1
|
Xu J, Zhang C, Wu K, Qian Y, Hu W. A comparative analysis of sivelestat sodium hydrate and ulinastatin combination therapy in the treatment of sepsis with acute respiratory distress syndrome. BMC Pulm Med 2024; 24:283. [PMID: 38886709 PMCID: PMC11184757 DOI: 10.1186/s12890-024-03083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE This comparative analysis aimed to investigate the efficacy of Sivelestat Sodium Hydrate (SSH) combined with Ulinastatin (UTI) in the treatment of sepsis with acute respiratory distress syndrome (ARDS). METHODS A control group and an observation group were formed with eighty-four cases of patients with sepsis with ARDS, with 42 cases in each group. The control group was intravenously injected with UTI based on conventional treatment, and the observation group was injected with SSH based on the control group. Both groups were treated continuously for 7 days, and the treatment outcomes and efficacy of both groups were observed. The Murray Lung Injury Score (MLIS), Sequential Organ Failure Assessment (SOFA), and Acute Physiology and Chronic Health Evaluation II (APACHE II) were compared. Changes in respiratory function, inflammatory factors, and oxidative stress indicators were assessed. The occurrence of adverse drug reactions was recorded. RESULTS The total effective rate in the observation group (95.24%) was higher than that in the control group (80.95%) (P < 0.05). The mechanical ventilation time, intensive care unit (ICU) hospitalization time, and duration of antimicrobial medication in the observation group were shorter and multiple organ dysfunction syndrome incidence was lower than those in the control group (P < 0.05). The mortality rate of patients in the observation group (35.71%) was lower than that in the control group (52.38%), but there was no statistically significant difference between the two groups (P > 0.05). MLIS, SOFA, and APACHE II scores in the observation group were lower than the control group (P < 0.05). After treatment, respiratory function, inflammation, and oxidative stress were improved in the observation group (P < 0.05). Adverse reactions were not significantly different between the two groups (P > 0.05). CONCLUSION The combination of SSH plus UTI improves lung injury and pulmonary ventilation function, and reduces inflammation and oxidative stress in patients with sepsis and ARDS.
Collapse
Affiliation(s)
- Jian Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China
- Wuxi Medical College of Jiangnan University, No. 1215, Guangrui Road, Liangxi District, Wuxi, 214000, Jiangsu, China
| | - Chenfei Zhang
- Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Keren Wu
- Department of Respiratory and Critical Care Medicine, the 904 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Wuxi, 214000, Jiangsu, China
| | - Yanhua Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
- Wuxi Medical College of Jiangnan University, No. 1215, Guangrui Road, Liangxi District, Wuxi, 214000, Jiangsu, China.
| | - Wei Hu
- Department of Pharmacy, the 904 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, No. 101, Xingyuan Road, Liangxi District, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
2
|
Chen J, Zhou X, Dai N, Liu X, Liu S, Zhang H, Kong L, Ma H. The Long-Acting Serine Protease Inhibitor mPEG-SPA-MDSPI16 Alleviates LPS-Induced Acute Lung Injury. Int J Mol Sci 2024; 25:4567. [PMID: 38674153 PMCID: PMC11049807 DOI: 10.3390/ijms25084567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Anti-inflammatory drugs have become the second-largest class of common drugs after anti-infective drugs in animal clinical care worldwide and are often combined with other drugs to treat fever and viral diseases caused by various factors. In our previous study, a novel serine protease inhibitor-encoding gene (MDSPI16) with improved anti-inflammatory activity was selected from a constructed suppressive subducted hybridization library of housefly larvae. This protein could easily induce an immune response in animals and had a short half-life, which limited its wide application in the clinic. Thus, in this study, mPEG-succinimidyl propionate (mPEG-SPA, Mw = 5 kDa) was used to molecularly modify the MDSPI16 protein, and the modified product mPEG-SPA-MDSPI16, which strongly inhibited elastase production, was purified. It had good stability and safety, low immunogenicity, and a long half-life, and the IC50 for elastase was 86 nM. mPEG-SPA-MDSPI16 effectively inhibited the expression of neutrophil elastase and decreased ROS levels. Moreover, mPEG-SPA-MDSPI16 exerted anti-inflammatory effects by inhibiting activation of the NF-κB signaling pathway and the MAPK signaling pathway in neutrophils. It also exerted therapeutic effects on a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. In summary, mPEG-SPA-MDSPI16 is a novel anti-inflammatory protein modified with PEG that has the advantages of safety, nontoxicity, improved stability, and strong anti-inflammatory activity in vivo and in vitro and is expected to become an effective anti-inflammatory drug.
