1
|
Persello A, Dupas T, Vergnaud A, Blangy-Letheule A, Aillerie V, Erraud A, Guilloux Y, Denis M, Lauzier B. Changes in transcriptomic landscape with macronutrients intake switch are independent from O-GlcNAcylation levels in heart throughout postnatal development in rats. Heliyon 2024; 10:e30526. [PMID: 38737268 PMCID: PMC11087977 DOI: 10.1016/j.heliyon.2024.e30526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Background Dietary intake and metabolism variations are associated with molecular changes and more particularly in the transcriptome. O-GlcNAcylation is a post-translational modification added and removed respectively by OGT and OGA. The UDP-GlcNAc, the substrate of OGT, is produced by UAP1 and UAP1L1. O-GlcNAcylation is qualified as a metabolic sensor and is involved in the modulation of gene expression. We wanted to unveil if O-GlcNAcylation is linking metabolic transition to transcriptomic changes and to highlight modifications of O-GlcNAcylation during the postnatal cardiac development. Methods Hearts were harvested from rats at birth (D0), before (D12) and after suckling to weaning transition with normal (D28) or delayed weaning diet from D12 to D28 (D28F). O-GlcNAcylation levels and proteins expression were evaluated by Western blot. Cardiac transcriptomes were evaluated via 3'SRP analysis. Results Cardiac O-GlcNAcylation levels and nucleocytoplasmic OGT (ncOGT) were decreased at D28 while full length OGA (OGA) was increased. O-GlcNAcylation levels did not changed with delayed weaning diet while ncOGT and OGA were respectively increased and decreased. Uapl1 was the only O-GlcNAcylation-related gene identified as differentially expressed throughout postnatal development. Conclusion Macronutrients switch promotes changes in the transcriptome landscape that are independent from O-GlcNAcylation levels. UAP1 and UAP1L1 are not the main regulator element of O-GlcNAcylation throughout postnatal development.
Collapse
Affiliation(s)
- Antoine Persello
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Thomas Dupas
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Amandine Vergnaud
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | | | - Virginie Aillerie
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Angélique Erraud
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Yannick Guilloux
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000, Nantes, France
| | - Manon Denis
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Benjamin Lauzier
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| |
Collapse
|
2
|
Shi RR, He TQ, Lin MS, Xu J, Gu JH, Xu H. O-GlcNAcylation in ischemic diseases. Front Pharmacol 2024; 15:1377235. [PMID: 38783961 PMCID: PMC11113977 DOI: 10.3389/fphar.2024.1377235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Protein glycosylation is an extensively studied field, with the most studied forms being oxygen or nitrogen-linked N-acetylglucosamine (O-GlcNAc or N-GlcNAc) glycosylation. Particular residues on proteins are targeted by O-GlcNAcylation, which is among the most intricate post-translational modifications. Significantly contributing to an organism's proteome, it influences numerous factors affecting protein stability, function, and subcellular localization. It also modifies the cellular function of target proteins that have crucial responsibilities in controlling pathways related to the central nervous system, cardiovascular homeostasis, and other organ functions. Under conditions of acute stress, changes in the levels of O-GlcNAcylation of these proteins may have a defensive function. Nevertheless, deviant O-GlcNAcylation nullifies this safeguard and stimulates the advancement of several ailments, the prognosis of which relies on the cellular milieu. Hence, this review provides a concise overview of the function and comprehension of O-GlcNAcylation in ischemia diseases, aiming to facilitate the discovery of new therapeutic targets for efficient treatment, particularly in patients with diabetes.
