1
|
Ge S, Wu S, Yin Q, Tan M, Wang S, Yang Y, Chen Z, Xu L, Zhang H, Meng C, Xia Y, Asakawa N, Wei W, Gong K, Pan X. Ecliptasaponin A protects heart against acute ischemia-induced myocardial injury by inhibition of the HMGB1/TLR4/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118612. [PMID: 39047883 DOI: 10.1016/j.jep.2024.118612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eclipta prostrata (Linn.) is a traditional medicinal Chinese herb that displays multiple biological activities, such as encompassing immunomodulatory, anti-inflammatory, anti-tumor, liver-protective, antioxidant, and lipid-lowering effects. Ecliptasaponin A (ESA), a pentacyclic triterpenoid saponin isolated from Eclipta prostrata (Linn.), has been demonstrated to exert superior anti-inflammatory activity against many inflammatory disorders. AIM OF THE STUDY Inflammation plays a critical role in acute myocardial infarction (AMI). This study aims to explore the treatment effects of ESA in AMI, as well as the underlying mechanism. METHODS An AMI mouse model was established in mice via left anterior descending coronary artery (LAD) ligation. After surgery, ESA was injected at doses of 0.5, 1.25, and 2.5 mg/kg, respectively. Myocardial infarction size, cardiomyocyte apoptosis and cardiac echocardiography were studied. The potential mechanism of action of ESA was investigated by RNA-seq, Western blot, surface plasmon resonance (SPR), molecular docking, and immunofluorescence staining. RESULTS ESA treatment not only significantly reduced myocardial infarct size, decreased myocardial cell apoptosis, and inhibited inflammatory cell infiltration, but also facilitated to improve cardiac function. RNA-seq and Western blot analysis proved that ESA treatment-induced differential expression genes mainly enriched in HMGB1/TLR4/NF-κB pathway. Consistently, ESA treatment resulted into the down-regulation of IL-1β, IL-6, and TNF-α levels after AMI. Furthermore, SPR and molecular docking results showed that ESA could bind directly to HMGB1, thereby impeding the activation of the downstream TLR4/NF-κB pathway. The immunofluorescence staining and Western blot results at the cellular level also demonstrated that ESA inhibited the activation of the HMGB1/TLR4/NF-κB pathway in H9C2 cells. CONCLUSION Our study was the first to demonstrate a cardiac protective role of ESA in AMI. Mechanism study indicated that the treatment effects of ESA are mainly attributed to its anti-inflammatory activity that was mediated by the HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Sumin Ge
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Sihua Wu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Qin Yin
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Meng Tan
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Sichuan Wang
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yonghao Yang
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zixuan Chen
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Lei Xu
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Hui Zhang
- School of Medicine, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Naoki Asakawa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | - Wenping Wei
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Kaizheng Gong
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Xin Pan
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
2
|
Gentile F, Orlando G, Montuoro S, Ferrari Chen YF, Macefield V, Passino C, Giannoni A, Emdin M. Treating heart failure by targeting the vagus nerve. Heart Fail Rev 2024; 29:1201-1215. [PMID: 39117958 PMCID: PMC11455679 DOI: 10.1007/s10741-024-10430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
Increased sympathetic and reduced parasympathetic nerve activity is associated with disease progression and poor outcomes in patients with chronic heart failure. The demonstration that markers of autonomic imbalance and vagal dysfunction, such as reduced heart rate variability and baroreflex sensitivity, hold prognostic value in patients with chronic heart failure despite modern therapies encourages the research for neuromodulation strategies targeting the vagus nerve. However, the approaches tested so far have yielded inconclusive results. This review aims to summarize the current knowledge about the role of the parasympathetic nervous system in chronic heart failure, describing the pathophysiological background, the methods of assessment, and the rationale, limits, and future perspectives of parasympathetic stimulation either by drugs or bioelectronic devices.
Collapse
Affiliation(s)
- Francesco Gentile
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy.
- Cardiology and Cardiovascular Medicine Division, Fondazione Monasterio, Via G. Moruzzi 1, 56124, Pisa, Italy.
| | - Giulia Orlando
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Sabrina Montuoro
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Yu Fu Ferrari Chen
- Cardiology and Cardiovascular Medicine Division, Fondazione Monasterio, Via G. Moruzzi 1, 56124, Pisa, Italy
| | | | - Claudio Passino
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Cardiology and Cardiovascular Medicine Division, Fondazione Monasterio, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Cardiology and Cardiovascular Medicine Division, Fondazione Monasterio, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Michele Emdin
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Cardiology and Cardiovascular Medicine Division, Fondazione Monasterio, Via G. Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
3
|
Liu Chung Ming C, Wang X, Gentile C. Protective role of acetylcholine and the cholinergic system in the injured heart. iScience 2024; 27:110726. [PMID: 39280620 PMCID: PMC11402255 DOI: 10.1016/j.isci.2024.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
This review explores the roles of the cholinergic system in the heart, comprising the neuronal and non-neuronal cholinergic systems. Both systems are essential for maintaining cardiac homeostasis by regulating the release of acetylcholine (ACh). A reduction in ACh release is associated with the early onset of cardiovascular diseases (CVDs), and increasing evidence supports the protective roles of ACh against CVD. We address the challenges and limitations of current strategies to elevate ACh levels, including vagus nerve stimulation and pharmacological interventions such as cholinesterase inhibitors. Additionally, we introduce alternative strategies to increase ACh in the heart, such as stem cell therapy, gene therapy, microRNAs, and nanoparticle drug delivery methods. These findings offer new insights into advanced treatments for regenerating the injured human heart.
