1
|
Villani S, Calcagnile M, Demitri C, Alifano P. Galleria mellonella (Greater Wax Moth) as a Reliable Animal Model to Study the Efficacy of Nanomaterials in Fighting Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:67. [PMID: 39791825 PMCID: PMC11723170 DOI: 10.3390/nano15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The spread of multidrug-resistant microbes has made it necessary and urgent to develop new strategies to deal with the infections they cause. Some of these are based on nanotechnology, which has revolutionized many fields in medicine. Evaluating the safety and efficacy of these new antimicrobial strategies requires testing in animal models before being tested in clinical trials. In this context, Galleria mellonella could represent a valid alternative to traditional mammalian and non-mammalian animal models, due to its low cost, ease of handling, and valuable biological properties to investigate host-pathogen interactions. The purpose of this review is to provide an updated overview of the literature concerning the use of G. mellonella larvae as an animal model to evaluate safety and efficacy of nanoparticles and nanomaterials, particularly, of those that are used or are under investigation to combat microbial pathogens.
Collapse
Affiliation(s)
- Stefania Villani
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Matteo Calcagnile
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
2
|
Spencer EK, Miller CR, Bull J. Standardized methods for rearing a moth larva, Manduca sexta, in a laboratory setting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629232. [PMID: 39763740 PMCID: PMC11702677 DOI: 10.1101/2024.12.18.629232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The larval tobacco hornworm, Manduca sexta, has been used in a laboratory setting for physiological studies and for pathogen virulence studies. This moth offers a much larger size than the commonly used wax moth (Galleria mellonella), and it can thus be used for a greater variety of assays, such as repeated sampling of the same individual, growth measurements, and tissue sampling. Yet their occasional use in research has led to a minimally documented set of rearing methods. To facilitate further adoption of this insect model, we expanded on previously reported protocols and developed our own rearing methods, which we report here. Our protocol requires little specialized equipment, with a cost less than $100/month for the feeding and maintenance of a laboratory colony of about five hundred larvae of differing instar phases. The low cost generalized equipment and supplies, and the simplification of the standardized protocols allows for an easy entry point for rearing tobacco hornworm populations. We also describe a few methods that are relevant to the uses of these organisms as infection models.
Collapse
Affiliation(s)
- Emma K. Spencer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Craig R. Miller
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - James Bull
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
3
|
Grünfeld M. Telling Ecopoetic Stories: Wax Worms, Care, and the Cultivation of Other Sensibilities. THE JOURNAL OF MEDICAL HUMANITIES 2024:10.1007/s10912-024-09878-6. [PMID: 39145849 DOI: 10.1007/s10912-024-09878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 08/16/2024]
Abstract
Recently, a beekeeper discovered the metabolic wizardry of wax worms, their ability to decompose polyethylene. While this organism has usually been perceived as a model organism in science or a pest to beekeepers, it acquired a new mode of being as potentially probiotic, inviting us to dream of a future without plastic waste. In this paper, I explore how wax worms are entangled with material practices of care and narratives that give meaning to these practices. These stories, however, are marked by manipulation, exploitation, and extermination, and call for a questioning of our modes of caring. Consequently, I offer a counter-narrative that questions our anthropocentric practices of caring and the stories we attach to them. Borrowing Puig de la Bellacasa's notion of ecopoetics, I tell another story based on my participation in the making of an art installation hosting wax worms. The installation creates an opening of a world of curiosity and cultivates a sensibility for wax worms expanding their modes of being and our capabilities of appreciation. In the end, I argue that by mattering and storying differently, we have the opportunity to challenge anthropocentric interests and make a different world of caring and co-existence possible.
Collapse
Affiliation(s)
- Martin Grünfeld
- Department of Science Education, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Tran KD, Le-Thi L, Vo HH, Dinh-Thi TV, Nguyen-Thi T, Phan NH, Nguyen KU. Probiotic Properties and Safety Evaluation in the Invertebrate Model Host Galleria mellonella of the Pichia kudriavzevii YGM091 Strain Isolated from Fermented Goat Milk. Probiotics Antimicrob Proteins 2024; 16:1288-1303. [PMID: 37368223 DOI: 10.1007/s12602-023-10114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Potential probiotic yeast strains isolated from fermented food need to meet safe and beneficial conditions for the host's health. The Pichia kudriavzevii YGM091 strain isolated from fermented goat milk has outstanding probiotic characteristics, including: the high survival percentage in digestive system conditions (reaching up 247.13 ± 0.12 and 145.03 ± 0.06% at pH 3.0 and bile salt 0.5%, respectively); good tolerance to temperature, salt, phenol, ethanol; good surface properties such as high hydrophobicity percentage (> 60%), the high auto-aggregation percentage rate (66.56 ± 1.45% after 45 min of incubation) and the high co-aggregation percentage rate with pathogenic bacteria in a short time (> 40% after 2 h of incubation); biofilm forming after 24 h of incubation on abiotic surfaces; antioxidant activity reached excellent level after only 24 h of incubation (The percentage free radical scavenging and the Trolox equivalent reaching up 79.86 ± 0.70% and 92.09 ± 0.75 µg/mL after 72 h of incubation); extracellular enzymes production protease and cellulase with high activity, amylase and pectinase with moderate activity and non-lipase activity. Simultaneously, the YGM091 strain is the in vitro safety yeast: insensitive to antibiotics and fluconazole, negative for gelatinase, phospholipase, coagulase, and non-hemolysis activities. Furthermore, this strain is in vivo safety yeast with the dosages below 106 CFU/larva in the Galleria mellonella model with over 90% survival larvae and the yeast density reduced to just 102-103 CFU/larva after 72 h post-injection. Research results have demonstrated that the Pichia kudriavzevii YGM091 strain is a safe potential probiotic yeast and could become a candidate probiotic food to be used in the future.
