1
|
Yi JM. Epigenetic regulation of HERVs: Implications for cancer immunotherapy. Genes Genomics 2024:10.1007/s13258-024-01546-2. [PMID: 39088189 DOI: 10.1007/s13258-024-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Human endogenous retroviruses (HERVs), integrated into the human genome during primate evolution, constitute approximately 8% of the human genome. Although most HERVs are non-protein-coding owing to mutations, insertions, deletions, and truncations, recent research has revealed their diverse roles in biological processes, including disease pathogenesis. OBJECTIVE Although many HERVs remain inactive, they have been implicated in various diseases, particularly cancer, prompting an increased interest in harnessing HERVs for therapeutic purposes. This review explores the recent advancements in our understanding of the biological roles of HERVs, emphasizing their clinical relevance in cancer treatment. METHODS Here, we discuss how the detection of transposable elements (TEs), including HERVs, by the immune system triggers innate immune responses in human cancers. CONCLUSION Additionally, we outline recent progress in elucidating the implications of HERV activation in cancer and how targeting HERVs holds promise for anti-cancer treatments by modulating epigenetic plasticity and disrupting cancer initiation and progression.
Collapse
Affiliation(s)
- Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, 47392, South Korea.
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Bloomington, IN, 47405, USA.
| |
Collapse
|
2
|
Machnik G, Bułdak Ł, Zapletal-Pudełko K, Grabarek BO, Staszkiewicz R, Sobański D, Okopień B. The impact of wound-healing assay, phorbol myristate acetate (PMA) stimulation and siRNA-mediated FURIN gene silencing on endogenous retroviral ERVW-1 expression level in U87-MG astrocytoma cells. Adv Med Sci 2024; 69:113-124. [PMID: 38403160 DOI: 10.1016/j.advms.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
PURPOSE Human endogenous retroviruses (HERVs) are ubiquitous genomic sequences. Normally dormant HERVs, undergo reactivation by environmental factors. This deregulation of HERVs' transcriptional equilibrium correlates with medical conditions such as multiple sclerosis (MS). Here we sought to explore whether exposing the U-87 MG astrocytoma cells to traumatic injury deregulates the expression of HERV-W family member ERVW-1 encoding syncytin-1. We also examined the expression of FURIN gene that is crucial in syncytin-1 synthesis. MATERIAL AND METHODS Scratch assay was used as a model of cells injury in U-87 MG cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot (WB) and migration assay using Boyden chamber were used. Phorbol 12-myristate 13-acetate (PMA) and small interfering RNA (siRNA) were used for cell stimulation and gene expression inhibition, respectively. RESULTS Results revealed reduced ERVW-1 expression in cells exposed to injury (p < 0.05) while GFAP gene - a marker of active astrocytes, was upregulated (p < 0.01). These findings were confirmed by both WB and RT-qPCR. Expression of FURIN gene was not altered after injury, but cell stimulation by PMA strongly increased FURIN expression, simultaneously downregulating ERVW-1 (p < 0.01). SiRNA-mediated expression inhibition of ERVW-1 and FURIN influenced the mRNA level for SLC1A5 (ASCT2) - primary syncytin-1 receptor, that was significantly lower. FURIN inhibition by siRNA caused strong upregulation of ERVW-1 expression (p < 0.01). CONCLUSION Results showed that mechanical impact affects the expression of endogenous retroviruses in U-87 MG astrocytoma cells by scratch assay. Regulation of FURIN, a crucial enzyme in ERVW-1 turnover may support the therapy of some neurological conditions.