Collapse
Affiliation(s)
- Jingrui Chen
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China;
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Xinjun Zhou
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
| | - Nan Dai
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
| | - Xiaoyu Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
| | - Shihan Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
| | - Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China;
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Hongxia Ma
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China;
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (N.D.); (S.L.); (H.Z.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| |
Collapse
|
3
|
Xian M, Xu J, Zheng Y, Zhang L, Zhao J, Chen J, Li S, Lin L, Zhong Y, Yang Z, Xie T, Huang L, Ding Y. Network Pharmacology and Experimental Verification Reveal the Regulatory Mechanism of Chuanbeimu in Treating Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:799-813. [PMID: 38529478 PMCID: PMC10962663 DOI: 10.2147/copd.s442191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a common respiratory disorder in pulmonology. Chuanbeimu (CBM) is a traditional Chinese medicinal herb for treating COPD and has been widely utilized in clinical practice. However, the mechanism of CBM in the treatment of COPD remains incompletely understood. This study aims to investigate the underlying therapeutic mechanism of CBM for COPD using network pharmacology and experimental approaches. Methods Active ingredients and their targets were obtained from the Traditional Chinese Medicine Systems Pharmacology database. COPD-associated targets were retrieved from the GeneCards database. The common targets for CBM and COPD were identified through Venn diagram analysis. Protein-protein interaction (PPI) networks and disease-herb-ingredient-target networks were constructed. Subsequently, the results of the network pharmacology were validated by molecular docking and in vitro experiments. Results Seven active ingredients and 32 potential targets for CBM were identified as closely associated with COPD. The results of the disease-herb-ingredient-target network and PPI network showed that peimisine emerged as the core ingredient, and SRC, ADRB2, MMP2, and NOS3 were the potential targets for CBM in treating COPD. Molecular docking analysis confirmed that peimisine exhibited high binding affinity with SRC, ADRB2, MMP2, and NOS3. In vitro experiments demonstrated that peimisine significantly upregulated the expression of ADRB2 and NOS3 and downregulated the expression of SRC and MMP2. Conclusion These findings indicate that CBM may modulate the expression of SRC, ADRB2, MMP2, and NOS3, thereby exerting a protective effect against COPD.
Collapse
Affiliation(s)
- Meilan Xian
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
- Department of General Diseases, Hainan Chengmei Hospital, Haikou, Hainan, 570300, People’s Republic of China
| | - Jiaoyuan Xu
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
- Department of General Clinic, Longbo Health Hospital, Lingao County, Hainan, 571800, People’s Republic of China
| | - Yamei Zheng
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Jie Zhao
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Jie Chen
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Siguang Li
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Lingsang Lin
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
| | - Yi Zhong
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Zehua Yang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Tian Xie
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Linhui Huang
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Yipeng Ding
- Department of General Practice, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, Hainan, 570311, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| |
Collapse
|
4
|
Ren J, Deng G, Li R, Jin X, Liu J, Li J, Gao Y, Zhang J, Wang X, Wang G. Possible pharmacological targets and mechanisms of sivelestat in protecting acute lung injury. Comput Biol Med 2024; 170:108080. [PMID: 38306776 DOI: 10.1016/j.compbiomed.2024.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a life-threatening syndrome induced by various diseases, including COVID-19. In the progression of ALI/ARDS, activated neutrophils play a central role by releasing various inflammatory mediators, including elastase. Sivelestat is a selective and competitive inhibitor of neutrophil elastase. Although its protective effects on attenuating ALI/ARDS have been confirmed in several models of lung injury, clinical trials have presented inconsistent results on its therapeutic efficacy. Therefore, in this report, we used a network pharmacology approach coupled with animal experimental validation to unravel the concrete therapeutic targets and biological mechanisms of sivelestat in treating ALI/ARDS. In bioinformatic analyses, we found 118 targets of sivelestat against ALI/ARDS, and identified six hub genes essential for sivelestat treatment of ALI/ARDS, namely ERBB2, GRB2, PTK2, PTPN11, ESR1, and CCND1. We also found that sivelestat targeted several genes expressed in human lung microvascular endothelial cells after lipopolysaccharide (LPS) treatment at 4 h (ICAM-1, PTGS2, RND1, BCL2A1, TNF, CA2, and ADORA2A), 8 h (ICAM-1, PTGS2, RND1, BCL2A1, MMP1, BDKRB1 and SLC40A1), and 24 h (ICAM-1). Further animal experiments showed that sivelestat was able to attenuate LPS-induced ALI by inhibiting the overexpression of ICAM-1, VCAM-1, and PTGS2 and increasing the phosphorylation of PTK2. Taken together, the bioinformatic findings and experimentative data indicate that the therapeutic effects of sivelestat against ALI/ARDS mainly focus on the early stage of ALI/ARDS by pharmacological modulation of inflammatory reaction, vascular endothelial injury, and cell apoptosis-related molecules.