Collapse
Affiliation(s)
- Clara Liu Chung Ming
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Cardiovascular Regeneration Group, Heart Research Institute, Newtown, NSW 2042, Australia
| | - Xiaowei Wang
- Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Cardiovascular Regeneration Group, Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
4
|
Zhang CH, Lu DC, Liu Y, Wang L, Sethi G, Ma Z. The role of extracellular vesicles in pyroptosis-mediated infectious and non-infectious diseases. Int Immunopharmacol 2024; 138:112633. [PMID: 38986299 DOI: 10.1016/j.intimp.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Pyroptosis, a lytic and pro-inflammatory cell death, is important in various pathophysiological processes. Host- and bacteria-derived extracellular vesicles (EVs), as natural nanocarriers messengers, are versatile mediators of intercellular communication between different types of cells. Recently, emerging research has suggested that EVs exhibit multifaceted roles in disease progression by manipulating pyroptosis. This review focuses on new findings concerning how EVs shape disease progression in infectious and non-infectious diseases by regulating pyroptosis. Understanding the characteristics and activity of EVs-mediated pyroptotic death may conducive to the discovery of novel mechanisms and more efficient therapeutic targets in infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; Department of Oncology, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing 404100, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ying Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
5
|
Bencze M, Boroš A, Behuliak M, Vavřínová A, Vaněčková I, Zicha J. Changes in cardiovascular autonomic control induced by chronic inhibition of acetylcholinesterase during pyridostigmine or donepezil treatment of spontaneously hypertensive rats. Eur J Pharmacol 2024; 971:176526. [PMID: 38537804 DOI: 10.1016/j.ejphar.2024.176526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Chronic treatment with acetylcholinesterase inhibitors may be a promising therapeutic strategy for treatment of cardiovascular diseases. The aim of our study was to analyze the changes in blood pressure (BP) and heart rate (HR) during 14 days of treatment with two different acetylcholinesterase inhibitors - pyridostigmine (PYR) having only peripheral effects or donepezil (DON) with both peripheral and central effects. In addition, we studied their effects on the cardiovascular response to restraint stress and on sympathovagal control of HR in normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). SHR were characterized by elevated BP and increased low-frequency component of systolic BP variability (LF-SBPV), but their cardiac vagal tone and HR variability (HRV) were reduced compared with WKY. Chronic treatment with either acetylcholinesterase inhibitor decreased HR and increased HRV in both strains. PYR treatment slightly decreased BP and LF-SBPV in the dark phase of the day. Neither drug significantly altered BP response to stress, but PYR attenuated HR increase during restraint stress. Regarding sympathovagal balance, acute methylatropine administration caused a greater increase of HR in WKY than in SHR. Chronic PYR or DON treatment enhanced HRV and HR response to methylatropine (vagal tone) in WKY, whereas PYR but not DON treatment potentiated HRV and vagal tone in SHR. In conclusion, vagal tone was lower in SHR compared with WKY, but was enhanced by chronic PYR treatment in both strains. Thus, chronic peripheral, but not central, acetylcholinesterase inhibition has major effects on HR and its variability in both normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Michal Bencze
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Almos Boroš
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Behuliak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Vavřínová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
6
|
Shahim B, Xu H, Haugaa K, Zetterberg H, Jurga J, Religa D, Eriksdotter M. Cholinesterase inhibitors are associated with reduced mortality in patients with Alzheimer's disease and previous myocardial infarction. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:128-136. [PMID: 38224338 DOI: 10.1093/ehjcvp/pvad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Cholinesterase inhibitors (ChEIs) are the first-line symptomatic pharmacologic treatment for patients with mild-to-moderate Alzheimer's disease (AD). Although the target organ for this group of drugs is the brain, inhibition of the enzyme may affect cardiac function through vagotonic and anti-inflammatory effects. OBJECTIVE To assess the impact of ChEIs on outcomes in patients with AD who have experienced myocardial infarction (MI) prior to the AD diagnosis. METHODS Patients who had experienced MI before they were diagnosed with AD or Alzheimer's mixed dementia between 2008 and 2018 were identified from the Swedish Dementia Registry (SveDem, www.svedem.se), which was linked to the National Patient Registry to obtain data on MI and mortality. Cox proportional hazards regression model among a propensity score-matched dataset was performed to assess the association between ChEI treatment and clinical outcomes. RESULTS Of 3198 patients with previous MI and a diagnosis of AD or mixed dementia, 1705 (53%) were on treatment with ChEIs. Patients treated with ChEIs were more likely to be younger and have a better overall cardiovascular (CV) risk profile. The incidence rate of all-cause death (per 1000 patient-years) in the propensity-matched cohort of 1016 ChEI users and 1016 non-users was 168.6 in patients on treatment with ChEIs compared with 190.7 in patients not on treatment with ChEIs. In this propensity-matched cohort, treatment with ChEIs was associated with a significantly lower risk of all-cause death (adjusted hazard ratio 0.81, 95% confidence interval 0.71-0.92) and a greater reduction with higher doses of ChEIs. While in the unadjusted analysis, ChEIs were associated with a lower risk of both CV and non-CV death, only the association with non-CV death remained significant after accounting for baseline differences. CONCLUSION Treatment with ChEIs was associated with a significantly reduced risk of all-cause death, driven by lower rates of non-CV death in a nationwide cohort of patients with previous MI and a diagnosis of AD or mixed dementia. These associations were greater with higher ChEI doses. CONDENSED ABSTRACT We assessed the association between cholinesterase inhibitors (ChEIs) and clinical outcomes in a nationwide cohort of patients with previous myocardial infarction (MI) and a diagnosis of Alzheimer's disease (AD) or mixed dementi. In propensity-matched analysis, treatment with ChEIs was associated with a 19% reduction in all-cause death driven by non-cardiovascular death. The reduction in all-cause death was greater with the higher doses of ChEIs.