Collapse
Affiliation(s)
- Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Zapletal-Pudełko
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Beniamin Oskar Grabarek
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland; Department of Molecular Biology, Gyncentrum Fertility Clinic, Katowice, Poland
| | - Rafał Staszkiewicz
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland; Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Krakow, Poland; Department of Neurosurgery, Faculty of Medicine, Academy of Silesia, Katowice, Poland
| | - Dawid Sobański
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland; Department of Neurosurgery, Szpital sw. Rafala in Cracow, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
3
|
Wang Q, Shi Y, Bian Q, Zhang N, Wang M, Wang J, Li X, Lai L, Zhao Z, Yu H. Molecular mechanisms of syncytin-1 in tumors and placental development related diseases. Discov Oncol 2023; 14:104. [PMID: 37326913 DOI: 10.1007/s12672-023-00702-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Human endogenous retroviruses (HERVs) have evolved from exogenous retroviruses and account for approximately 8% of the human genome. A growing number of findings suggest that the abnormal expression of HERV genes is associated with schizophrenia, multiple sclerosis, endometriosis, breast cancer, bladder cancer and other diseases. HERV-W env (syncytin-1) is a membrane glycoprotein which plays an important role in placental development. It includes embryo implantation, fusion of syncytiotrophoblasts and of fertilized eggs, and immune response. The abnormal expression of syncytin-1 is related to placental development-related diseases such as preeclampsia, infertility, and intrauterine growth restriction, as well as tumors such as neuroblastoma, endometrial cancer, and endometriosis. This review mainly focused on the molecular interactions of syncytin-1 in placental development-related diseases and tumors, to explore whether syncytin-1 can be an emerging biological marker and potential therapeutic target.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Ying Shi
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Qiang Bian
- Collaborative Innovation Center, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
- Department of Pathophysiology, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Naibin Zhang
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Meng Wang
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Jianing Wang
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Xuan Li
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Luhao Lai
- Collaborative Innovation Center, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China.
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China.
- Collaborative Innovation Center, Jining Medical University, Jining, 272067, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
5
|
Müller MD, Holst PJ, Nielsen KN. A Systematic Review of Expression and Immunogenicity of Human Endogenous Retroviral Proteins in Cancer and Discussion of Therapeutic Approaches. Int J Mol Sci 2022; 23:1330. [PMID: 35163254 PMCID: PMC8836156 DOI: 10.3390/ijms23031330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that have become fixed in the human genome. While HERV genes are typically silenced in healthy somatic cells, there are numerous reports of HERV transcription and translation across a wide spectrum of cancers, while T and B cell responses against HERV proteins have been detected in cancer patients. This review systematically categorizes the published evidence on the expression of and adaptive immune response against specific HERVs in distinct cancer types. A systematic literature search was performed using Medical Search Headings (MeSH) in the PubMed/Medline database. Papers were included if they described the translational activity of HERVs. We present multiple tables that pair the protein expression of specific HERVs and cancer types with information on the quality of the evidence. We find that HERV-K is the most investigated HERV. HERV-W (syncytin-1) is the second-most investigated, while other HERVs have received less attention. From a therapeutic perspective, HERV-K and HERV-E are the only HERVs with experimental demonstration of effective targeted therapies, but unspecific approaches using antiviral and demethylating agents in combination with chemo- and immunotherapies have also been investigated.
Collapse
Affiliation(s)
- Mikkel Dons Müller
- Institute of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark;
| | | | | |
Collapse
|
6
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
7
|
Gao Y, Yu XF, Chen T. Human endogenous retroviruses in cancer: Expression, regulation and function. Oncol Lett 2020; 21:121. [PMID: 33552242 PMCID: PMC7798031 DOI: 10.3892/ol.2020.12382] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are the remnants of ancient retroviruses that infected human germline cells and became integrated into the human genome millions of years ago. Although most of these sequences are incomplete and silent, several potential pathological roles of HERVs have been observed in numerous diseases, such as multiple sclerosis and rheumatoid arthritis, and especially cancer, including breast cancer and pancreatic carcinoma. The present review investigates the expression signatures and complex regulatory mechanisms of HERVs in cancer. The long terminal repeats-driven transcriptional initiation of HERVs are regulated by transcription factors (such as Sp3) and epigenetic modifications (such as DNA methylation), and are influenced by environmental factors (such as ultraviolet radiation). In addition, this review focuses on the dual opposing effects of HERVs in cancer. HERVs can suppress cancer via immune activation; however, they can also promote cancer. HERV env gene serves a prime role in promoting carcinogenesis in certain malignant tumors, including breast cancer, pancreatic cancer, germ cell tumors, leukemia and Kaposi's sarcoma. Also, HERV ENV proteins can promote cancer via immune suppression. Targeting ENV proteins is a potential future antitumor treatment modality.