Collapse
Affiliation(s)
- Rui-Rui Shi
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Tian-Qi He
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Meng-Si Lin
- Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jin-Hua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| |
Collapse
|
3
|
Dupas T, Vergnaud A, Pelé T, Blangy-Letheule A, Aillerie V, Bouaud M, Erraud A, Maillard A, Hassoun D, Persello A, Lecomte J, Rivière M, Tessier A, Leroux AA, Rozec B, Denis M, Lauzier B. O-GlcNAcylation levels remain stable regardless of the anaesthesia in healthy rats. Sci Rep 2024; 14:10669. [PMID: 38724577 PMCID: PMC11082205 DOI: 10.1038/s41598-024-61445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Anaesthetics are used daily in human and veterinary medicine as well as in scientific research. Anaesthetics have an impact on cell homeostasis especially through modulation of protein post-translational modifications. O-GlcNAcylation, a ubiquitous post-translational modification, plays a role in many biological processes. The aims of this study were to evaluate whether (1) anaesthesia influences O-GlcNAcylation and (2) its stimulation affects physiological parameters. Male Wistar rats (n = 38) were anaesthetized with ketamine-xylazine or isoflurane. They randomly received either an intravenous injection of Ringer's lactate or NButGT (10mg/kg) in order to increase O-GlcNAcylation levels. One hour after induction of anaesthesia, haemodynamic parameters and plasmatic markers were evaluated. Heart, brain and lungs were harvested and O-GlcNAcylation levels and O-GlcNAc-related enzymes were evaluated by western blot. Cardiac and pulmonary O-GlcNAcylation levels and cardiac, cerebral and pulmonary O-GlcNAc associated enzyme expression were not impacted with anaesthesia. Compared with ketamine-xylazine, isoflurane had a lower impact on blood pressure, heart rate and glycaemia. Pharmacological stimulation of O-GlcNAcylation by NButGT did not affect the physiological parameters. This study offers unprecedented insights into the regulation of O-GlcNAcylation and O-GlcNAc related enzymes during anaesthesia. Pharmacological stimulation of O-GlcNAcylation over a 1-h period did not disrupt the physiological balance in healthy anaesthetized rats.
Collapse
Affiliation(s)
- Thomas Dupas
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France.
| | - Amandine Vergnaud
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Thomas Pelé
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | | | - Virginie Aillerie
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Martin Bouaud
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Angélique Erraud
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Anaïs Maillard
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Dorian Hassoun
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Antoine Persello
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Jules Lecomte
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Matthieu Rivière
- Faculté des Sciences et des Techniques, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, CNRS, Université de Nantes, Nantes, France
| | - Arnaud Tessier
- Faculté des Sciences et des Techniques, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, CNRS, Université de Nantes, Nantes, France
| | - Aurélia A Leroux
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
- Oniris, 44300, Nantes, France
| | - Bertrand Rozec
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Manon Denis
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Benjamin Lauzier
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| |
Collapse
|
4
|
Dupas T, Lauzier B, McGraw S. O-GlcNAcylation: the sweet side of epigenetics. Epigenetics Chromatin 2023; 16:49. [PMID: 38093337 PMCID: PMC10720106 DOI: 10.1186/s13072-023-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Histones display a wide variety of post-translational modifications, including acetylation, methylation, and phosphorylation. These epigenetic modifications can influence chromatin structure and function without altering the DNA sequence. Histones can also undergo post-translational O-GlcNAcylation, a rather understudied modification that plays critical roles in almost all biological processes and is added and removed by O-linked N-acetylglucosamine transferase and O-GlcNAcase, respectively. This review provides a current overview of our knowledge of how O-GlcNAcylation impacts the histone code both directly and by regulating other chromatin modifying enzymes. This highlights the pivotal emerging role of O-GlcNAcylation as an essential epigenetic marker.
Collapse
Affiliation(s)
- Thomas Dupas
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| | - Benjamin Lauzier
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada
- Nantes Université, CNRS, INSERM, L'institut du Thorax, 44000, Nantes, France
| | - Serge McGraw
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
5
|
Ye L, Ding W, Xiao D, Jia Y, Zhao Z, Ao X, Wang J. O-GlcNAcylation: cellular physiology and therapeutic target for human diseases. MedComm (Beijing) 2023; 4:e456. [PMID: 38116061 PMCID: PMC10728774 DOI: 10.1002/mco2.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAcylation) is a distinctive posttranslational protein modification involving the coordinated action of O-GlcNAc transferase and O-GlcNAcase, primarily targeting serine or threonine residues in various proteins. This modification impacts protein functionality, influencing stability, protein-protein interactions, and localization. Its interaction with other modifications such as phosphorylation and ubiquitination is becoming increasingly evident. Dysregulation of O-GlcNAcylation is associated with numerous human diseases, including diabetes, nervous system degeneration, and cancers. This review extensively explores the regulatory mechanisms of O-GlcNAcylation, its effects on cellular physiology, and its role in the pathogenesis of diseases. It examines the implications of aberrant O-GlcNAcylation in diabetes and tumorigenesis, highlighting novel insights into its potential role in cardiovascular diseases. The review also discusses the interplay of O-GlcNAcylation with other protein modifications and its impact on cell growth and metabolism. By synthesizing current research, this review elucidates the multifaceted roles of O-GlcNAcylation, providing a comprehensive reference for future studies. It underscores the potential of targeting the O-GlcNAcylation cycle in developing novel therapeutic strategies for various pathologies.
