1
|
Jomrich G, Kollmann D, Yan W, Winkler D, Paireder M, Gensthaler L, Puhr HC, Ilhan-Mutlu A, Asari R, Schoppmann SF. Overexpression of Fibroblast Growth Factor 8 Is a Predictor of Impaired Survival in Esophageal Squamous Cell Carcinoma and Correlates with ALK/EML4 Alteration. Cancers (Basel) 2024; 16:3624. [PMID: 39518064 PMCID: PMC11545777 DOI: 10.3390/cancers16213624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
FGF8, ALK, and EML4 have been identified as promising biomarkers in a number of malignancies. The aim of this study was to examine the prognostic role of FGF8, ALK, and EML4 in esophageal squamous cell carcinoma (ESCC). Methods: Consecutive patients with ESCC who underwent upfront resection were included in this study. ALK and EML4 gene status was evaluated by fluorescence in situ hybridization (FISH) using a triple-color break-apart single-fusion probe and a probe against 2p11. FGF8, ALK, and EML4 protein expression was determined by immunohistochemistry. Results: A total of 122 patients were included in this study. Multivariate analysis revealed that FGF8 overexpression is an independent negative prognostic factor for patients' overall survival (OS) (p = 0.04). Furthermore, a significant correlation between the expression of FGF8, and ALK (p = 0.04) and EML4 (p = 0.01) alteration was found. Conclusions: FGF8 overexpression is an adverse independent prognostic factor in patients with upfront resected ESCC. Furthermore, FGF8 expression significantly correlates with ALK and EML4 amplification and may therefore qualify as a future therapeutic target.
Collapse
Affiliation(s)
- Gerd Jomrich
- Department of General Surgery, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (G.J.); (D.K.); (W.Y.); (M.P.); (L.G.)
| | - Dagmar Kollmann
- Department of General Surgery, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (G.J.); (D.K.); (W.Y.); (M.P.); (L.G.)
| | - Winny Yan
- Department of General Surgery, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (G.J.); (D.K.); (W.Y.); (M.P.); (L.G.)
| | - Daniel Winkler
- Institute for Retailing and Data Science, Vienna University of Economics and Business, 1020 Vienna, Austria; (D.W.); (R.A.)
| | - Matthias Paireder
- Department of General Surgery, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (G.J.); (D.K.); (W.Y.); (M.P.); (L.G.)
| | - Lisa Gensthaler
- Department of General Surgery, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (G.J.); (D.K.); (W.Y.); (M.P.); (L.G.)
| | - Hannah Christina Puhr
- Department of Medicine 1, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (H.C.P.); (A.I.-M.)
| | - Aysegül Ilhan-Mutlu
- Department of Medicine 1, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (H.C.P.); (A.I.-M.)
| | - Reza Asari
- Institute for Retailing and Data Science, Vienna University of Economics and Business, 1020 Vienna, Austria; (D.W.); (R.A.)
| | - Sebastian F. Schoppmann
- Department of General Surgery, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (G.J.); (D.K.); (W.Y.); (M.P.); (L.G.)
| |
Collapse
|
2
|
Moon JW, Hong BJ, Kim SK, Park MS, Lee H, Lee J, Kim MY. Systematic identification of a synthetic lethal interaction in brain-metastatic lung adenocarcinoma. Cancer Lett 2024; 588:216781. [PMID: 38494150 DOI: 10.1016/j.canlet.2024.216781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Metastatic lung adenocarcinoma (LuAC) presents a significant clinical challenge due to the short latency and the lack of efficient treatment options. Therefore, identification of molecular vulnerabilities in metastatic LuAC holds great importance in the development of therapeutic drugs against this disease. In this study, we performed a genome-wide siRNA screening using poorly and highly brain-metastatic LuAC cell lines. Using this approach, we discovered that compared to poorly metastatic LuAC (LuAC-Par) cells, brain-metastatic LuAC (LuAC-BrM) cells exhibited a significantly higher vulnerability to c-FLIP (an inhibitor of caspase-8)-depletion-induced apoptosis. Furthermore, in vivo studies demonstrated that c-FLIP knockdown specifically inhibited growth of LuAC-BrM, but not the LuAC-Par, tumors, suggesting the addiction of LuAC-BrM to the function of c-FLIP for their survival. Our in vitro and in vivo analyses also demonstrated that LuAC-BrM is more sensitive to c-FLIP-depletion due to ER stress-induced activation of the c-JUN and subsequent induction of stress genes including ATF4 and DDIT3. Finally, we found that c-JUN not only sensitized LuAC-BrM to c-FLIP-depletion-induced cell death but also promoted brain metastasis in vivo, providing strong evidence for c-JUN's function as a double-edged sword in LuAC-BrM. Collectively, our findings not only reveal a novel link between c-JUN, brain metastasis, and c-FLIP addiction in LuAC-BrM but also present an opportunity for potential therapeutic intervention.