Collapse
Affiliation(s)
- Kim-Diep Tran
- Tay Nguyen Institute of Scientific Research, Vietnam Academy of Science and Technology, Da Lat, Vietnam.
- Yersin University, Da Lat, Vietnam.
| | | | | | | | | | - Nha-Hoa Phan
- Tay Nguyen Institute of Scientific Research, Vietnam Academy of Science and Technology, Da Lat, Vietnam
| | - Khanh-Uyen Nguyen
- Tay Nguyen Institute of Scientific Research, Vietnam Academy of Science and Technology, Da Lat, Vietnam
| |
Collapse
|
5
|
Rodrigues FAF, Teixeira RR, Bazzolli DMS, da Silva GC, Fontes PP, Diaz-Muñoz G, Rossi CC, Diaz MAN. Two novel synthetic xanthenodiones as antimicrobial, anti-adhesive and antibiofilm compounds against methicillin resistant Staphylococcus aureus. Braz J Microbiol 2024; 55:1243-1249. [PMID: 38551766 PMCID: PMC11153428 DOI: 10.1007/s42770-024-01305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/05/2024] [Indexed: 06/07/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is widely recognized as a causative agent for various infections acquired in healthcare settings as well as in the community. Given the limited availability of effective antimicrobial agents to combat MRSA infections, there is an increasing need to explore alternative therapeutic strategies. This study aimed to assess the antimicrobial, anti-adhesive, anti-biofilm properties, and toxicity of 175 newly synthesized compounds, belonging to seven different classes, against MRSA. Initially, the compounds underwent screening for antimicrobial activity using the agar diffusion method. Subsequently, active compounds underwent further evaluation to determine their minimum inhibitory concentrations through microdilution. Anti-biofilm and anti-adhesive properties were assessed using the crystal violet method, while toxicity was tested using the alternative infection model Galleria mellonella. Among the tested compounds, two xanthenodiones exhibited the most promising activities, displaying bactericidal effects along with anti-adhesive and anti-biofilm properties. Moreover, the observed non-toxicity in G. mellonella larvae suggests that these compounds hold significant potential as alternative therapeutic options to address the escalating challenge of MRSA resistance in both hospital and community settings.
Collapse
Affiliation(s)
| | | | - Denise Mara Soares Bazzolli
- Instituto de Biotecnologia Aplicado à Agropecuária - BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Giarlã Cunha da Silva
- Instituto de Biotecnologia Aplicado à Agropecuária - BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Patrícia Pereira Fontes
- Instituto de Biotecnologia Aplicado à Agropecuária - BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Gaspar Diaz-Muñoz
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ciro César Rossi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | | |
Collapse
|
6
|
Kosznik-Kwaśnicka K, Topka G, Mantej J, Grabowski Ł, Necel A, Węgrzyn G, Węgrzyn A. Propagation, Purification, and Characterization of Bacteriophages for Phage Therapy. Methods Mol Biol 2024; 2738:357-400. [PMID: 37966610 DOI: 10.1007/978-1-0716-3549-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Phage therapy is an alternative approach to combat bacterial infections. In this approach, bacteriophages are used as antimicrobial agents due to their properties to infect specific bacterial cells, to propagate inside their hosts, and to lyse host cell to release progeny phages. However, to introduce bacteriophages to clinical or veterinary practice, it is necessary to construct a large library of precisely characterized phages. Therefore, in this chapter, methods for propagation, purification, and microbiological characterization of bacteriophages are presented in the light of their potential use in phage therapy. Isolation of newly discovered bacteriophages from different habitats is also described as it is a preliminary assessment of their efficacy in combating bacterial biofilms and in the treatment of bacterial infections in a simple insect model-Galleria mellonella.