Collapse
Affiliation(s)
- Lin Ye
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- The Affiliated Hospital of Qingdao UniversityQingdao Medical CollegeQingdao UniversityQingdaoChina
| | - Dandan Xiao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yi Jia
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Zhonghao Zhao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
6
|
Packer M. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart. Eur J Heart Fail 2023; 25:1199-1212. [PMID: 37434410 DOI: 10.1002/ejhf.2972] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023] Open
Abstract
The development of the foetal heart is driven by increased glucose uptake and activation of mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1α (HIF-1α), which drives glycolysis. In contrast, the healthy adult heart is governed by sirtuin-1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK), which promote fatty-acid oxidation and the substantial mitochondrial ATP production required for survival in a high-workload normoxic environment. During cardiac injury, the heart recapitulates the foetal signalling programme, which (although adaptive in the short term) is highly deleterious if sustained for long periods of time. Prolonged increases in glucose uptake in cardiomyocytes under stress leads to increased flux through the hexosamine biosynthesis pathway; its endproduct - uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) - functions as a critical nutrient surplus sensor. UDP-GlcNAc drives the post-translational protein modification known as O-GlcNAcylation, which rapidly and reversibly modifies thousands of intracellular proteins. Both O-GlcNAcylation and phosphorylation act at serine/threonine residues, but whereas phosphorylation is regulated by hundreds of specific kinases and phosphatases, O-GlcNAcylation is regulated by only two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which adds or removes GlcNAc (N-acetylglucosamine), respectively, from target proteins. Recapitulation of foetal programming in heart failure (regardless of diabetes) is accompanied by marked increases in O-GlcNAcylation, both experimentally and clinically. Heightened O-GlcNAcylation in the heart leads to impaired calcium kinetics and contractile derangements, arrhythmias related to activation of voltage-gated sodium channels and Ca2+ /calmodulin-dependent protein kinase II, mitochondrial dysfunction, and maladaptive hypertrophy, microvascular dysfunction, fibrosis and cardiomyopathy. These deleterious effects can be prevented by suppression of O-GlcNAcylation, which can be achieved experimentally by upregulation of AMPK and SIRT1 or by pharmacological inhibition of OGT or stimulation of OGA. The effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on the heart are accompanied by reduced O-GlcNAcylation, and their cytoprotective effects are reportedly abrogated if their action to suppress O-GlcNAcylation is blocked. Such an action may represent one of the many mechanisms by which enhanced AMPK and SIRT1 signalling following SGLT2 inhibition leads to cardiovascular benefits. These observations, taken collectively, suggest that UDP-GlcNAc functions as a critical nutrient surplus sensor (which acting in concert with mTOR and HIF-1α) can promote the development of cardiomyopathy.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
7
|
Zhu WZ, Palazzo T, Zhou M, Ledee D, Olson HM, Paša-Tolić L, Olson AK. First comprehensive identification of cardiac proteins with putative increased O-GlcNAc levels during pressure overload hypertrophy. PLoS One 2022; 17:e0276285. [PMID: 36288343 PMCID: PMC9605332 DOI: 10.1371/journal.pone.0276285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Protein posttranslational modifications (PTMs) by O-GlcNAc globally rise during pressure-overload hypertrophy (POH). However, a major knowledge gap exists on the specific proteins undergoing changes in O-GlcNAc levels during POH primarily because this PTM is low abundance and easily lost during standard mass spectrometry (MS) conditions used for protein identification. Methodologies have emerged to enrich samples for O-GlcNAcylated proteins prior to MS analysis. Accordingly, our goal was to identify the specific proteins undergoing changes in O-GlcNAc levels during POH. We used C57/Bl6 mice subjected to Sham or transverse aortic constriction (TAC) to create POH. From the hearts, we labelled the O-GlcNAc moiety with tetramethylrhodamine azide (TAMRA) before sample enrichment by TAMRA immunoprecipitation (IP). We used LC-MS/MS to identify and quantify the captured putative O-GlcNAcylated proteins. We identified a total of 700 putative O-GlcNAcylated proteins in Sham and POH. Two hundred thirty-three of these proteins had significantly increased enrichment in POH over Sham suggesting higher O-GlcNAc levels whereas no proteins were significantly decreased by POH. We examined two MS identified metabolic enzymes, CPT1B and the PDH complex, to validate by immunoprecipitation. We corroborated increased O-GlcNAc levels during POH for CPT1B and the PDH complex. Enzyme activity assays suggests higher O-GlcNAcylation increases CPT1 activity and decreases PDH activity during POH. In summary, we generated the first comprehensive list of proteins with putative changes in O-GlcNAc levels during POH. Our results demonstrate the large number of potential proteins and cellular processes affected by O-GlcNAc and serve as a guide for testing specific O-GlcNAc-regulated mechanisms during POH.