Collapse
Affiliation(s)
- Bahira Shahim
- Heart, Vascular and Neuro Theme, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hong Xu
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Kristina Haugaa
- Heart, Vascular and Neuro Theme, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, 41345 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 41345 Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong SAR, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Juliane Jurga
- Heart, Vascular and Neuro Theme, Karolinska University Hospital, 17177 Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Dorota Religa
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, 17177 Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Maria Eriksdotter
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, 17177 Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
7
|
Hsieh MJ, Lee CH, Chen DY, Wu CL, Huang YT, Chang SH. Cholinesterase inhibitors associated with lower rate of mortality in dementia patients with heart failure: a nationwide propensity weighting study. Clin Auton Res 2023; 33:715-726. [PMID: 37935929 DOI: 10.1007/s10286-023-00982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/07/2023] [Indexed: 11/09/2023]
Abstract
PURPOSE This study investigates the potential impact of cholinesterase inhibitors (ChEIs) on patients with heart failure (HF) and dementia. ChEIs are known to boost acetylcholine levels and benefit cognition in patients with dementia; however, their effect on patients with HF is uncertain. This study aimed to assess whether cardiovascular events and mortality among patients with HF and dementia are altered by ChEI therapy. METHODS Data from the National Health Insurance Research Database in Taiwan were retrospectively analyzed. Dementia patients diagnosed with HF were followed for 5 years until all-cause mortality, cardiovascular mortality, hospitalization for worsening HF, or the end of the study. Multivariable Cox models and inverse probability of treatment weighting (IPTW) were employed. RESULTS Out of 20,848 patients with dementia, 5138 had HF. Among them, 726 were ChEI users and 4412 were non-users. Based on IPTW, the ChEI users had significantly lower estimated risks of all-cause mortality [hazard ratio (HR) 0.43; 95% confidence interval (CI) 0.38-0.49, p < 0.001] and cardiovascular mortality (HR 0.41; 95% CI 0.33-0.53, p < 0.001) compared with the non-users, but there was no significant difference in hospitalization for worsening HF (HR 0.73; 95% CI 0.51-1.05, p = 0.091) after 5 years. The survival benefits of ChEIs were consistent across subgroups. CONCLUSIONS The results of this retrospective cohort study suggest that ChEIs may be beneficial in reducing all-cause and cardiovascular mortality in patients with dementia with HF. Further research is needed to validate these findings and explore the potential benefits of ChEIs in all patients with HF, including those without dementia.
Collapse
Affiliation(s)
- Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, No 5, Fuxing St. Guishan Dist., Taoyuan, 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, No 5, Fuxing St. Guishan Dist., Taoyuan, 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Dong-Yi Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, No 5, Fuxing St. Guishan Dist., Taoyuan, 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Ling Wu
- Centre for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yu-Tung Huang
- Centre for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, No 5, Fuxing St. Guishan Dist., Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Centre for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Lu Y, Chen K, Zhao W, Hua Y, Bao S, Zhang J, Wu T, Ge G, Yu Y, Sun J, Zhang F. Magnetic vagus nerve stimulation alleviates myocardial ischemia-reperfusion injury by the inhibition of pyroptosis through the M 2AChR/OGDHL/ROS axis in rats. J Nanobiotechnology 2023; 21:421. [PMID: 37957640 PMCID: PMC10644528 DOI: 10.1186/s12951-023-02189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion (I/R) injury is accompanied by an imbalance in the cardiac autonomic nervous system, characterized by over-activated sympathetic tone and reduced vagal nerve activity. In our preceding study, we pioneered the development of the magnetic vagus nerve stimulation (mVNS) system. This system showcased precise vagus nerve stimulation, demonstrating remarkable effectiveness and safety in treating myocardial infarction. However, it remains uncertain whether mVNS can mitigate myocardial I/R injury and its specific underlying mechanisms. In this study, we utilized a rat model of myocardial I/R injury to delve into the therapeutic potential of mVNS against this type of injury. RESULTS Our findings revealed that mVNS treatment led to a reduction in myocardial infarct size, a decrease in ventricular fibrillation (VF) incidence and a curbing of inflammatory cytokine release. Mechanistically, mVNS demonstrated beneficial effects on myocardial I/R injury by inhibiting NLRP3-mediated pyroptosis through the M2AChR/OGDHL/ROS axis. CONCLUSIONS Collectively, these outcomes highlight the promising potential of mVNS as a treatment strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Yao Lu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, No.199 Jiefang South Road, Xuzhou, 221009, PR China
| | - Kaiyan Chen
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Wei Zhao
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Yan Hua
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Siyuan Bao
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Jian Zhang
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Tianyu Wu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Gaoyuan Ge
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Yue Yu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Jianfei Sun
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| | - Fengxiang Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China.