Collapse
Affiliation(s)
- Yuan Gao
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| | - Xiao-Fang Yu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| | - Ting Chen
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| |
Collapse
|
8
|
Dolci M, Favero C, Tarantini L, Villani S, Bregni M, Signorini L, Della Valle A, Crivelli F, D'Alessandro S, Ferrante P, Bollati V, Delbue S. Human endogenous retroviruses env gene expression and long terminal repeat methylation in colorectal cancer patients. Med Microbiol Immunol 2020; 209:189-199. [PMID: 32040616 DOI: 10.1007/s00430-020-00662-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Human endogenous retroviruses (HERV) are remnants of exogenous retroviral infections, representing 8% of the human genome. Their regulation is based on the DNA methylation of promoters, the long terminal repeats (LTRs). Transcripts from HERV have been associated with cancers, but reports concerning HERV expression in colorectal cancer remain sporadic. Sixty-three patients with advanced stages of colorectal cancer were enrolled in this study. The expressions of HERV env gene, and HERV-H, -K, -R and -P LTRs and Alu, LINE-1 methylation levels, were investigated in the tumor, normal adjacent tissues, and, where possible, blood and plasmatic extracellular vesicles (EVs). Associations among HERV env expression, methylation status and clinical characteristics were evaluated. No differences were observed in HERV env gene expression levels among the clinical specimens, while Alu, LINE-1, HERV-H and -K LTRs were demethylated in the tumor compared to the normal adjacent tissues (p < 0.05).The HERV env gene was expressed in the EVs at of 54% (-H), 38% (-K), 31% (-R) patients. Association was not found between HERV env expression and LTR methylation, but significant higher expression of HERV-P and -R env was found in tumor tissues arising from the right colon. Our findings do not demonstrate significant overexpression of the studied HERV in colorectal cancer, but their association with tumor localization and specificity of the changes in DNA methylation of retroelements are shown. HERV sequences were packaged in the EVs and might be transferred from one cell to another.
Collapse
Affiliation(s)
- Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Chiara Favero
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, Milan, Italy
| | - Letizia Tarantini
- Department of Preventive Medicine, Fondazione IRCSS Ca' Granda, Ospedale Maggiore Policlinico, Via San Barnaba 8, Milan, Italy
| | - Sonia Villani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Marco Bregni
- Hematology Unit, ASST Valle Olona, Ospedale di Circolo di Busto Arsizio, Via Arnaldo da Brescia 3, Busto Arsizio, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Alberto Della Valle
- General Surgery Unit, Istituto Clinico Città Studi, Via Jommelli 19, Milan, Italy
| | - Filippo Crivelli
- Pathology Unit, ASST Valle Olona, Ospedale di Circolo di Busto Arsizio, Via Arnaldo da Brescia 3, Busto Arsizio, Italy
| | - Sarah D'Alessandro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, 20133, Milan, Italy
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, Milan, Italy.,Department of Preventive Medicine, Fondazione IRCSS Ca' Granda, Ospedale Maggiore Policlinico, Via San Barnaba 8, Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, 20133, Milan, Italy.
| |
Collapse
|
9
|
Giebler M, Staege MS, Blauschmidt S, Ohm LI, Kraus M, Würl P, Taubert H, Greither T. Elevated HERV-K Expression in Soft Tissue Sarcoma Is Associated with Worsened Relapse-Free Survival. Front Microbiol 2018; 9:211. [PMID: 29487589 PMCID: PMC5816752 DOI: 10.3389/fmicb.2018.00211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/30/2018] [Indexed: 01/22/2023] Open
Abstract
A wide variety of endogenous retroviral sequences has been demonstrated in the human genome so far, divided into several different families according to the sequence homology to viral strains. While increased expression of human endogenous retrovirus (HERV) elements has already been linked to unfavorable prognosis in hepatocellular carcinoma, breast cancer, and ovarian carcinoma yet less is known about the impact of the expression of different HERV elements on sarcomagenesis in general as well as the outcome of soft tissue sarcoma (STS) patients. Therefore, in this study the association between expression of HERV-K and HERV-F and the clinicopathological characteristics in a cohort of STSs as well as the patients’ prognosis was evaluated. HERV-K and HERV-F expression was assessed by quantitative real-time PCR in 120 patient specimens. HERV-K and HERV-F expression was significantly correlated (rS = 0.5; p = 6.4 × 10-9; Spearman’s rank bivariate correlation). Also, tumor diameter exhibited a significant negative association to HERV-K and HERV-F expression. Levels of several hypoxia-related RNAs like HIF-1α and miR-210 showed a significant positive correlation with both HERV-K and HERV-F expression. Although in survival analyses no impact of HERV expression on disease-specific survival could be detected, patients with elevated HERV-K expression had a significantly shorter relapse-free survival (p = 0.014, log-rank analysis). In conclusion, we provide evidence for the first time that the increased expression of HERV-K in tumors is associated with STS patients’ prognosis.