Collapse
Affiliation(s)
- Wei Zhong Zhu
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Teresa Palazzo
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Mowei Zhou
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Dolena Ledee
- Seattle Children’s Research Institute, Seattle, Washington, United States of America,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Heather M. Olson
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Aaron K. Olson
- Seattle Children’s Research Institute, Seattle, Washington, United States of America,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America,* E-mail:
| |
Collapse
|
8
|
Beneficial Effects of O-GlcNAc Stimulation in a Young Rat Model of Sepsis: Beyond Modulation of Gene Expression. Int J Mol Sci 2022; 23:ijms23126430. [PMID: 35742875 PMCID: PMC9224386 DOI: 10.3390/ijms23126430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
The young population, which is particularly at risk of sepsis, is, paradoxically, rarely studied. Acute stimulation of O-GlcNAcylation, a post-translational modification involved in metabolic regulation, cell survival and stress response, is beneficial in young rats with sepsis. Considering that sepsis impacts the gene expression profile and that O-GlcNAcylation is a regulator of transcription, the aims of this study are to (i) unveil beneficial mechanisms of O-GlcNAcylation and (ii) decipher the relationship between O-GlcNAcylation and transcription during sepsis. Endotoxemic challenge was induced in 28-day-old male rats using a lipopolysaccharide injection (E. coli O111:B4, 20 mg·kg−1) and compared to control rats (NaCl 0.9%). One hour after, rats were assigned to no therapy or fluidotherapy (NaCl 0.9%, 10 mL.kg−1) ± NButGT (10 mg·kg−1) to stimulate O-GlcNAc levels. Cardiac O-GlcNAcylation levels were evaluated via Western blot and gene transcription using 3′ SRP analysis. Lipopolysaccharide injection favorizes inflammatory state with the overexpression of genes involved in the NF-κB, JAK/STAT and MAPK pathways. NButGT treatment increased cardiac O-GlcNAcylation levels (p < 0.05). Yet, the mRNA expression was not impacted two hours after fluidotherapy or NButGT treatment. In conclusion, O-GlcNAc stimulation-induced beneficial effects are not dependent on the gene expression profile at the early phase of sepsis.
Collapse
|
9
|
The Endothelial Dysfunction Could Be a Cause of Heart Failure with Preserved Ejection Fraction Development in a Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7377877. [PMID: 35633883 PMCID: PMC9132705 DOI: 10.1155/2022/7377877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
50% of patients with heart failure have a preserved ejection fraction (HFpEF). Numerous studies have investigated the pathophysiological mechanisms of HFpEF and have shown that endothelial dysfunction plays an important role in HFpEF. Yet no studies answered whether endothelial dysfunction could be the cause or is the consequence of HFpEF. Recently, we have shown that the endothelial overexpression of human β3-adrenoreceptor (Tgβ3) in rats leads to the slow development of diastolic dysfunction over ageing. The aim of the study is to decipher the involvement of endothelial dysfunction in the HFpEF development. For that, we investigated endothelial and cardiac function in 15-, 30-, and 45-week-old wild-type (WT) and Tgβ3 rats. The aortic expression of •NO synthase (NOS) isoforms was evaluated by Western blot. Finally, electron paramagnetic resonance measurements were performed on aortas to evaluate •NO and O2•- production. Vascular reactivity was altered as early as 15 weeks of age in response to isoproterenol in Tgβ3 aortas and mesenteric arteries. NOS1 (neuronal NOS) expression was higher in the Tgβ3 aorta at 30 and 45 weeks of age (30 weeks: WT:
; Tgβ3:
; 45 weeks: WT:
; Tgβ3:
;
). Interestingly, the endothelial NOS (NOS3) monomer form is increased in Tgβ3 rats at 45 weeks of age (ratio NOS3 dimer/NOS3 monomer; WT:
; Tgβ3:
;
). Aortic •NO production was increased by NOS2 (inducible NOS) at 15 weeks of age in Tgβ3 rats (+52% vs. WT). Aortic O2•- production was increased in Tgβ3 rats at 30 and 45 weeks of age (+75% and+76%, respectively, vs. WT,
). We have shown that endothelial dysfunction and oxidative stress are present as early as 15 weeks of age and therefore conclude that endothelial dysfunction could be a cause of HFpEF development.
