompson WL, Cornelius DC, Williams JM. Impact of obesity as an independent risk factor for the development of renal injury: implications from rat models of obesity. Am J Physiol Renal Physiol 2018; 316:F316-F327. [PMID: 30539649 DOI: 10.1152/ajprenal.00162.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetes and hypertension are the major causes of chronic kidney disease (CKD). Epidemiological studies within the last few decades have revealed that obesity-associated renal disease is an emerging epidemic and that the increasing prevalence of obesity parallels the increased rate of CKD. This has led to the inclusion of obesity as an independent risk factor for CKD. A major complication when studying the relationship between obesity and renal injury is that cardiovascular and metabolic disorders that may result from obesity including hyperglycemia, hypertension, and dyslipidemia, or the cluster of these disorders [defined as the metabolic syndrome, (MetS)] also contribute to the development and progression of renal disease. The associations between hyperglycemia and hypertension with renal disease have been reported extensively in patients suffering from obesity. Currently, there are several obese rodent models (high-fat diet-induced obesity and leptin signaling dysfunction) that exhibit characteristics of MetS. However, the available obese rodent models currently have not been used to investigate the impact of obesity alone on the development of renal injury before hypertension and/or hyperglycemia. Therefore, the aim of this review is to describe the incidence and severity of renal disease in these rodent models of obesity and determine which models are suitable to study the independent effects obesity on the development and progression of renal disease.
Collapse
Affiliation(s)
- Kasi C McPherson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Corbin A Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Brianca Fizer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alyssa Pennington
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley Szabo-Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Willie L Thompson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Emergency Medicine, University of Mississippi Medical Center , Jackson, Mississippi
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
15
|
Mrowka R. Modifiers of hypertension. Acta Physiol (Oxf) 2018; 224:e13184. [PMID: 30175500 DOI: 10.1111/apha.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ralf Mrowka
- Experimentelle Nephrologie; Universitätsklinikum Jena, KIM III; Jena Germany
| |
Collapse
|
16
|
Lu Y, Wu Q, Liu LZ, Yu XJ, Liu JJ, Li MX, Zang WJ. Pyridostigmine protects against cardiomyopathy associated with adipose tissue browning and improvement of vagal activity in high-fat diet rats. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1037-1050. [PMID: 29309922 DOI: 10.1016/j.bbadis.2018.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 01/07/2023]
Abstract
Obesity, a major contributor to the development of cardiovascular diseases, is associated with an autonomic imbalance characterized by sympathetic hyperactivity and diminished vagal activity. Vagal activation plays important roles in weight loss and improvement of cardiac function. Pyridostigmine is a reversible acetylcholinesterase inhibitor, but whether it ameliorates cardiac lipid accumulation and cardiac remodeling in rats fed a high-fat diet has not been determined. This study investigated the effects of pyridostigmine on high-fat diet-induced cardiac dysfunction and explored the potential mechanisms. Rats were fed a normal or high-fat diet and treated with pyridostigmine. Vagal discharge was evaluated using the BL-420S system, and cardiac function by echocardiograms. Lipid deposition and cardiac remodeling were determined histologically. Lipid utility was assessed by qPCR. A high-fat diet led to a significant reduction in vagal discharge and lipid utility and a marked increase in lipid accumulation, cardiac remodeling, and cardiac dysfunction. Pyridostigmine improved vagal activity and lipid metabolism disorder and cardiac remodeling, accompanied by an improvement of cardiac function in high-fat diet-fed rats. An increase in the browning of white adipose tissue in pyridostigmine-treated rats was also observed and linked to the expression of UCP-1 and CIDEA. Additionally, pyridostigmine facilitated activation of brown adipose tissue via activation of the SIRT-1/AMPK/PGC-1α pathway. In conclusion, a high-fat diet resulted in cardiac lipid accumulation, cardiac remodeling, and a significant decrease in vagal discharge. Pyridostigmine ameliorated cardiomyopathy, an effect related to reduced cardiac lipid accumulation, and facilitated the browning of white adipose tissue while activating brown adipose tissue.
Collapse
Affiliation(s)
- Yi Lu
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China
| | - Qing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China
| | - Long-Zhu Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China
| | - Jin-Jun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China
| | - Man-Xiang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical Collage, Xian Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xian Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
17
|
Affiliation(s)
- B. L. Jensen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense C Denmark
| |
Collapse
|