| |
Collapse
|
9
|
Khuanjing T, Maneechote C, Ongnok B, Prathumsap N, Arinno A, Chunchai T, Arunsak B, Chattipakorn SC, Chattipakorn N. Vagus nerve stimulation and acetylcholinesterase inhibitor donepezil provide cardioprotection against trastuzumab-induced cardiotoxicity in rats by attenuating mitochondrial dysfunction. Biochem Pharmacol 2023; 217:115836. [PMID: 37816466 DOI: 10.1016/j.bcp.2023.115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Trastuzumab (Trz) is a targeted anticancer drug for human epidermal growth factor receptor 2 (HER2)-positive tumors, as Trz-induced cardiotoxicity (TIC) is commonly observed in Trz-treated patients. Since cardiac autonomic modulation with electrical vagus nerve stimulation (VNS) and acetylcholinesterase (AChE) inhibitors exerts cardioprotection against various heart diseases, the comparative effects of electrical VNS and an AChE inhibitor (donepezil) on cardiac and mitochondrial functions and programmed cell death pathways in TIC are not known. VNS devices were implanted in thirty-two male Wistar rats and were divided into 4 groups: (i) Control-Sham (CSham), (ii) Trz-Sham (TSham), (iii) Trz-VNS (TVNS), and (iv) Trz-donepezil (TDPZ). Rats in the Trz-treated groups were intraperitoneally injected with Trz (4 mg/kg/day) for 7 days, while CSham rats were injected with NSS. VNS devices were activated in the TVNS rats during the 7-day Trz treatment, but not in the sham rats. Rats in the TDPZ group received donepezil orally (5 mg/kg/day) for 7 days. At the end, left ventricular (LV) function and heart rate variability were evaluated, and heart tissue was collected for biochemical and histological analysis. Trz rats showed LV dysfunction and cardiac sympathovagal imbalance. In addition, mitochondrial function and dynamics were impaired in TIC rats. Trz also increased cardiomyocyte death by inducing apoptosis, pyroptosis, and ferroptosis. Electrical VNS and donepezil had similar efficacy in alleviating cardiac mitochondrial dysfunction, dynamic imbalances, and cardiomyocyte death, leading to improved LV function. These findings suggested that parasympathetic activation via either VNS or an AChE inhibitor could be a promising therapeutic intervention against TIC.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
10
|
Boden K, Pongratanakul P, Vogel J, Willemsen N, Jülke EM, Balitzki J, Tinel H, Truebel H, Dinh W, Mondritzki T. Telemetric long-term assessment of autonomic function in experimental heart failure. J Pharmacol Toxicol Methods 2023; 124:107480. [PMID: 37979811 DOI: 10.1016/j.vascn.2023.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Despite medical advances in the treatment of heart failure (HF), mortality remains high. It has been shown that alterations of the autonomic-nervous-system (ANS) are associated with HF progression and increased mortality. Preclinical models are required to evaluate the effectiveness of novel treatments modulating the autonomic imbalance. However, there are neither standard models nor diagnostic methods established to measure sympathetic and parasympathetic outflow continuously. Digital technologies might be a reliable tool for continuous assessment of autonomic function within experimental HF models. Telemetry devices and pacemakers were implanted in beagle dogs (n = 6). HF was induced by ventricular pacing. Cardiac hemodynamics, plasma catecholamines and parameter describing the ANS ((heart rate variability (HRV), deceleration capacity (DC), and baroreflex sensitivity (BRS)) were continuously measured at baseline, during HF conditions and during recovery phase. The pacing regime led to the expected depression in cardiac hemodynamics. Telemetric assessment of the ANS function showed a significant decrease in Total power, DC, and Heart rate recovery, whereas BRS was not significantly affected. In contrast, plasma catecholamines, revealing sympathetic activity, showed only a significant increase in the recovery phase. A precise diagnostic of the ANS in the context of HF is becoming increasingly important in experimental models. Up to now, these models have shown many limitations. Here we present the continuous assessment of the autonomic function in the progression of HF. We could demonstrate the advantage of highly resolved ANS measurement by HR and BP derived parameters due to early detection of an autonomic imbalance in the progression of HF.
Collapse
Affiliation(s)
- Katharina Boden
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany
| | | | - Julia Vogel
- University of Witten/Herdecke, Witten, Germany; Clinic for Cardiology and Angiology, West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Nicola Willemsen
- Bayer AG, Wuppertal, Germany; University of Duisburg-, Essen, Germany
| | | | - Jakob Balitzki
- Bayer AG, Wuppertal, Germany; Hannover Medical School, Hannover, Germany
| | | | | | - Wilfried Dinh
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany; Department of Cardiology, HELIOS Clinic Wuppertal, University Hospital Witten/Herdecke, Wuppertal, Germany
| | - Thomas Mondritzki
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany.