Collapse
|
10
|
Emanuelli G, Zoccarato A, Reumiller CM, Papadopoulos A, Chong M, Rebs S, Betteridge K, Beretta M, Streckfuss-Bömeke K, Shah AM. A roadmap for the characterization of energy metabolism in human cardiomyocytes derived from induced pluripotent stem cells. J Mol Cell Cardiol 2022; 164:136-147. [PMID: 34923199 DOI: 10.1016/j.yjmcc.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 01/16/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are an increasingly employed model in cardiac research and drug discovery. As cellular metabolism plays an integral role in determining phenotype, the characterization of the metabolic profile of hiPSC-CM during maturation is crucial for their translational application. In this study we employ a combination of methods including extracellular flux, 13C-glucose enrichment and targeted metabolomics to characterize the metabolic profile of hiPSC-CM during their maturation in culture from 6 weeks, up to 12 weeks. Results show a progressive remodeling of pathways involved in energy metabolism and substrate utilization along with an increase in sarcomere regularity. The oxidative capacity of hiPSC-CM and particularly their ability to utilize fatty acids increased with time. In parallel, relative glucose oxidation was reduced while glutamine oxidation was maintained at similar levels. There was also evidence of increased coupling of glycolysis to mitochondrial respiration, and away from glycolytic branch pathways at later stages of maturation. The rate of glycolysis as assessed by lactate production was maintained at both stages but with significant alterations in proximal glycolytic enzymes such as hexokinase and phosphofructokinase. We observed a progressive maturation of mitochondrial oxidative capacity at comparable levels of mitochondrial content between these time-points with enhancement of mitochondrial network structure. These results show that the metabolic profile of hiPSC-CM is progressively restructured, recapitulating aspects of early post-natal heart development. This would be particularly important to consider when employing these cell model in studies where metabolism plays an important role.
Collapse
Affiliation(s)
- Giulia Emanuelli
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom; Clinic for Cardiology and Pneumonology, University Medical Center Göttingen, Germany and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Anna Zoccarato
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.
| | - Christina M Reumiller
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Angelos Papadopoulos
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Mei Chong
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Sabine Rebs
- Clinic for Cardiology and Pneumonology, University Medical Center Göttingen, Germany and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Kai Betteridge
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Matteo Beretta
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumonology, University Medical Center Göttingen, Germany and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.
| |
Collapse
|
11
|
Cairns M, Joseph D, Essop MF. The dual role of the hexosamine biosynthetic pathway in cardiac physiology and pathophysiology. Front Endocrinol (Lausanne) 2022; 13:984342. [PMID: 36353238 PMCID: PMC9637655 DOI: 10.3389/fendo.2022.984342] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
The heart is a highly metabolic organ with extensive energy demands and hence relies on numerous fuel substrates including fatty acids and glucose. However, oxidative stress is a natural by-product of metabolism that, in excess, can contribute towards DNA damage and poly-ADP-ribose polymerase activation. This activation inhibits key glycolytic enzymes, subsequently shunting glycolytic intermediates into non-oxidative glucose pathways such as the hexosamine biosynthetic pathway (HBP). In this review we provide evidence supporting the dual role of the HBP, i.e. playing a unique role in cardiac physiology and pathophysiology where acute upregulation confers cardioprotection while chronic activation contributes to the onset and progression of cardio-metabolic diseases such as diabetes, hypertrophy, ischemic heart disease, and heart failure. Thus although the HBP has emerged as a novel therapeutic target for such conditions, proposed interventions need to be applied in a context- and pathology-specific manner to avoid any potential drawbacks of relatively low cardiac HBP activity.
