1
|
Sultana E, Shastry N, Kasarla R, Hardy J, Collado F, Aenlle K, Abreu M, Sisson E, Sullivan K, Klimas N, Craddock TJA. Disentangling the effects of PTSD from Gulf War Illness in male veterans via a systems-wide analysis of immune cell, cytokine, and symptom measures. Mil Med Res 2024; 11:2. [PMID: 38167090 PMCID: PMC10759613 DOI: 10.1186/s40779-023-00505-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND One-third of veterans returning from the 1990-1991 Gulf War reported a myriad of symptoms including cognitive dysfunction, skin rashes, musculoskeletal discomfort, and fatigue. This symptom cluster is now referred to as Gulf War Illness (GWI). As the underlying mechanisms of GWI have yet to be fully elucidated, diagnosis and treatment are based on symptomatic presentation. One confounding factor tied to the illness is the high presence of post-traumatic stress disorder (PTSD). Previous research efforts have demonstrated that both GWI and PTSD are associated with immunological dysfunction. As such, this research endeavor aimed to provide insight into the complex relationship between GWI symptoms, cytokine presence, and immune cell populations to pinpoint the impact of PTSD on these measures in GWI. METHODS Symptom measures were gathered through the Multidimensional fatigue inventory (MFI) and 36-item short form health survey (SF-36) scales and biological measures were obtained through cytokine & cytometry analysis. Subgrouping was conducted using Davidson Trauma Scale scores and the Structured Clinical Interview for Diagnostic and statistical manual of mental disorders (DSM)-5, into GWI with high probability of PTSD symptoms (GWIH) and GWI with low probability of PTSD symptoms (GWIL). Data was analyzed using Analysis of variance (ANOVA) statistical analysis along with correlation graph analysis. We mapped correlations between immune cells and cytokine signaling measures, hormones and GWI symptom measures to identify patterns in regulation between the GWIH, GWIL, and healthy control groups. RESULTS GWI with comorbid PTSD symptoms resulted in poorer health outcomes compared with both Healthy control (HC) and the GWIL subgroup. Significant differences were found in basophil levels of GWI compared with HC at peak exercise regardless of PTSD symptom comorbidity (ANOVA F = 4.7, P = 0.01,) indicating its potential usage as a biomarker for general GWI from control. While the unique identification of GWI with PTSD symptoms was less clear, the GWIL subgroup was found to be delineated from both GWIH and HC on measures of IL-15 across an exercise challenge (ANOVA F > 3.75, P < 0.03). Additional differences in natural killer (NK) cell numbers and function highlight IL-15 as a potential biomarker of GWI in the absence of PTSD symptoms. CONCLUSION We conclude that disentangling GWI and PTSD by defining trauma-based subgroups may aid in the identification of unique GWI biosignatures that can help to improve diagnosis and target treatment of GWI more effectively.
Collapse
Affiliation(s)
- Esha Sultana
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
| | - Nandan Shastry
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
| | - Rishabh Kasarla
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
| | - Jacob Hardy
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
| | - Fanny Collado
- Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Miami Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Kristina Aenlle
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Miami Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Maria Abreu
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Miami Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Emily Sisson
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA
- Miami Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Travis J A Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA.
- Department of Psychology and Neuroscience, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA.
- Department of Clinical Immunology, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA.
- Department of Computer Science, Nova Southeastern University, Ft. Lauderdale-Davie, FL, 33314, USA.
| |
Collapse
|
2
|
Loktionov A. Colon mucus in colorectal neoplasia and beyond. World J Gastroenterol 2022; 28:4475-4492. [PMID: 36157924 PMCID: PMC9476883 DOI: 10.3748/wjg.v28.i32.4475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/23/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
Little was known about mammalian colon mucus (CM) until the beginning of the 21st century. Since that time considerable progress has been made in basic research addressing CM structure and functions. Human CM is formed by two distinct layers composed of gel-forming glycosylated mucins that are permanently secreted by goblet cells of the colonic epithelium. The inner layer is dense and impenetrable for bacteria, whereas the loose outer layer provides a habitat for abundant commensal microbiota. Mucus barrier integrity is essential for preventing bacterial contact with the mucosal epithelium and maintaining homeostasis in the gut, but it can be impaired by a variety of factors, including CM-damaging switch of commensal bacteria to mucin glycan consumption due to dietary fiber deficiency. It is proven that impairments in CM structure and function can lead to colonic barrier deterioration that opens direct bacterial access to the epithelium. Bacteria-induced damage dysregulates epithelial proliferation and causes mucosal inflammatory responses that may expand to the loosened CM and eventually result in severe disorders, including colitis and neoplastic growth. Recently described formation of bacterial biofilms within the inner CM layer was shown to be associated with both inflammation and cancer. Although obvious gaps in our knowledge of human CM remain, its importance for the pathogenesis of major colorectal diseases, comprising inflammatory bowel disease and colorectal cancer, is already recognized. Continuing progress in CM exploration is likely to result in the development of a range of new useful clinical applications addressing colorectal disease diagnosis, prevention and therapy.