| |
Collapse
|
11
|
Khuanjing T, Maneechote C, Ongnok B, Prathumsap N, Arinno A, Chunchai T, Arunsak B, Chattipakorn SC, Chattipakorn N. Acetylcholinesterase inhibition protects against trastuzumab-induced cardiotoxicity through reducing multiple programmed cell death pathways. Mol Med 2023; 29:123. [PMID: 37691124 PMCID: PMC10494358 DOI: 10.1186/s10020-023-00686-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/12/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Trastuzumab (Trz)-induced cardiotoxicity (TIC) is one of the most common adverse effects of targeted anticancer agents. Although oxidative stress, inflammation, mitochondrial dysfunction, apoptosis, and ferroptosis have been identified as potential mechanisms underlying TIC, the roles of pyroptosis and necroptosis under TIC have never been investigated. It has been shown that inhibition of acetylcholinesterase function by using donepezil exerts protective effects in various heart diseases. However, it remains unknown whether donepezil exerts anti-cardiotoxic effects in rats with TIC. We hypothesized that donepezil reduces mitochondrial dysfunction, inflammation, oxidative stress, and cardiomyocyte death, leading to improved left ventricular (LV) function in rats with TIC. METHODS Male Wistar rats were randomly assigned to be Control or Trz groups (Trz 4 mg/kg/day, 7 days, I.P.). Rats in Trz groups were assigned to be co-treated with either drinking water (Trz group) or donepezil 5 mg/kg/day (Trz + DPZ group) via oral gavage for 7 days. Cardiac function, heart rate variability (HRV), and biochemical parameters were evaluated. RESULTS Trz-treated rats had impaired LV function, HRV, mitochondrial function, and increased inflammation and oxidative stress, leading to apoptosis, ferroptosis, and pyroptosis. Donepezil co-treatment effectively decreased those adverse effects of TIC, resulting in improved LV function. An in vitro study revealed that the cytoprotective effects of donepezil were abolished by a muscarinic acetylcholine receptor (mAChR) antagonist. CONCLUSIONS Donepezil exerted cardioprotection against TIC via attenuating mitochondrial dysfunction, oxidative stress, inflammation, and cardiomyocyte death, leading to improved LV function through mAChR activation. This suggests that donepezil could be a novel intervention strategy in TIC.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
12
|
Salau VF, Erukainure OL, Olofinsan KA, Msomi NZ, Ijomone OK, Islam MS. Ferulic acid mitigates diabetic cardiomyopathy via modulation of metabolic abnormalities in cardiac tissues of diabetic rats. Fundam Clin Pharmacol 2023; 37:44-59. [PMID: 35841183 PMCID: PMC10086938 DOI: 10.1111/fcp.12819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 01/25/2023]
Abstract
Cardiovascular abnormalities have been reported as a major contributor of diabetic mortality. The protective effect of ferulic acid on diabetic cardiomyopathy in fructose-streptozotocin induced type 2 diabetes (T2D) rat model was elucidated in this study. Type 2 diabetic rats were treated by oral administration of low (150 mg/kg b.w) and high (300 mg/kg b.w) doses of ferulic acid. Metformin was used as the antidiabetic drug. Rats were humanely euthanized after 5 weeks of treatment, and their blood and hearts were collected. Induction of T2D depleted the levels of reduced glutathione, glycogen, and HDL-cholesterol and the activities of superoxide dismutase, catalase, ENTPDase, and 5'nucleotidase. It simultaneously triggered increase in the levels of malondialdehyde, total cholesterol, triglyceride, LDL-cholesterol, creatinine kinase-MB as well as activities of acetylcholinesterase, angiotensin converting enzyme (ACE), ATPase, glucose-6-phopsphatase, fructose-1,6-bisphophatase, glycogen phosphorylase, and lipase. T2D induction further revealed an obvious degeneration of cardiac muscle morphology. However, treatment with ferulic acid markedly reversed the levels and activities of these biomarkers with concomitant improvement in myocardium structural morphology, which had favorable comparison with the standard drug, metformin. Additionally, T2D induction led to the depletion of 40%, 75%, and 33% of fatty acids, fatty esters, and steroids, respectively, with concomitant generation of eicosenoic acid, gamolenic acid, and vitamin E. Ferulic acid treatment restored eicosanoic acid, 2-hydroxyethyl ester, with concomitant generation of 6-octadecenoic acid, (Z)-, cis-11-eicosenoic acid, tridecanedioic acid, octadecanoic acid, 2-hydroxyethyl ester, ethyl 3-hydroxytridecanoate, dipalmitin, cholesterol isocaproate, cholest-5-ene, 3-(1-oxobuthoxy)-, cholesta-3,5-diene. These results suggest the cardioprotective potential of ferulic acid against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | | | - Nontokozo Z Msomi
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Olayemi K Ijomone
- Department of Anatomy, University of Medical Sciences, Ondo City, Nigeria
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Hsieh MJ, Chen DY, Lee CH, Wu CL, Chen YJ, Huang YT, Chang SH. Association Between Cholinesterase Inhibitors and New-Onset Heart Failure in Patients With Alzheimer's Disease: A Nationwide Propensity Score Matching Study. Front Cardiovasc Med 2022; 9:831730. [PMID: 35369359 PMCID: PMC8966646 DOI: 10.3389/fcvm.2022.831730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/11/2022] [Indexed: 01/08/2023] Open
Abstract
Background Autonomic nervous dysfunction is a shared clinical feature in Alzheimer's disease (AD) and heart failure (HF). Cholinesterase inhibitors (ChEIs) are widely used autonomic modulators in patients with AD, but their primary preventive benefit on new-onset HF is still uncertain. Objective This study examined whether ChEIs have a primary preventive effect on new-onset HF in patients with AD. Methods This propensity score matching (PSM) study was conducted using data from the National Health Insurance Research Database of Taiwan for 1995 to 2017. Certificated patients with AD and without a history of HF were divided into ChEI (donepezil, rivastigmine, or galantamine) users or nonusers. The primary endpoint was new-onset HF, and the secondary endpoints were myocardial infarction and cardiovascular death after 10-year follow-up. Results After screening 16,042 patients, 7,411 patients were enrolled, of whom 668 were ChEI users and 1,336 were nonusers after 1:2 PSM. Compared with nonusers, ChEI users exhibited a significantly lower incidence of new-onset HF (HR 0.48; 95% CI 0.34–0.68, p < 0.001) and cardiovascular death (HR 0.55; 95% CI 0.37–0.82, p = 0.003) but not of myocardial infarction (HR 1.09; 95% CI 0.52–1.62, p = 0.821) after 10-year follow-up. The preventive benefit of ChEI use compared with Non-use (controls) was consistent across all exploratory subgroups without statistically significant treatment-by-subgroup interactions. Conclusions Prescription of ChEIs may provide a preventive benefit associated with lower incidence of new-onset HF in patients with AD after 10-year follow-up.