Collapse
Affiliation(s)
- Megan Cairns
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Danzil Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- *Correspondence: M. Faadiel Essop,
| |
Collapse
|
12
|
Denis M, Dupas T, Persello A, Dontaine J, Bultot L, Betus C, Pelé T, Dhot J, Erraud A, Maillard A, Montnach J, Leroux AA, Bigot-Corbel E, Vertommen D, Rivière M, Lebreton J, Tessier A, Waard MD, Bertrand L, Rozec B, Lauzier B. An O-GlcNAcylomic Approach Reveals ACLY as a Potential Target in Sepsis in the Young Rat. Int J Mol Sci 2021; 22:9236. [PMID: 34502162 PMCID: PMC8430499 DOI: 10.3390/ijms22179236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis in the young population, which is particularly at risk, is rarely studied. O-GlcNAcylation is a post-translational modification involved in cell survival, stress response and metabolic regulation. O-GlcNAc stimulation is beneficial in adult septic rats. This modification is physiologically higher in the young rat, potentially limiting the therapeutic potential of O-GlcNAc stimulation in young septic rats. The aim is to evaluate whether O-GlcNAc stimulation can improve sepsis outcome in young rats. Endotoxemic challenge was induced in 28-day-old rats by lipopolysaccharide injection (E. Coli O111:B4, 20 mg·kg-1) and compared to control rats (NaCl 0.9%). One hour after lipopolysaccharide injection, rats were randomly assigned to no therapy, fluidotherapy (NaCl 0.9%, 10 mL·kg-1) ± NButGT (10 mg·kg-1) to increase O-GlcNAcylation levels. Physiological parameters and plasmatic markers were evaluated 2h later. Finally, untargeted mass spectrometry was performed to map cardiac O-GlcNAcylated proteins. Lipopolysaccharide injection induced shock with a decrease in mean arterial pressure and alteration of biological parameters (p < 0.05). NButGT, contrary to fluidotherapy, was associated with an improvement of arterial pressure (p < 0.05). ATP citrate lyase was identified among the O-GlcNAcylated proteins. In conclusion, O-GlcNAc stimulation improves outcomes in young septic rats. Interestingly, identified O-GlcNAcylated proteins are mainly involved in cellular metabolism.
Collapse
Affiliation(s)
- Manon Denis
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
- Pediatric Intensive Care Unit, CHU de Nantes, F-44000 Nantes, France
| | - Thomas Dupas
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Antoine Persello
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
- InFlectis BioScience, F-44000 Nantes, France
| | - Justine Dontaine
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, B-1200 Brussels, Belgium; (J.D.); (L.B.); (L.B.)
| | - Laurent Bultot
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, B-1200 Brussels, Belgium; (J.D.); (L.B.); (L.B.)
| | - Charlotte Betus
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Thomas Pelé
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Justine Dhot
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
- Sanofi R&D, 1 Avenue Pierre Brossolette, F-44000 Chilly Mazarin, France
| | - Angélique Erraud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Anaïs Maillard
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Jérôme Montnach
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Aurélia A. Leroux
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
- University Animal Hospital, Oniris Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation Nantes Atlantique, F-44000 Nantes, France
| | | | - Didier Vertommen
- Université Catholique de Louvain, de Duve Institute, Mass Spectrometry Platform, B-1200 Brussels, Belgium;
| | - Matthieu Rivière
- Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, Faculté des Sciences et des Techniques, F-44000 Nantes, France; (M.R.); (J.L.); (A.T.)
| | - Jacques Lebreton
- Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, Faculté des Sciences et des Techniques, F-44000 Nantes, France; (M.R.); (J.L.); (A.T.)
| | - Arnaud Tessier
- Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, Faculté des Sciences et des Techniques, F-44000 Nantes, France; (M.R.); (J.L.); (A.T.)
| | - Michel De Waard
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Luc Bertrand
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, B-1200 Brussels, Belgium; (J.D.); (L.B.); (L.B.)