Collapse
|
3
|
Nooredinvand HA, Poullis A. Emerging role of colorectal mucus in gastroenterology diagnostics. World J Gastroenterol 2022; 28:1220-1225. [PMID: 35431508 PMCID: PMC8968490 DOI: 10.3748/wjg.v28.i12.1220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/29/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Colonoscopy is currently the gold standard for diagnosis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). This has the obvious drawback of being invasive as well as carrying a small risk. The most widely used non-invasive approaches include the use of faecal calprotectin in the case of IBD and fecal immunochemical test in the case of CRC. However, the necessity of stool collection limits their acceptability for some patients. Over the recent years, there has been emerging data looking at the role of non-invasively obtained colorectal mucus as a screening and diagnostic tool in IBD and CRC. It has been shown that the mucus rich material obtained by self-sampling of anal surface following defecation, can be used to measure various biomarkers that can aid in diagnosis of these conditions.
Collapse
Affiliation(s)
| | - Andrew Poullis
- Department of Gastroenterology, St George's Hospital, London SW17 0QT, United Kingdom
| |
Collapse
|
4
|
Loktionov A, Soubieres A, Bandaletova T, Francis N, Allison J, Sturt J, Mathur J, Poullis A. Biomarker measurement in non-invasively sampled colorectal mucus as a novel approach to colorectal cancer detection: screening and triage implications. Br J Cancer 2020; 123:252-260. [PMID: 32398859 PMCID: PMC7374197 DOI: 10.1038/s41416-020-0893-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Faecal tests are widely applied for colorectal cancer (CRC) screening and considered for triaging symptomatic patients with suspected CRC. However, faecal tests can be inconvenient, complex and expensive. Colorectal mucus (CM) sampled using our new patient-friendly non-invasive technique is rich in CRC biomarkers. This study aimed to evaluate diagnostic accuracy of CRC detection by measuring protein biomarkers in CM. METHODS Colorectal mucus samples were provided by 35 healthy controls, 62 CRC-free symptomatic patients and 40 CRC patients. Biomarkers were quantified by ELISA. Diagnostic performances of haemoglobin, C-reactive protein, tissue inhibitor of metalloproteinases-1, M2-pyruvate kinase, matrix metalloproteinase-9, peptidyl arginine deiminase-4, epidermal growth factor receptor, calprotectin and eosinophil-derived neurotoxin were assessed using receiver operating characteristic (ROC) curve analysis. RESULTS Colorectal mucus haemoglobin was superior compared to other biomarkers. For haemoglobin, the areas under the curve for discriminating between CRC and healthy groups ('screening') and between CRC and symptomatic patients ('triage') were 0.921 and 0.854 respectively. The sensitivity of 80.0% and specificities of 94.3% and 85.5% for the two settings respectively were obtained. CONCLUSIONS Haemoglobin quantification in CM reliably detects CRC. This patient-friendly approach presents an attractive alternative to faecal immunochemical test; however, the two methods need to be directly compared in larger studies.
Collapse
Affiliation(s)
- Alexandre Loktionov
- DiagNodus Ltd, Babraham Research Campus, Cambridge, UK.
- DiagNodus Ltd, St John's Innovation Centre, Cowley Road, Cambridge, UK.