Collapse
Affiliation(s)
- Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Dong-Yi Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Ling Wu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ying-Jen Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Geriatrics and General Internal Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Tung Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Taipei, Taiwan
- *Correspondence: Yu-Tung Huang
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Taipei, Taiwan
- Shang-Hung Chang
| |
Collapse
|
14
|
Wang H, Zong Y, Han Y, Zhao J, Liu H, Liu Y. Compared of efficacy and safety of high-dose donepezil vs standard-dose donepezil among elderly patients with Alzheimer’s disease: a systemic review and meta-analysis. Expert Opin Drug Saf 2022; 21:407-415. [DOI: 10.1080/14740338.2022.2027905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Hecheng Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, Liao Ning, China
| | - Yu Zong
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, Liao Ning, China
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, Liao Ning, China
| | - Jing Zhao
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, Liao Ning, China
| | - Hongqun Liu
- Medical School, Changchun sci-tech university, Changchun, 130600, Ji Lin, China
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, Liao Ning, China
| |
Collapse
|
15
|
He X, Liu J, Zang WJ. Mitochondrial homeostasis and redox status in cardiovascular diseases: Protective role of the vagal system. Free Radic Biol Med 2022; 178:369-379. [PMID: 34906725 DOI: 10.1016/j.freeradbiomed.2021.12.255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria participate in essential cellular functions, including energy production, metabolism, redox homeostasis regulation, intracellular Ca2+ handling, apoptosis, and cell fate determination. Disruption of mitochondrial homeostasis under pathological conditions results in mitochondrial reactive oxygen species (ROS) generation and energy insufficiency, which further disturb mitochondrial and cellular homeostasis in a deleterious loop. Mitochondrial redox status has therefore become a potential target for therapy against cardiovascular diseases. In this review, we highlight recent progress in determining the roles of mitochondrial processes in regulating mitochondrial redox status, including mitochondrial dynamics (fusion-fission pathways), mitochondrial cristae remodeling, mitophagy, biogenesis, and mitochondrion-organelle interactions (endoplasmic reticulum-mitochondrion interactions, nucleus-mitochondrion communication, and lipid droplet-mitochondrion interactions). The strategies that activate vagal system include direct vagal activation (electrical vagal stimulation and administration of vagal neurotransmitter acetylcholine) and pharmacological modulation (choline and cholinesterase inhibitors). The vagal system plays an important role in maintaining mitochondrial homeostasis and suppressing mitochondrial oxidative stress by promoting mitochondrial biogenesis and mitophagy, moderating mitochondrial fusion and fission, strengthening mitochondrial cristae stabilization, regulating mitochondrion-organelle interactions, and inhibiting mitochondrial Ca2+ overload. Therefore, enhancement of vagal activity can maintain mitochondrial homeostasis and represents a promising therapeutic strategy for cardiovascular diseases.
Collapse
Affiliation(s)
- Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; University of Health and Rehabilitation Sciences, Qingdao, PR China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.
| |
Collapse
|
16
|
Indorf P, Patzak A, Lichtenberger F. Drug metabolism in animal models and humans: Translational aspects and chances for individual therapy. Acta Physiol (Oxf) 2021; 233:e13734. [PMID: 34637592 DOI: 10.1111/apha.13734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick Indorf
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Vegetative Physiology Charité—Universitätsmedizin Berlin Berlin Germany
| | - Andreas Patzak
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Vegetative Physiology Charité—Universitätsmedizin Berlin Berlin Germany
| | - Falk‐Bach Lichtenberger
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Vegetative Physiology Charité—Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
17
|
Khuanjing T, Ongnok B, Maneechote C, Siri-Angkul N, Prathumsap N, Arinno A, Chunchai T, Arunsak B, Chattipakorn SC, Chattipakorn N. Acetylcholinesterase inhibitor ameliorates doxorubicin-induced cardiotoxicity through reducing RIP1-mediated necroptosis. Pharmacol Res 2021; 173:105882. [PMID: 34530122 DOI: 10.1016/j.phrs.2021.105882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022]
Abstract
Doxorubicin is an effective chemotherapeutic drug, but causes cardiotoxicity which limits its use. Oxidative stress, mitochondrial dysfunction, and inflammation are closely implicated in doxorubicin-induced cardiotoxicity (DIC). Necroptosis, a new form of programmed cell death, was also upregulated by doxorubicin, leading to cardiomyocyte death and cardiac dysfunction. Donepezil, an acetylcholinesterase inhibitor, exerted cardioprotection against various heart diseases. However, its cardioprotective effects in DIC are still unknown. We hypothesized that donepezil reduces reactive oxygen species (ROS) production, mitochondrial dysfunction, mitochondrial dynamics imbalance, necroptosis, and apoptosis in DIC rats. Male Wistar rats were assigned to receive either normal saline solution (n = 8) or doxorubicin (3 mg/kg, 6 doses, n = 16) via intraperitoneal injection. The doxorubicin-treated rats were further subdivided to receive either sterile drinking water (n = 8) or donepezil (5 mg/kg/day, p.o., n = 8) for 30 days. At the