Collapse
Affiliation(s)
- Jiajia Ren
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guorong Deng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruohan Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuting Jin
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jueheng Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiamei Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaochuang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China.
| |
Collapse
|
5
|
Huang Q, Le Y, Li S, Bian Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir Res 2024; 25:30. [PMID: 38218783 PMCID: PMC10788036 DOI: 10.1186/s12931-024-02678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition associated with critically ill patients, characterized by bilateral chest radiographical opacities with refractory hypoxemia due to noncardiogenic pulmonary edema. Despite significant advances, the mortality of ARDS remains unacceptably high, and there are still no effective targeted pharmacotherapeutic agents. With the outbreak of coronavirus disease 19 worldwide, the mortality of ARDS has increased correspondingly. Comprehending the pathophysiology and the underlying molecular mechanisms of ARDS may thus be essential to developing effective therapeutic strategies and reducing mortality. To facilitate further understanding of its pathogenesis and exploring novel therapeutics, this review provides comprehensive information of ARDS from pathophysiology to molecular mechanisms and presents targeted therapeutics. We first describe the pathogenesis and pathophysiology of ARDS that involve dysregulated inflammation, alveolar-capillary barrier dysfunction, impaired alveolar fluid clearance and oxidative stress. Next, we summarize the molecular mechanisms and signaling pathways related to the above four aspects of ARDS pathophysiology, along with the latest research progress. Finally, we discuss the emerging therapeutic strategies that show exciting promise in ARDS, including several pharmacologic therapies, microRNA-based therapies and mesenchymal stromal cell therapies, highlighting the pathophysiological basis and the influences on signal transduction pathways for their use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China
| | - Yue Le
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| | - Yi Bian
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
6
|
Yuan Q, Jiang YW, Ma TT, Fang QH, Pan L. Retraction Note: Attenuating effect of Ginsenoside Rb1 on LPS-induced lung injury in rats. J Inflamm (Lond) 2023; 20:42. [PMID: 38031094 PMCID: PMC10685634 DOI: 10.1186/s12950-023-00368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Qing Yuan
- Intensive Care Unit of Geriatrics, Beijing Shijitan Hospital Affiliated to Capital Medicine University, No.10 Tieyi Road, Beijing, Haidian District, 100038, People's Republic of China
| | - Yan-Wen Jiang
- Department of Pulmonary and Critical Care, Medicine, Beijing Shijitan Hospital Affiliated to Capital Medicine University, No.10 Tieyi Road, Beijing, Haidian District, 100038, People's Republic of China
| | - Ting-Ting Ma
- Department of Geriatrics, Beijing Shijitan Hospital Affiliated to Capital Medicine University, No.10 Tieyi Road, Beijing, Haidian District, 100038, People's Republic of China
| | - Qiu-Hong Fang
- Department of Pulmonary and Critical Care, Medicine, Beijing Shijitan Hospital Affiliated to Capital Medicine University, No.10 Tieyi Road, Beijing, Haidian District, 100038, People's Republic of China
| | - Lei Pan
- Department of Geriatrics, Beijing Shijitan Hospital Affiliated to Capital Medicine University, No.10 Tieyi Road, Beijing, Haidian District, 100038, People's Republic of China.