Collapse
Affiliation(s)
- Jin Woo Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | | | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Min-Seok Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hohyeon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - JiWon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea; KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, South Korea.
| |
Collapse
|
3
|
Quinn CH, Beierle AM, Williams AP, Marayati R, Bownes LV, Markert HR, Aye JM, Stewart JE, Mroczek-Musulman E, Crossman DK, Yoon KJ, Beierle EA. Downregulation of PDGFRß Signaling Overcomes Crizotinib Resistance in a TYRO3 and ALK Mutated Neuroendocrine-Like Tumor. Transl Oncol 2021; 14:101099. [PMID: 33887553 PMCID: PMC8086143 DOI: 10.1016/j.tranon.2021.101099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/03/2021] [Indexed: 01/04/2023] Open
Abstract
Patient-derived xenografts provide significant advantages over long-term passage cell lines when investigating efficacy of treatments for solid tumors. Our laboratory encountered a high-grade, metastatic, neuroendocrine-like tumor from a pediatric patient that presented with a unique genetic profile. In particular, mutations in TYRO3 and ALK were identified. We established a human patient-derived xenoline (PDX) of this tumor for use in the current study. We investigated the effect of crizotinib, a chemotherapeutic known to effectively target both TYRO3 and ALK mutations. Crizotinib effectively decreased viability, proliferation, growth, and the metastatic properties of the PDX tumor through downregulation of STAT3 signaling, but expression of PDGFRß was increased. Sunitinib is a small molecule inhibitor of PDGFRß and was studied in this PDX independently and in combination with crizotinib. Sunitinib alone decreased viability, proliferation, and growth in vitro and decreased tumor growth in vivo. In combination, sunitinib was able to overcome potential crizotinib-induced resistance through downregulation of ERK 1/2 activity and PDGFRß receptor expression; consequently, tumor growth was significantly decreased both in vitro and in vivo. Through the use of the PDX, it was possible to identify crizotinib as a less effective therapeutic for this tumor and suggest that targeting PDGFRß would be more effective. These findings may translate to other solid tumors that present with the same genetic mutations.
Collapse
Affiliation(s)
- Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Andee M Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | | | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States.
| |
Collapse
|
4
|
Pei H, Guo Z, Wang Z, Dai Y, Zheng L, Zhu L, Zhang J, Hu W, Nie J, Mao W, Jia X, Li B, Hei TK, Zhou G. RAC2 promotes abnormal proliferation of quiescent cells by enhanced JUNB expression via the MAL-SRF pathway. Cell Cycle 2018; 17:1115-1123. [PMID: 29895215 PMCID: PMC6110603 DOI: 10.1080/15384101.2018.1480217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/11/2018] [Indexed: 12/28/2022] Open
Abstract
Radiation-induced lung injury (RILI) occurs most often in radiotherapy of lung cancer, esophageal cancer, and other thoracic cancers. The occurrence of RILI is a complex process that includes a variety of cellular and molecular interactions, which ultimately result in carcinogenesis. However, the underlying mechanism is unknown. Here we show that Ras-related C3 botulinum toxin substrate 2 (RAC2) and transcription factor jun-B (JUNB) were upregulated in non-small cell carcinoma (NSCLC) tissues and were associated with poor prognoses for NSCLC patients. Ionizing radiation also caused increased expression of RAC2 in quiescent stage cells, and the reentry of quiescent cells into a new cell cycle. The activity of the serum response factor (SRF) was activated by RAC2 and other Rho family genes (RhoA, ROCK, and LIM kinase). Consequently, JUNB acted as an oncogene and induced abnormal proliferation of quiescent cells. Together, the results showed that RAC2 can be used as a target gene for radiation protection. A better understanding of the RAC2 and JUNB mechanisms in the molecular etiology of lung cancer will be helpful in reducing cancer risks and side effects during treatment of this disorder. Our study therefore provides a new perspective on the involvement of RAC2 and JUNB as oncogenes in the tumorigenesis of NSCLC.