| | - Anet Soubieres
- Department of Gastroenterology, St George's Hospital, London, UK
- Department of Gastroenterology, Charing Cross Hospital, London, UK
| | - Tatiana Bandaletova
- DiagNodus Ltd, Babraham Research Campus, Cambridge, UK
- DiagNodus Ltd, St John's Innovation Centre, Cowley Road, Cambridge, UK
| | - Nader Francis
- Department of Surgery, Yeovil District Hospital, Yeovil, UK
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Joanna Allison
- Department of Surgery, Yeovil District Hospital, Yeovil, UK
| | - Julian Sturt
- Department of Surgery, Southend University Hospital, Southend-on-Sea, UK
| | - Jai Mathur
- Department of Gastroenterology, St George's Hospital, London, UK
| | - Andrew Poullis
- Department of Gastroenterology, St George's Hospital, London, UK
| |
Collapse
|
5
|
Loktionov A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins? World J Gastrointest Oncol 2020; 12:124-148. [PMID: 32104546 PMCID: PMC7031146 DOI: 10.4251/wjgo.v12.i2.124] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/30/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global problem affecting millions of people worldwide. This disease is unique because of its slow progress that makes it preventable and often curable. CRC symptoms usually emerge only at advanced stages of the disease, consequently its early detection can be achieved only through active population screening, which markedly reduces mortality due to this cancer. CRC screening tests that employ non-invasively detectable biomarkers are currently being actively developed and, in most cases, samples of either stool or blood are used. However, alternative biological substances that can be collected non-invasively (colorectal mucus, urine, saliva, exhaled air) have now emerged as new sources of diagnostic biomarkers. The main categories of currently explored CRC biomarkers are: (1) Proteins (comprising widely used haemoglobin); (2) DNA (including mutations and methylation markers); (3) RNA (in particular microRNAs); (4) Low molecular weight metabolites (comprising volatile organic compounds) detectable by metabolomic techniques; and (5) Shifts in gut microbiome composition. Numerous tests for early CRC detection employing such non-invasive biomarkers have been proposed and clinically studied. While some of these studies generated promising early results, very few of the proposed tests have been transformed into clinically validated diagnostic/screening techniques. Such DNA-based tests as Food and Drug Administration-approved multitarget stool test (marketed as Cologuard®) or blood test for methylated septin 9 (marketed as Epi proColon® 2.0 CE) show good diagnostic performance but remain too expensive and technically complex to become effective CRC screening tools. It can be concluded that, despite its deficiencies, the protein (haemoglobin) detection-based faecal immunochemical test (FIT) today presents the most cost-effective option for non-invasive CRC screening. The combination of non-invasive FIT and confirmatory invasive colonoscopy is the current strategy of choice for CRC screening. However, continuing intense research in the area promises the emergence of new superior non-invasive CRC screening tests that will allow the development of improved disease prevention strategies.
Collapse
|
6
|
Nallala J, Jeynes C, Saunders S, Smart N, Lloyd G, Riley L, Salmon D, Stone N. Characterization of colorectal mucus using infrared spectroscopy: a potential target for bowel cancer screening and diagnosis. J Transl Med 2020; 100:1102-1110. [PMID: 32203151 PMCID: PMC7374084 DOI: 10.1038/s41374-020-0418-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/27/2022] Open
Abstract
Biological materials presenting early signs of cancer would be beneficial for cancer screening/diagnosis. In this respect, the suitability of potentially exploiting mucus in colorectal cancer was tested using infrared spectroscopy in combination with statistical modeling. Twenty-six paraffinized colon tissue biopsy sections containing mucus regions from 20 individuals (10 normal and 16 cancerous) were measured using mid-infrared spectroscopic imaging. A digital de-paraffinization, followed by cluster analysis driven digital color-coded multi-staining segmented the infrared images into various histopathological features such as epithelium, connective tissue, stroma, and mucus regions within the tissue sections. Principal component analysis followed by supervised linear discriminant analysis was carried out on pure mucus and epithelial spectra from normal and cancerous regions of the tissue. For the mucus-based classification, a sensitivity of 96%, a specificity of 83%, and an area under the curve performance of 95% was obtained. For the epithelial tissue-based classification, a sensitivity of 72%, a specificity of 88%, and an area under the curve performance of 89% was obtained. The mucus spectral profiles further showed contributions indicative of glycans including that of sialic acid changes between these pathology groups. The study demonstrates that infrared spectroscopic analysis of mucus discriminates colorectal cancers with high sensitivity. This concept could be exploited to develop screening/diagnostic approaches complementary to histopathology.