| |
Collapse
|
7
|
Okamoto M, Mizuno R, Kawada K, Itatani Y, Kiyasu Y, Hanada K, Hirata W, Nishikawa Y, Masui H, Sugimoto N, Tamura T, Inamoto S, Sakai Y, Obama K. Neutrophil Extracellular Traps Promote Metastases of Colorectal Cancers through Activation of ERK Signaling by Releasing Neutrophil Elastase. Int J Mol Sci 2023; 24:ijms24021118. [PMID: 36674635 PMCID: PMC9867023 DOI: 10.3390/ijms24021118] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) play important roles in host immunity, as there is increasing evidence of their contribution to the progression of several types of cancers even though their role in colorectal cancers (CRCs) remains unclear. To investigate the clinical relevance of NETs in CRCs, we examined the expression of citrullinated histone H3 using immunohistochemistry and preoperative serum myeloperoxidase-DNA complexes in CRC patients using an enzyme-linked immunosorbent assay. High expression of intratumoral or systemic NETs was found to correlate with poor relapse-free survival (RFS), for which it is an independent prognostic factor. In vitro investigations of CRC cells (HCT116, HT29) revealed that NETs did not affect their proliferation but did promote the migration of CRC cells mediated by neutrophil elastase (NE) released during NETosis to increase extracellular signal-regulated kinase (ERK) activity. In vivo experiments using nude mice (KSN/slc) revealed that NE inhibition suppressed liver metastases in CRC cells, although it did not affect the growth of subcutaneously implanted tumors. Taken together, these results suggest that NET formation correlates with poor prognoses of patients with CRC and that the inhibition of NE could be a potential therapy for CRC metastases.
Collapse
Affiliation(s)
- Michio Okamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Rei Mizuno
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Surgery, Uji-Tokushukai Medical Center, Kyoto 611-0041, Japan
- Correspondence: ; Tel.: +81-75-751-3445
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Surgery, Kurashiki Central Hospital, Okayama 710-8602, Japan
| | - Yoshiro Itatani
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshiyuki Kiyasu
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Keita Hanada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Wataru Hirata
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuyo Nishikawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Naoko Sugimoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Tamura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Susumu Inamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Surgery, Japanese Red Cross Osaka Hospital, Osaka 543-8555, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Surgery, Japanese Red Cross Osaka Hospital, Osaka 543-8555, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Meng L, Liao X, Wang Y, Chen L, Gao W, Wang M, Dai H, Yan N, Gao Y, Wu X, Wang K, Liu Q. Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Front Pharmacol 2022; 13:930593. [PMID: 36386221 PMCID: PMC9651133 DOI: 10.3389/fphar.2022.930593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.
Collapse
Affiliation(s)
- Linlin Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Ximing Liao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Yuanyuan Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Muyun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Huiling Dai
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Na Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| | - Qinghua Liu
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| |
Collapse
|
9
|
Liu Y, Jiang P, An L, Zhu M, Li J, Wang Y, Huang Q, Xiang Y, Li X, Shi Q, Weng Y. The role of neutrophil elastase in aortic valve calcification. J Transl Med 2022; 20:167. [PMID: 35397552 PMCID: PMC8994374 DOI: 10.1186/s12967-022-03363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Calcific aortic valve disease (CAVD) is the most commonly valvular disease in the western countries initiated by inflammation and abnormal calcium deposition. Currently, there is no clinical drug for CAVD. Neutrophil elastase (NE) plays a causal role in inflammation and participates actively in cardiovascular diseases. However, the effect of NE on valve calcification remains unclear. So we next explore whether it is involved in valve calcification and the molecular mechanisms involved. Methods NE expression and activity in calcific aortic valve stenosis (CAVD) patients (n = 58) and healthy patients (n = 30) were measured by enzyme-linked immunosorbent assay (ELISA), western blot and immunohistochemistry (IHC). Porcine aortic valve interstitial cells (pVICs) were isolated and used in vitro expriments. The effects of NE on pVICs inflammation, apoptosis and calcification were detected by TUNEL assay, MTT assay, reverse transcription polymerase chain reaction (RT-PCR) and western blot. The effects of NE knockdown and NE activity inhibitor Alvelestat on pVICs inflammation, apoptosis and calcification under osteogenic medium induction were also