Collapse
Affiliation(s)
- Maria Giebler
- Center for Reproductive Medicine and Andrology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Pediatrics I, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Sindy Blauschmidt
- Center for Reproductive Medicine and Andrology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Lea I Ohm
- Department of Pediatrics I, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Matthias Kraus
- Center for Reproductive Medicine and Andrology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Peter Würl
- Department of General, Visceral and Thoracic Surgery, Städtische Klinikum Dessau, Dessau-Roßlau, Germany
| | - Helge Taubert
- Division Molecular Urology, Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
10
|
Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism. J Virol 2017; 91:JVI.00958-17. [PMID: 28956768 DOI: 10.1128/jvi.00958-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitroIMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and, in rare cases, encephalitis. Presently, there is no cure available to treat those infected or prevent future transmission. Due to the ability of HSV to cause a persistent, lifelong infection in the peripheral nervous system, the virus remains within the host for life. To better understand the basis of virus-neuron interactions that allow HSV to persist within the host peripheral nervous system, improved neuronal models are required. Here we describe a cost-effective and scalable human neuronal model system that can be used to study many neurotropic viruses, such as HSV, Zika virus, dengue virus, and rabies virus.
Collapse
|
11
|
Grandi N, Tramontano E. Type W Human Endogenous Retrovirus (HERV-W) Integrations and Their Mobilization by L1 Machinery: Contribution to the Human Transcriptome and Impact on the Host Physiopathology. Viruses 2017; 9:v9070162. [PMID: 28653997 PMCID: PMC5537654 DOI: 10.3390/v9070162] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Human Endogenous Retroviruses (HERVs) are ancient infection relics constituting ~8% of our DNA. While HERVs’ genomic characterization is still ongoing, impressive amounts of data have been obtained regarding their general expression across tissues. Among HERVs, one of the most studied is the W group, which is the sole HERV group specifically mobilized by the long interspersed element-1 (LINE-1) machinery, providing a source of novel insertions by retrotransposition of HERV-W processed pseudogenes, and comprising a member encoding a functional envelope protein coopted for human placentation. The HERV-W group has been intensively investigated for its putative role in several diseases, such as cancer, inflammation, and autoimmunity. Despite major interest in the link between HERV-W expression and human pathogenesis, no conclusive correlation has been demonstrated so far. In general, (i) the absence of a proper identification of the specific HERV-W sequences expressed in a given condition; and (ii) the lack of studies attempting to connect the various observations in the same experimental conditions are the major problems preventing the definitive assessment of the HERV-W impact on human physiopathology. In this review, we summarize the current knowledge on the HERV-W group presence within the human genome and its expression in physiological tissues as well as in the main pathological contexts.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Cagliari, Italy.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Cagliari, Italy.
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
12
|
Hurst TP, Magiorkinis G. Epigenetic Control of Human Endogenous Retrovirus Expression: Focus on Regulation of Long-Terminal Repeats (LTRs). Viruses 2017; 9:v9060130. [PMID: 28561791 PMCID: PMC5490807 DOI: 10.3390/v9060130] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Transposable elements, including endogenous retroviruses (ERVs), comprise almost 45% of the human genome. This could represent a significant pathogenic burden but it is becoming more evident that many of these elements have a positive contribution to make to normal human physiology. In particular, the contributions of human ERVs (HERVs) to gene regulation and the expression of noncoding RNAs has been revealed with the help of new and emerging genomic technologies. HERVs have the common provirus structure of coding open reading frames (ORFs) flanked by two long-terminal repeats (LTRs). However, over the course of evolution and as a consequence of host defence mechanisms, most of the sequences contain INDELs, mutations or have been reduced to single LTRs by recombination. These INDELs and mutations reduce HERV activity. However, there is a trade-off for the host cells in that HERVs can provide beneficial sources of genetic variation but with this benefit comes the risk of pathogenic activity and spread within the genome. For example, the LTRs are of critical importance as they contain promoter sequences and can regulate not only HERV expression but that of human genes. This is true even when the LTRs are located in intergenic regions or are in antisense orientation to the rest of the gene. Uncontrolled, this promoter activity could disrupt normal gene expression or transcript processing (e.g., splicing). Thus, control of HERVs and particularly their LTRs is essential for the cell to manage these elements and this control is achieved at multiple levels, including epigenetic regulations that permit HERV expression in the germline but silence it in most somatic tissues. We will discuss some of the common epigenetic mechanisms and how they affect HERV expression, providing detailed discussions of HERVs in stem cell, placenta and cancer biology.
Collapse
Affiliation(s)
- Tara P Hurst
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | - Gkikas Magiorkinis
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|