end of the experiment, the left ventricular (LV) function was determined. Serum and heart tissue were collected to evaluate histological and biochemical parameters. Doxorubicin-treated rats exhibited higher levels of inflammatory cytokines and ROS production. Doxorubicin also impaired mitochondrial function, mitochondrial dynamics balance, mitophagy, and autophagy, which culminated in apoptosis. Furthermore, doxorubicin increased necroptosis as evidenced by increased phosphorylation of receptor-interacting protein kinase 1, receptor-interacting protein kinase 3, and mixed-lineage kinase domain-like. All of these mechanisms led to LV dysfunction. Interestingly, donepezil alleviated mitochondrial injury, mitophagy, autophagy, and cardiomyocyte death, leading to improved LV function in DIC. In conclusion, donepezil attenuated DIC-induced LV dysfunction by reducing mitochondrial damage, mitophagy, autophagy, apoptosis, and necroptosis.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
18
|
Cavalcante GL, Brognara F, Oliveira LVDC, Lataro RM, Durand MDT, Oliveira AP, Nóbrega ACL, Salgado HC, Sabino JPJ. Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol (Oxf) 2021; 232:e13663. [PMID: 33884761 DOI: 10.1111/apha.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Systemic arterial hypertension and heart failure are cardiovascular diseases that affect millions of individuals worldwide. They are characterized by a change in the autonomic nervous system balance, highlighted by an increase in sympathetic activity associated with a decrease in parasympathetic activity. Most therapeutic approaches seek to treat these diseases by medications that attenuate sympathetic activity. However, there is a growing number of studies demonstrating that the improvement of parasympathetic function, by means of pharmacological or electrical stimulation, can be an effective tool for the treatment of these cardiovascular diseases. Therefore, this review aims to describe the advances reported by experimental and clinical studies that addressed the potential of cholinergic stimulation to prevent autonomic and cardiovascular imbalance in hypertension and heart failure. Overall, the published data reviewed demonstrate that the use of central or peripheral acetylcholinesterase inhibitors is efficient to improve the autonomic imbalance and hemodynamic changes observed in heart failure and hypertension. Of note, the baroreflex and the vagus nerve activation have been shown to be safe and effective approaches to be used as an alternative treatment for these cardiovascular diseases. In conclusion, pharmacological and electrical stimulation of the parasympathetic nervous system has the potential to be used as a therapeutic tool for the treatment of hypertension and heart failure, deserving to be more explored in the clinical setting.
Collapse
Affiliation(s)
- Gisele L. Cavalcante
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
- Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Fernanda Brognara
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Lucas Vaz de C. Oliveira
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | - Renata M. Lataro
- Department of Physiological Sciences Center of Biological Sciences Federal University of Santa Catarina Florianópolis SP Brazil
| | | | - Aldeidia P. Oliveira
- Graduate Program in Pharmacology Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | | | - Helio C. Salgado
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - João Paulo J. Sabino
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| |
Collapse
|
19
|
Impact of Peripheral α7-Nicotinic Acetylcholine Receptors on Cardioprotective Effects of Donepezil in Chronic Heart Failure Rats. Cardiovasc Drugs Ther 2020; 35:877-888. [PMID: 32860618 DOI: 10.1007/s10557-020-07062-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE Pharmacological modulation of parasympathetic activity with donepezil, an acetylcholinesterase inhibitor, improves the long-term survival of rats with chronic heart failure (CHF) after myocardial infarction (MI). However, its mechanism is not well understood. The α7-nicotinic acetylcholine receptor (α7-nAChR) reportedly plays an important role in the cholinergic anti-inflammatory pathway. The purpose of this study was to examine whether blockade of α7-nAChR, either centrally or peripherally, affects cardioprotection by donepezil during CHF. METHODS One-week post-MI, the surviving rats were implanted with an electrocardiogram or blood pressure transmitter to monitor hemodynamics continuously. Seven days after implantation, the MI rats (n = 74) were administered donepezil in drinking water or were untreated (UT). Donepezil-treated MI rats were randomly assigned to the following four groups: peripheral infusion of saline (SPDT) or an α7-nAChR antagonist methyllycaconitine (α7PDT), and brain infusion of saline (SBDT) or the α7-nAChR antagonist (α7BDT). RESULTS After the 4-week treatment, the role of α7-nAChR was evaluated using hemodynamic parameters, neurohumoral states, and histological and morphological assessment. Between the peripheral infusion groups, α7PDT (vs. SPDT) showed significantly increased heart weight and cardiac fibrosis, deteriorated hemodynamics, increased plasma neurohumoral and cytokine levels, and significantly decreased microvessel density (as assessed by anti-von Willebrand factor-positive cells). In contrast, between the brain infusion groups, α7BDT (vs. SBDT) showed no changes in either cardiac remodeling or hemodynamics. CONCLUSION Peripheral blockade of α7-nAChR significantly attenuated the cardioprotective effects of donepezil in CHF rats, whereas central blockade did not. This suggests that peripheral activation of α7-nAChR plays an important role in cholinergic pharmacotherapy for CHF.