detected by RT-PCR, western blot, alkaline phosphatase staining and alizarin red staining. Changes of Intracellular signaling pathways after NE treatment were measured by western blot. Apolipoprotein E−/− (APOE−/−) mice were employed in this study to establish the important role of Alvelestat in valve calcification. HE was used to detected the thickness of valve. IHC was used to detected the NE and α-SMA expression in APOE−/− mice. Echocardiography was employed to assess the heat function of APOE−/− mice. Results The level and activity of NE were evaluated in patients with CAVD and calcified valve tissues. NE promoted inflammation, apoptosis and phenotype transition in pVICs in the presence or absence of osteogenic medium. Under osteogenic medium induction, NE silencing or NE inhibitor Alvelestat both suppressed the osteogenic differentiation of pVICs. Mechanically, NE played its role in promoting osteogenic differentiation of pVICs by activating the NF-κB and AKT signaling pathway. Alvelestat alleviated valve thickening and decreased the expression of NE and α-SMA in western diet-induced APOE−/− mice. Alvelestat also reduced NE activity and partially improved the heart function of APOE−/−mice. Conclusions Collectively, NE is highly involved in the pathogenesis of valve calcification. Targeting NE such as Alvelestat may be a potential treatment for CAVD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03363-1.
Collapse
|
10
|
Jin X, Gao X, Lan M, Li CN, Sun JM, Zhang H. Study the mechanism of peimisine derivatives on NF-κB inflammation pathway on mice with acute lung injury induced by lipopolysaccharide. Chem Biol Drug Des 2021; 99:717-726. [PMID: 34939324 DOI: 10.1111/cbdd.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/30/2021] [Accepted: 12/18/2021] [Indexed: 11/28/2022]
Abstract
Peimisine is one of the alkaloids in Fritillariae ussuriensis Bulbus, which has anti-acute lung injury effect. In order to obtain compounds with superior bio-activity, 14 new derivatives were obtained from peimisine, and the better activity compounds were screened by MTT method. It was found that boc-leucine mono peimisine ester monoamide (compound G, 25 μg/ml) had increased cell survival rate and reduced the TNF-α, IL-1β, IL-6, and iNOS levels in RAW 264.7 by lipopolysaccharide (LPS)-stimulated. In vivo, LPS (10 mg/kg) was given intraperitoneally to establish ALI model, and compound G (2.5 or 10 mg/kg) was injected into mice as the experimental group. The results showed that after the compound G (10 mg/kg) treatment, the Wet / Dry ratio of the lung was reduced, and the expression of TNF-α, IL-1β, IL-6 and iNOS was inhibited. Meanwhile, compound G (10 mg/kg) could increase the content of IκB protein and reduce the content of p65 protein in lung tissue by Western blot analysis, which may play an anti-acute lung injury role by inhibiting the activity of NF-κB signaling pathway. In conclusion, compound G could attenuate LPS-induced ALI in mice and it may become a new approach to treat ALI.
Collapse
Affiliation(s)
- Xin Jin
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meng Lan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chun-Nan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jia-Ming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
11
|
Chen JR, Tang Y, Wang YL, Cui Q, Inam M, Kong LC, Ma HX. Serine protease inhibitor MDSPI16 ameliorates LPS-induced acute lung injury through its anti-inflammatory activity. Int Immunopharmacol 2020; 88:107015. [PMID: 33182034 DOI: 10.1016/j.intimp.2020.107015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
A previous study described a novel serine protease inhibitor 16 from Musca domestica (MDSPI16), which inhibited the elastase and chymotrypsin. It also exhibited a potential anti-inflammatory activity for acute lung injury (ALI), while its effects on ALI are yet to be elucidated. The present study aimed to investigate the effects and the underlying mechanisms of MDSPI16 on lipopolysaccharide (LPS)-challenged mice and bone marrow neutrophils. The ALI model based on the results of LPS-induced mice demonstrated that MDSPI16 markedly reduced the infiltration of inflammatory cells, protein exudation in lung tissues, and downregulated the level of interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α). Furthermore, the LPS-stimulated mouse bone marrow neutrophils model was employed to determine the role of MDSPI16. The cytokine levels were quantified by both the enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Consequently, the expression of IL-6, IL-1β, and TNF-α was found to be inhibited by MDSPI16 in a dose-dependent manner. Moreover, MDSPI16 also inhibited the mouse neutrophils nuclear factor-κB (NF-κB) signaling pathway, c-Jun N-terminal kinase (JNK) signaling pathway, ERK1/2 and AP-1 signaling pathway in addition to the expression of iNOS and COX-2 proteins, which in turn, might alleviate the release of pro-inflammatory cytokines during ALI. Therefore, MDSPI16 could be proposed as a potential and novel drug therapy for ALI.