- WELBIO, B-1200 Brussels, Belgium
| | - Bertrand Rozec
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| | - Benjamin Lauzier
- Université de Nantes, CHU Nantes, CNRS, INSERM, l’Institut du Thorax, F-44000 Nantes, France; (M.D.); (T.D.); (A.P.); (C.B.); (T.P.); (J.D.); (A.E.); (A.M.); (J.M.); (A.A.L.); (M.D.W.); (B.R.)
| |
Collapse
|
13
|
Dupas T, Denis M, Dontaine J, Persello A, Bultot L, Erraud A, Vertommen D, Bouchard B, Tessier A, Rivière M, Lebreton J, Bigot‐Corbel E, Montnach J, De Waard M, Gauthier C, Burelle Y, Olson AK, Rozec B, Des Rosiers C, Bertrand L, Issad T, Lauzier B. Protein O-GlcNAcylation levels are regulated independently of dietary intake in a tissue and time-specific manner during rat postnatal development. Acta Physiol (Oxf) 2021; 231:e13566. [PMID: 33022862 PMCID: PMC7988603 DOI: 10.1111/apha.13566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Aim Metabolic sources switch from carbohydrates in utero, to fatty acids after birth and then a mix once adults. O‐GlcNAcylation (O‐GlcNAc) is a post‐translational modification considered as a nutrient sensor. The purpose of this work was to assess changes in protein O‐GlcNAc levels, regulatory enzymes and metabolites during the first periods of life and decipher the impact of O‐GlcNAcylation on cardiac proteins. Methods Heart, brain and liver were harvested from rats before and after birth (D‐1 and D0), in suckling animals (D12), after weaning with a standard (D28) or a low‐carbohydrate diet (D28F), and adults (D84). O‐GlcNAc levels and regulatory enzymes were evaluated by western blots. Mass spectrometry (MS) approaches were performed to quantify levels of metabolites regulating O‐GlcNAc and identify putative cardiac O‐GlcNAcylated proteins. Results Protein O‐GlcNAc levels decrease drastically and progressively from D‐1 to D84 (13‐fold, P < .05) in the heart, whereas the changes were opposite in liver and brain. O‐GlcNAc levels were unaffected by weaning diet in any tissues. Changes in expression of enzymes and levels of metabolites regulating O‐GlcNAc were tissue‐dependent. MS analyses identified changes in putative cardiac O‐GlcNAcylated proteins, namely those involved in the stress response and energy metabolism, such as ACAT1, which is only O‐GlcNAcylated at D0. Conclusion Our results demonstrate that protein O‐GlcNAc levels are not linked to dietary intake and regulated in a time and tissue‐specific manner during postnatal development. We have identified by untargeted MS putative proteins with a particular O‐GlcNAc signature across the development process suggesting specific role of these proteins.
Collapse
Affiliation(s)
- Thomas Dupas
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Manon Denis
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Justine Dontaine
- Université catholique de LouvainInstitut de Recherche Expérimentale et CliniquePole of Cardiovascular Research Brussels Belgium
| | - Antoine Persello
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
- InFlectis BioScience Nantes France
| | - Laurent Bultot
- Université catholique de LouvainInstitut de Recherche Expérimentale et CliniquePole of Cardiovascular Research Brussels Belgium
| | - Angélique Erraud
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Didier Vertommen
- Université catholique de Louvainde Duve InstituteMass Spectrometry Platform Brussels Belgium
| | - Bertrand Bouchard
- Montreal Heart Institute Research Center and Department of Nutrition Université de Montréal Montreal Québec Canada
| | - Arnaud Tessier
- Faculté des Sciences et des Techniques Université de NantesCNRSChimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM)UMR CNRS 6230 Nantes France
| | - Matthieu Rivière
- Faculté des Sciences et des Techniques Université de NantesCNRSChimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM)UMR CNRS 6230 Nantes France
| | - Jacques Lebreton
- Faculté des Sciences et des Techniques Université de NantesCNRSChimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM)UMR CNRS 6230 Nantes France
| | | | - Jérôme Montnach
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Michel De Waard
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Chantal Gauthier
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Yan Burelle
- Interdisciplinary School of Health Sciences Faculty of Health Sciences and Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ottawa ON Canada
| | - Aaron K. Olson
- Division of Cardiology Department of Pediatrics University of Washington Seattle WA98105USA
- Seattle Children’s Research Institute Seattle WA98101USA
| | - Bertrand Rozec
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| | - Christine Des Rosiers
- Montreal Heart Institute Research Center and Department of Nutrition Université de Montréal Montreal Québec Canada
| | - Luc Bertrand
- Université catholique de LouvainInstitut de Recherche Expérimentale et CliniquePole of Cardiovascular Research Brussels Belgium
- WELBIO Brussels Belgium
| | - Tarik Issad
- Université de ParisINSERM U1016CNRS UMR 8104 Paris France
| | - Benjamin Lauzier
- Université de NantesCHU NantesCNRSINSERM, l’institut du thorax Nantes France
| |
Collapse
|