Collapse
|
20
|
Cacabelos R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer's disease. Expert Opin Drug Metab Toxicol 2020; 16:673-701. [PMID: 32520597 DOI: 10.1080/17425255.2020.1779700] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cholinergic dysfunction, demonstrated in the late 1970s and early 1980s, led to the introduction of acetylcholinesterase inhibitors (AChEIs) in 1993 (Tacrine) to enhance cholinergic neurotransmission as the first line of treatment against Alzheimer's disease (AD). The new generation of AChEIs, represented by Donepezil (1996), Galantamine (2001) and Rivastigmine (2002), is the only treatment for AD to date, together with Memantine (2003). AChEIs are not devoid of side-effects and their cost-effectiveness is limited. An option to optimize the correct use of AChEIs is the implementation of pharmacogenetics (PGx) in the clinical practice. AREAS COVERED (i) The cholinergic system in AD, (ii) principles of AD PGx, (iii) PGx of Donepezil, Galantamine, Rivastigmine, Huperzine and other treatments, and (iv) practical recommendations. EXPERT OPINION The most relevant genes influencing AChEI efficacy and safety are APOE and CYPs. APOE-4 carriers are the worst responders to AChEIs. With the exception of Rivastigmine (UGT2B7, BCHE-K), the other AChEIs are primarily metabolized via CYP2D6, CYP3A4, and UGT enzymes, with involvement of ABC transporters and cholinergic genes (CHAT, ACHE, BCHE, SLC5A7, SLC18A3, CHRNA7) in most ethnic groups. Defective variants may affect the clinical response to AChEIs. PGx geno-phenotyping is highly recommended prior to treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine , Bergondo, Corunna, Spain
| |
Collapse
|
21
|
Cacabelos R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int J Mol Sci 2020; 21:E3059. [PMID: 32357528 PMCID: PMC7246738 DOI: 10.3390/ijms21093059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic interventions for patients with dementia involve anti-dementia drugs to improve cognition, psychotropic drugs for the treatment of behavioral disorders (BDs), and different categories of drugs for concomitant disorders. Demented patients may take >6-10 drugs/day with the consequent risk for drug-drug interactions and adverse drug reactions (ADRs >80%) which accelerate cognitive decline. The pharmacoepigenetic machinery is integrated by pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes redundantly and promiscuously regulated by epigenetic mechanisms. CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 geno-phenotypes are involved in the metabolism of over 90% of drugs currently used in patients with dementia, and only 20% of the population is an extensive metabolizer for this tetragenic cluster. ADRs associated with anti-dementia drugs, antipsychotics, antidepressants, anxiolytics, hypnotics, sedatives, and antiepileptic drugs can be minimized by means of pharmacogenetic screening prior to treatment. These drugs are substrates, inhibitors, or inducers of 58, 37, and 42 enzyme/protein gene products, respectively, and are transported by 40 different protein transporters. APOE is the reference gene in most pharmacogenetic studies. APOE-3 carriers are the best responders and APOE-4 carriers are the worst responders; likewise, CYP2D6-normal metabolizers are the best responders and CYP2D6-poor metabolizers are the worst responders. The incorporation of pharmacogenomic strategies for a personalized treatment in dementia is an effective option to optimize limited therapeutic resources and to reduce unwanted side-effects.
Collapse
Affiliation(s)
- Ramon Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165-Bergondo, Corunna, Spain
| |
Collapse
|
22
|
Nasser MI, Zhu S, Huang H, Zhao M, Wang B, Ping H, Geng Q, Zhu P. Macrophages: First guards in the prevention of cardiovascular diseases. Life Sci 2020; 250:117559. [PMID: 32198051 DOI: 10.1016/j.lfs.2020.117559] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVD) remain one of the leading causes of mortality worldwide, especially in developing countries. It is widely known that severe inflammation can lead to atherosclerosis, which can cause various downstream pathologies, including myocardial injury and viral myocarditis. To date, several strategies have been proposed to prevent and cure CVD. The use of targeting macrophages has emerged as one of the most effective therapeutic approaches. Macrophages play a crucial role in eliminating senescent and dead cells while maintaining myocardial electrical activity and repairing myocardial injury. They also contribute to tissue repair and remodeling and plaque stabilization. Targeting macrophage pathways can, therefore, be advantageous in CVD care since it can lead to decreased aggregation of mononuclear cells at the injured site in the heart. Furthermore, it inhibits the development of pro-inflammatory factors, facilitates cholesterol outflow, and reduces the lipid concentration. More in-depth studies are still needed to formulate a comprehensive classification of phenotypes for different macrophages and determine their roles in the pathogenesis of CVD. In this review, we summarize the recent advances in the understanding of the role of macrophages in the prevention and cure of CVD.
Collapse
Affiliation(s)
- M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Huanlei Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Bo Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Huang Ping
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Qingshan Geng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
23
|
Li M, Zheng C, Kawada T, Inagaki M, Uemura K, Sugimachi M. Intracerebroventricular infusion of donepezil prevents cardiac remodeling and improves the prognosis of chronic heart failure rats. J Physiol Sci 2020; 70:11. [PMID: 32066375 PMCID: PMC7026239 DOI: 10.1186/s12576-020-00739-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/04/2020] [Indexed: 12/22/2022]
Abstract
Oral administration of donepezil, a centrally acting acetylcholinesterase inhibitor, improves the survival of rats with chronic heart failure (CHF). The mechanisms of cardioprotective effects of donepezil, however, remain totally unknown. To elucidate potential mechanisms, we examined whether central microinfusion of donepezil would exert cardioprotection. Intracerebroventricular microinfusion pumps with cerebroventricular cannula were implanted in rats with myocardial infarction. The rats were randomly divided into central saline treatment (CST) and central donepezil treatment (CDT) groups. We evaluated cardiac remodeling and function after a 6-week treatment and examined the 160-day survival rate. Compared to the CST, the CDT markedly improved the 160-day survival rate (68% vs. 32%, P = 0.002) through the prevention of cardiac remodeling and the lowering of plasma catecholamine, brain natriuretic peptide, and angiotensin II. These results suggest that the central mechanism plays an important role in the cardioprotective effects of donepezil.
Collapse
Affiliation(s)
- Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Can Zheng
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masashi Inagaki
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|