Collapse
Affiliation(s)
- Jing-Rui Chen
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China.
| | - Yan Tang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi University Town, Guiyang 550025, Guizhou, China
| | - Yong-Liang Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Qi Cui
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Muhammad Inam
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Ling-Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China.
| | - Hong-Xia Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China.
| |
Collapse
|
12
|
Matera MG, Rogliani P, Bianco A, Cazzola M. Pharmacological management of adult patients with acute respiratory distress syndrome. Expert Opin Pharmacother 2020; 21:2169-2183. [PMID: 32783481 DOI: 10.1080/14656566.2020.1801636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION There is still no definite drug for acute respiratory distress syndrome (ARDS) that is capable of reducing either short-term or long-term mortality. Therefore, great efforts are being made to identify a pharmacological approach that can be really effective. AREAS COVERED This review focuses on current challenges and future directions in the pharmacological management of ARDS, regardless of anti-infective treatments. The authors have excluded small randomized controlled trials (RCTs) with less than 60 patients because those studies do not have statistical power for outcome data, and also anecdotal trials but have considered the last meta-analysis on any drug. EXPERT OPINION There has been substantial progress in our knowledge of ARDS over the past two decades and many drugs have been used in its treatment. Nevertheless, effective targeted pharmacological treatments for ARDS are still lacking. The likely reason why a pharmacological approach is beneficial for some patients, but harmful for others is that ARDS is an extremely heterogeneous syndrome. To overcome this issue, a precision approach for ARDS, whereby therapies are specifically targeted to patients most likely to benefit, has been proposed. At present, however, the application of this approach seems to be a difficult task.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli"/Monaldi Hospital , Naples, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome, Italy
| |
Collapse
|
13
|
Amaral A, Fernandes C, Rebordão MR, Szóstek-Mioduchowska A, Lukasik K, Gawronska-Kozak B, Telo da Gama L, Skarzynski DJ, Ferreira-Dias G. The In Vitro Inhibitory Effect of Sivelestat on Elastase Induced Collagen and Metallopeptidase Expression in Equine Endometrium. Animals (Basel) 2020; 10:E863. [PMID: 32429399 PMCID: PMC7278485 DOI: 10.3390/ani10050863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Neutrophil extracellular traps (NETs) fight endometritis, and elastase (ELA), a protease found in NETs, might induce collagen type I (COL1) accumulation in equine endometrium. Metallopeptidases (MMPs) are involved in extracellular matrix balance. The aim was to evaluate the effects of ELA and sivelestat (selective elastase inhibitor) on MMP-2 and MMP-9 expression and gelatinolytic activity, as well as the potential inhibitory effect of sivelestat on ELA-induced COL1 in equine endometrium. Endometrial explants from follicular (FP) and mid-luteal (MLP) phases were treated for 24 or 48 h with ELA, sivelestat, and their combination. Transcripts of COL1A2, MMP2, and MMP9 were evaluated by qPCR; COL1 protein relative abundance by Western blot, and MMP-2 and MMP-9 gelatinolytic activity by zymography. In response to ELA treatment, there was an increase in MMP2 mRNA transcription (24 h) in active MMP-2 (48 h), both in FP, and in MMP9 transcripts in FP (48 h) and MLP (24 h) (p < 0.05). Sivelestat inhibited ELA-induced COL1A2 transcripts in FP (24 h) and MLP (24 h, 48 h) (p < 0.05). The sivelestat inhibitory effect was detected in MMP9 transcripts in FP at 48 h (p < 0.05), but proteases activity was unchanged. Thus, MMP-2 and MMP-9 might be implicated in endometrium fibrotic response to ELA. In mare endometrium, sivelestat may decrease ELA-induced COL1 deposition and hinder endometrosis development.