Collapse
Affiliation(s)
- Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Ziyang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lijun Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lin Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jian Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Weidong Mao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
- Radiotherapy Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xianghong Jia
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Tom K. Hei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Center for Radiological Research, College of Physician and Surgeons, Columbia University, NY, New York, USA
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
5
|
Xue Z, Vis DJ, Bruna A, Sustic T, van Wageningen S, Batra AS, Rueda OM, Bosdriesz E, Caldas C, Wessels LFA, Bernards R. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res 2018; 28:719-729. [PMID: 29795445 PMCID: PMC6028652 DOI: 10.1038/s41422-018-0044-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
Activation of the mitogen-activated protein kinase (MAPK) pathway is frequent in cancer. Drug development efforts have been focused on kinases in this pathway, most notably on RAF and MEK. We show here that MEK inhibition activates JNK-JUN signaling through suppression of DUSP4, leading to activation of HER Receptor Tyrosine Kinases. This stimulates the MAPK pathway in the presence of drug, thereby blunting the effect of MEK inhibition. Cancers that have lost MAP3K1 or MAP2K4 fail to activate JNK-JUN. Consequently, loss-of-function mutations in either MAP3K1 or MAP2K4 confer sensitivity to MEK inhibition by disabling JNK-JUN-mediated feedback loop upon MEK inhibition. In a panel of 168 Patient Derived Xenograft (PDX) tumors, MAP3K1 and MAP2K4 mutation status is a strong predictor of response to MEK inhibition. Our findings suggest that cancers having mutations in MAP3K1 or MAP2K4, which are frequent in tumors of breast, prostate and colon, may respond to MEK inhibitors. Our findings also suggest that MAP3K1 and MAP2K4 are potential drug targets in combination with MEK inhibitors, in spite of the fact that they are encoded by tumor suppressor genes.
Collapse
Affiliation(s)
- Zheng Xue
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Daniel J Vis
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Alejandra Bruna
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Tonci Sustic
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Sake van Wageningen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Ankita Sati Batra
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Oscar M Rueda
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Evert Bosdriesz
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
- Cambridge Breast Unit, NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 2QQ, UK
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.
| |
Collapse
|
6
|
Wang T, Han S, Wu Z, Han Z, Yan W, Liu T, Wei H, Song D, Zhou W, Yang X, Xiao J. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer. Biochem Biophys Res Commun 2015; 464:635-641. [PMID: 26166822 DOI: 10.1016/j.bbrc.2015.06.175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 01/05/2023]
Abstract
Bone metastasis occurs in approximately 30-40% patients with advanced non-small cell lung cancer (NSCLC), but the mechanism underlying this bone metastasis remains poorly understood. The chemokine super family is believed to play an important role in tumor metastasis in lung cancer. The chemokine receptor XCR1 has been identified to promote cell proliferation and migration in oral cancer and ovarian carcinoma, but the role of XCR1 in lung cancer has not been reported. In this study, we demonstrated for the first time that XCR1 was overexpressed in lung cancer bone metastasis as compared with that in patients with primary lung cancer. In addition, the XCR1 ligand XCL1 promoted the proliferation and migration of lung cancer cells markedly, and knockdown of XCR1 by siRNA abolished the effect of XCL1 in cell proliferation and migration. Furthermore, we identified JAK2/STAT3 as a novel downstream pathway of XCR1, while XCL1/XCR1 increased the mRNA level of the downstream of JAK2/STAT3 including PIM1, JunB, TTP, MMP2 and MMP9. These results indicate that XCR1 is a new potential therapeutic target for the treatment of lung cancer bone metastasis.
Collapse
Affiliation(s)
- Ting Wang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shuai Han
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhipeng Wu
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhitao Han
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wangjun Yan
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tielong Liu
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haifeng Wei
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dianwen Song
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wang Zhou
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Xinghai Yang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Jianru Xiao
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Farooqi AA, Siddik ZH. Platelet-derived growth factor (PDGF) signalling in cancer: rapidly emerging signalling landscape. Cell Biochem Funct 2015; 33:257-65. [PMID: 26153649 DOI: 10.1002/cbf.3120] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/02/2015] [Accepted: 05/11/2015] [Indexed: 12/25/2022]
Abstract
Platelet-derived growth factor (PDGF)-mediated signalling has emerged as one of the most extensively and deeply studied biological mechanism reported to be involved in regulation of growth and survival of different cell types. However, overwhelmingly increasing scientific evidence is also emphasizing on dysregulation of spatio-temporally controlled PDGF-induced signalling as a basis for cancer development. We partition this multi-component review into recently developing understanding of dysregulation PDGF signalling in different cancers, how PDGF receptors are quantitatively controlled by microRNAs. Moreover, we also summarize most recent advancements in therapeutic targeting of PDGFR as evidenced by preclinical studies. Better understanding of the PDGF-induced intracellular signalling in different cancers will be helpful in catalysing the transition from a segmented view of cancer biology to a conceptual continuum.
Collapse
Affiliation(s)
| | - Zahid H Siddik
- University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|