Collapse
Affiliation(s)
- Jayakrupakar Nallala
- Biomedical Physics, School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK.
| | - Charles Jeynes
- 0000 0004 1936 8024grid.8391.3Living Systems Institute, University of Exeter, Exeter, EX4 4QD UK
| | - Sarah Saunders
- grid.416118.bCellular Pathology Department, Royal Devon & Exeter Hospital, Exeter, EX2 5AD UK
| | - Neil Smart
- grid.416118.bDepartment of Surgery, Royal Devon and Exeter Hospital, Exeter, EX2 5DW UK
| | - Gavin Lloyd
- 0000 0004 1936 7486grid.6572.6Phenome Centre Birmingham, University of Birmingham, Birmingham, B15 2TT UK
| | - Leah Riley
- grid.416118.bCellular Pathology Department, Royal Devon & Exeter Hospital, Exeter, EX2 5AD UK
| | - Debbie Salmon
- 0000 0004 1936 8024grid.8391.3Biocatalysis Centre, Biosciences, University of Exeter, Exeter, EX4 4QD UK
| | - Nick Stone
- 0000 0004 1936 8024grid.8391.3Biomedical Physics, School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL UK
| |
Collapse
|
7
|
Loktionov A, Soubieres A, Bandaletova T, Mathur J, Poullis A. Colorectal cancer detection by biomarker quantification in noninvasively collected colorectal mucus: preliminary comparison of 24 protein biomarkers. Eur J Gastroenterol Hepatol 2019; 31:1220-1227. [PMID: 31498281 DOI: 10.1097/meg.0000000000001535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Noninvasive colorectal cancer detection and screening remain global diagnostic challenges because the existing stool tests either lack sensitivity or are complex and expensive. Moreover, colorectal cancer screening uptake is low due to stool sampling inconvenience. We have developed a simple and patient-friendly noninvasive technique for collecting highly informative colorectal mucus. In this study, we aimed to comparatively assess a range of candidate biomarkers in colorectal mucus samples for colorectal cancer detection. METHODS The study included 17 patients with colorectal cancer and 35 healthy controls, who provided noninvasively collected colorectal mucus samples. Protein biomarker quantification in these samples by enzyme-linked immunosorbent assays allowed comparing diagnostic performances of 24 candidate biomarkers that comprised haemoglobin, D-dimer, M2-pyruvate kinase, carcinoembryonic antigen, C-reactive protein, calprotectin, eosinophil-derived neurotoxin, protein S100A12, tumour necrosis factor α, clusterin, soluble cytokeratin 18, caspase-cleaved cytokeratin 18, citrullinated histone H3, peptidyl arginine deiminase 4, epidermal growth factor, epidermal growth factor receptor, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase 1, periostin, vascular endothelial growth factor A, vascular endothelial growth factor receptor 1, vascular cell adhesion molecule 1, intercellular adhesion molecule 1 and mucin 2. Tested biomarkers were ranked for colorectal cancer detection efficiency using receiver operating characteristic curve analysis. RESULTS High area under the curve values between 0.943 and 0.768 were observed for haemoglobin, tissue inhibitor of metalloproteinase 1, M2-pyruvate kinase, peptidyl arginine deiminase 4, C-reactive protein, matrix metalloproteinase 9, epidermal growth factor receptor, eosinophil-derived neurotoxin and calprotectin. CONCLUSION Quantification of protein biomarkers in noninvasively collected samples of colorectal mucus certainly allows detecting colorectal cancer. Further clinical evaluation of the optimal biomarkers identified by this study is needed.
Collapse
Affiliation(s)
| | - Anet Soubieres
- Department of Gastroenterology, St George's Hospital, London, UK
| | | | - Jai Mathur
- Department of Gastroenterology, St George's Hospital, London, UK
| | - Andrew Poullis
- Department of Gastroenterology, St George's Hospital, London, UK
| |
Collapse
|
8
|
Loktionov A. Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J Gastroenterol 2019; 25:3503-3526. [PMID: 31367153 PMCID: PMC6658389 DOI: 10.3748/wjg.v25.i27.3503] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
Eosinophils are currently regarded as versatile mobile cells controlling and regulating multiple biological pathways and responses in health and disease. These cells store in their specific granules numerous biologically active substances (cytotoxic cationic proteins, cytokines, growth factors, chemokines, enzymes) ready for rapid release. The human gut is the main destination of eosinophils that are produced and matured in the bone marrow and then transferred to target tissues through the circulation. In health the most important functions of gut-residing eosinophils comprise their participation in the maintenance of the protective mucosal barrier and interactions with other immune cells in providing immunity to microbiota of the gut lumen. Eosinophils are closely involved in the development of inflammatory bowel disease (IBD), when their cytotoxic granule proteins cause damage to host tissues. However, their roles in Crohn's disease and ulcerative colitis appear to follow different immune response patterns. Eosinophils in IBD are especially important in altering the structure and protective functions of the mucosal barrier and modulating massive neutrophil influx to the lamina propria followed by transepithelial migration to colorectal mucus. IBD-associated inflammatory process involving eosinophils then appears to expand to the mucus overlaying the internal gut surface. The author hypothesises that immune responses within colorectal mucus as well as ETosis exerted by both neutrophils and eosinophils on the both sides of the colonic epithelial barrier act as additional pathogenetic factors in IBD. Literature analysis also shows an association between elevated eosinophil levels and better colorectal cancer (CRC) prognosis, but mechanisms behind this effect remain to be elucidated. In conclusion, the author emphasises the importance of investigating colorectal mucus in IBD and CRC patients as a previously unexplored milieu of disease-related inflammatory responses.