Collapse
Affiliation(s)
- Ana Amaral
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
| | - Carina Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
| | - Maria Rosa Rebordão
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
- Coimbra College of Agriculture, Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal
| | - Anna Szóstek-Mioduchowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science,10-748 Olsztyn, Poland; (A.S.-M.); (K.L.); (B.G.-K.); (D.J.S.)
| | - Karolina Lukasik
- Institute of Animal Reproduction and Food Research, Polish Academy of Science,10-748 Olsztyn, Poland; (A.S.-M.); (K.L.); (B.G.-K.); (D.J.S.)
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Science,10-748 Olsztyn, Poland; (A.S.-M.); (K.L.); (B.G.-K.); (D.J.S.)
| | - Luís Telo da Gama
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
| | - Dariusz J. Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science,10-748 Olsztyn, Poland; (A.S.-M.); (K.L.); (B.G.-K.); (D.J.S.)
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
| |
Collapse
|
14
|
Wang J, Tan J, Liu Y, Song L, Li D, Cui X. Amelioration of lung ischemia‑reperfusion injury by JNK and p38 small interfering RNAs in rat pulmonary microvascular endothelial cells in an ischemia‑reperfusion injury lung transplantation model. Mol Med Rep 2017; 17:1228-1234. [PMID: 29115603 DOI: 10.3892/mmr.2017.7985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 05/25/2017] [Indexed: 11/05/2022] Open
Abstract
The inhibition of mitogen‑activated protein kinases (MAPKs), including c‑Jun NH2‑terminal protein kinase (JNK), p38 MAPK (p38) and extracellular signal‑regulated protein kinase 1/2 (ERK1/2), have an important effect on lung ischemia‑reperfusion injury (IRI) during lung transplantation (LT). However, the way in which combined MAPK inhibition exerts optimal protective effects on lung IRI remains to be elucidated. Therefore, the present study evaluated the therapeutic efficacy of the inhibition of MAPKs in rat pulmonary microvascular endothelial cells (PMVECs) in an IRI model of LT. The rat PMVECs were transfected with small interfering RNAs (siRNAs) against JNK, p38 or ERK1/2. Cotransfection was performed with siRNAs against JNK and p38 in the J+p group, JNK and ERK1/2 in the J+E group, p38 and ERK1/2 in the p+E group, or all three in the J+p+E group. Non‑targeting (NT) siRNA was used as a control. The PMVECs were then treated to induce IRI, and the levels of inflammation, apoptosis and oxidative stress were detected. Differences between compared groups were determined using Tukey's honest significant difference test. In all groups, silencing of the MAPKs was shown to attenuate inflammation, apoptosis and oxidative stress to differing extents, compared with the NT group. The J+p and J+p+E groups showed lower levels of interleukin (IL)‑1β, IL‑6 and malondialdehyde, a lower percentage of early‑apoptotic cells, and higher superoxide dismutase (SOD) activity, compared with the other groups. No significant differences were observed in the inflammatory response, SOD activity or early apoptosis between the J+p and J+p+E groups. These findings suggested that the dual inhibition of JNK and p38 led to maximal amelioration of lung IRI in the PMVECs of the IRI model of LT, which occurred through anti‑inflammatory, anti‑oxidative and anti‑apoptotic mechanisms.
Collapse
Affiliation(s)
- Juan Wang
- Department of Anesthesiology, The Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Tan
- Department of Anesthesiology, The Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanhong Liu
- Department of Anesthesiology, The Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Linlin Song
- Department of Anesthesiology, The Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Di Li
- Department of Anesthesiology, The Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoguang Cui
- Department of Anesthesiology, The Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
15
|
Polverino E, Rosales-Mayor E, Dale GE, Dembowsky K, Torres A. The Role of Neutrophil Elastase Inhibitors in Lung Diseases. Chest 2017; 152:249-262. [DOI: 10.1016/j.chest.2017.03.056] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/17/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
|
16
|
Mikumo H, Yanagihara T, Hamada N, Harada E, Ogata-Suetsugu S, Ikeda-Harada C, Arimura-Omori M, Suzuki K, Yokoyama T, Nakanishi Y. Neutrophil elastase inhibitor sivelestat ameliorates gefitinib-naphthalene-induced acute pneumonitis in mice. Biochem Biophys Res Commun 2017; 486:205-209. [DOI: 10.1016/j.bbrc.2017.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 10/20/2022]
|
17
|
Lee JM, Yeo CD, Lee HY, Rhee CK, Kim IK, Lee DG, Lee SH, Kim JW. Inhibition of neutrophil elastase contributes to attenuation of lipopolysaccharide-induced acute lung injury during neutropenia recovery in mice. J Anesth 2017; 31:397-404. [PMID: 28144780 DOI: 10.1007/s00540-017-2311-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/17/2017] [Indexed: 01/15/2023]
Abstract
PURPOSE Patients in whom neutropenia recovery is complicated by pneumonia have an increased risk of acute lung injury (ALI) and detrimental outcomes. The aim of the present study was to investigate whether inhibition of neutrophil elastase (NE) is effective in lipopolysaccharide (LPS)-induced ALI during neutropenia recovery in a murine model, and whether it upregulates the activation of the MerTK signaling pathway. METHODS Cyclophosphamide was given to mice to induce neutropenia. Seven days later, they were administered LPS by intratracheal instillation. Sivelestat, a neutrophil elastase inhibitor, was given by intraperitoneal injection once daily starting on day 0 and continuing until mice were sacrificed on day 5 (preventive group). Alternatively, sivelestat was given after, instead of before, LPS administration on day 2 (therapeutic group). RESULTS Sivelestat attenuated the lung edema and histopathological changes associated with LPS-induced lung injury. The accumulation of neutrophils and the concentrations of TNF-α, IL-6, and MPO in bronchoalveolar lavage (BAL) fluids were inhibited effectively by sivelestat. The expression of ICAM-1 and NF-κB p65 was also reduced after sivelestat administration. The protein and gene expression of MerTK tended to increase with sivelestat treatment. CONCLUSIONS Sivelestat significantly attenuated LPS-induced ALI during recovery from neutropenia, and this effect was associated with MerTK induction. These findings suggest that NE inhibition could be a promising means of alleviating lung inflammation without increasing susceptibility to infection in ALI/ARDS during neutropenia recovery.
Collapse
Affiliation(s)
- Jong Min Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Seoul, Gyunggi-do, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Seoul, Gyunggi-do, Republic of Korea
| | - Hwa Young Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Seoul, Gyunggi-do, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Seoul, Gyunggi-do, Republic of Korea
| | - In Kyoung Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Seoul, Gyunggi-do, Republic of Korea
| | - Dong Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Haak Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Seoul, Gyunggi-do, Republic of Korea
| | - Jin Woo Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Seoul, Gyunggi-do, Republic of Korea.
| |
Collapse
|
18
|
Post-Intake of S-Ethyl Cysteine and S-Methyl Cysteine Improved LPS-Induced Acute Lung Injury in Mice. Nutrients 2016; 8:nu8080507. [PMID: 27548215 PMCID: PMC4997420 DOI: 10.3390/nu8080507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023] Open
Abstract
The effects of S-ethyl cysteine (SEC) and S-methyl cysteine (SMC) on lipopolysaccharide (LPS)-induced acute lung injury in mice were examined. Eight hours after LPS challenge, SEC or SMC was supplied in drinking water at 0.5% or 1% for 3 days. LPS increased lung myeloperoxidase activity, neutrophil counts and edema. SEC or SMC post-intake attenuated these events. SEC or SMC suppressed LPS-induced lung expression of cyclooxygenase-2, nuclear factor-κB and mitogen-activated protein kinase, and lowered the generation of tumor necrosis factor-alpha, monocyte chemoattractant protein-1 and prostaglandin E2. LPS enhanced the expression of p47phox, gp91phox, Bax and cleaved caspase-3, and increased the production of reactive oxygen species in the lung. SEC or SMC post-intake reversed these alterations. These findings suggest that these agents could protect the lung through their anti-inflammatory, anti-oxidative and anti-apoptotic activities.
Collapse
|