Collapse
|
9
|
Titz B, Gadaleta RM, Lo Sasso G, Elamin A, Ekroos K, Ivanov NV, Peitsch MC, Hoeng J. Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification. Int J Mol Sci 2018; 19:ijms19092775. [PMID: 30223557 PMCID: PMC6163330 DOI: 10.3390/ijms19092775] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) represents a group of progressive disorders characterized by recurrent chronic inflammation of the gut. Ulcerative colitis and Crohn's disease are the major manifestations of IBD. While our understanding of IBD has progressed in recent years, its etiology is far from being fully understood, resulting in suboptimal treatment options. Complementing other biological endpoints, bioanalytical "omics" methods that quantify many biomolecules simultaneously have great potential in the dissection of the complex pathogenesis of IBD. In this review, we focus on the rapidly evolving proteomics and lipidomics technologies and their broad applicability to IBD studies; these range from investigations of immune-regulatory mechanisms and biomarker discovery to studies dissecting host⁻microbiome interactions and the role of intestinal epithelial cells. Future studies can leverage recent advances, including improved analytical methodologies, additional relevant sample types, and integrative multi-omics analyses. Proteomics and lipidomics could effectively accelerate the development of novel targeted treatments and the discovery of complementary biomarkers, enabling continuous monitoring of the treatment response of individual patients; this may allow further refinement of treatment and, ultimately, facilitate a personalized medicine approach to IBD.
Collapse
Affiliation(s)
- Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Raffaella M Gadaleta
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Giuseppe Lo Sasso
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Irisviksvägen 31D, 02230 Esbo, Finland.
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| |
Collapse
|
10
|
Loktionov A, Chhaya V, Bandaletova T, Poullis A. Inflammatory bowel disease detection and monitoring by measuring biomarkers in non-invasively collected colorectal mucus. J Gastroenterol Hepatol 2017; 32:992-1002. [PMID: 27787913 DOI: 10.1111/jgh.13627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/12/2016] [Accepted: 10/22/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Non-invasive detection and monitoring of inflammatory bowel disease (IBD) is an important clinical challenge. Stool calprotectin is the most popular among available options, but the necessity of stool collection limits its acceptability. This study aimed to evaluate biomarker measurement in non-invasively collected colorectal mucus as a new tool for IBD detection and activity monitoring. METHODS Calprotectin, eosinophil-derived neurotoxin (EDN), and protein S100A12 were measured in colorectal mucus self-collected following defecation by 58 patients with IBD (before therapy), 50 patients with irritable bowel syndrome, and 33 healthy volunteers. Patients with IBD also collected samples at days 10, 20, and 30 of treatment for disease activity monitoring. RESULTS Protein biomarker levels were significantly (P < 0.001) higher in IBD patients than in irritable bowel syndrome and control groups. Calprotectin and EDN effectively detected IBD with a respective sensitivity and specificity of 0.76 and 0.92 for calprotectin and 0.83 and 0.94 for EDN. S100A12 was less sensitive. Calprotectin and EDN results were combined in a new test (CALEDN) that had a sensitivity of 0.91 and a specificity of 0.89. Repeated biomarker measurement during IBD treatment demonstrated a steady decline of calprotectin and EDN levels as well as CALEDN values in patients responding to applied therapy and lack of this pattern in non-responders. CONCLUSIONS Measuring calprotectin and EDN in non-invasively collected colorectal mucus presents a simple and efficient method for IBD detection and monitoring. Excellent performance of EDN for this purpose is reported for the first time. Combining calprotectin and EDN in one test improves IBD detection sensitivity.
Collapse
Affiliation(s)
| | - Vivek Chhaya
- Department of Gastroenterology, St George's Hospital, London, UK
| | | | - Andrew Poullis
- Department of Gastroenterology, St George's Hospital, London, UK
| |
Collapse
|
11
|
|