Collapse
Affiliation(s)
| | | | | | - Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Alicja Węgrzyn
- Phage Therapy Laboratory, University Center for Applied and Interdisciplinary Research, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
7
|
Han B, Zhang L, Geng L, Jia H, Wang J, Ke L, Li A, Gao J, Wu T, Lu Y, Liu F, Song H, Wei X, Ma S, Zhan H, Wu Y, Liu Y, Wang Q, Diao Q, Zhang J, Dai P. Greater wax moth control in apiaries can be improved by combining Bacillus thuringiensis and entrapments. Nat Commun 2023; 14:7073. [PMID: 37925529 PMCID: PMC10625538 DOI: 10.1038/s41467-023-42946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
The greater wax moth (GWM), Galleria mellonella (Lepidoptera: Pyralidae), is a major bee pest that causes significant damage to beehives and results in economic losses. Bacillus thuringiensis (Bt) appears as a potential sustainable solution to control this pest. Here, we develop a novel Bt strain (designated BiotGm) that exhibits insecticidal activity against GWM larvae with a LC50 value lower than 2 μg/g, and low toxicity levels to honey bee with a LC50 = 20598.78 μg/mL for larvae and no observed adverse effect concentration = 100 μg/mL for adults. We design an entrapment method consisting of a lure for GWM larvae, BiotGm, and a trapping device that prevents bees from contacting the lure. We find that this method reduces the population of GWM larvae in both laboratory and field trials. Overall, these results provide a promising direction for the application of Bt-based biological control of GWM in beehives, although further optimization remain necessary.
Collapse
Affiliation(s)
- Bo Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiru Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Ke
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Airui Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ying Lu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Feng Liu
- Jiangxi Institute of Apicultural Research, Nanchang, 330201, China
| | - Huailei Song
- Shanxi Agricultural University, Taiyuan, 030006, China
| | - Xiaoping Wei
- Modern Agricultural Development Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Shilong Ma
- Enshi Academy of Agricultural Sciences, Enshi, 445002, China
| | - Hongping Zhan
- Modern Agricultural Development Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yanyan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongjun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiang Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyun Diao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Jo J, Lee JY, Cho H, Ko KS. Treatment of Colistin Dependence-Developing Acinetobacter baumannii with Antibiotic Combinations at Subinhibitory Concentrations. Microb Drug Resist 2023; 29:448-455. [PMID: 37379479 DOI: 10.1089/mdr.2022.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Recent studies have revealed that colistin dependence frequently develops in colistin-susceptible Acinetobacter baumannii isolates. Despite resistance in parental strains, colistin-dependent mutants showed increased susceptibility to several antibiotics, which suggests the possibility of developing strategies to eliminate multidrug-resistant (MDR) A. baumannii. We investigated in vitro and in vivo efficacy of combinations of colistin and other antibiotics using MDR A. baumannii strains H08-391, H06-855, and H09-94, which are colistin-susceptible but develops colistin dependence upon exposure to colistin. An in vitro time-killing assay, a checkerboard assay, and an antibiotic treatment assay using Galleria mellonella larvae were performed. Although a single treatment of colistin at a high concentration did not prevent colistin dependence, combinations of colistin with other antibiotics at subinhibitory concentrations, especially amikacin, eradicated the strains by inhibiting the development of colistin dependence, in the in vitro time-killing assay. Only 40% of G. mellonella larvae infected by A. baumannii survived with colistin treatment alone; however, all or most of them survived following treatment with the combination of colistin and other antibiotics (amikacin, ceftriaxone, and tetracycline). Our results suggest the possibility of the combination of colistin and amikacin or other antibiotics as one of therapeutic options against A. baumannii infections by eliminating colistin-dependent mutants.
Collapse
Affiliation(s)
- Jeongwoo Jo
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Young Lee
- Research Institute for Future Medical Science, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
9
|
Andrade-Oliveira AL, Lacerda-Rodrigues G, Pereira MF, Bahia AC, Machado EDA, Rossi CC, Giambiagi-deMarval M. Tenebrio molitor as a model system to study Staphylococcus spp virulence and horizontal gene transfer. Microb Pathog 2023; 183:106304. [PMID: 37567328 DOI: 10.1016/j.micpath.2023.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Invertebrates can provide a valuable alternative to traditional vertebrate animal models for studying bacterial and fungal infections. This study aimed to establish the larvae of the coleoptera Tenebrio molitor (mealworm) as an in vivo model for evaluating virulence and horizontal gene transfer between Staphylococcus spp. After identifying the best conditions for rearing T. molitor, larvae were infected with different Staphylococcus species, resulting in dose-dependent killing curves. All species tested killed the insects at higher doses, with S. nepalensis and S. aureus being the most and least virulent, respectively. However, only S. nepalensis was able to kill more than 50% of larvae 72 h post-infection at a low amount of 105 CFU. Staphylococcus infection also stimulated an increase in the concentration of hemocytes present in the hemolymph, which was proportional to the virulence. To investigate T. molitor's suitability as an in vivo model for plasmid transfer studies, we used S. aureus strains as donor and recipient of a plasmid containing the gentamicin resistance gene aac(6')-aph(2″). By inoculating larvae with non-lethal doses of each, we observed conjugation, and obtained transconjugant colonies with a frequency of 1.6 × 10-5 per donor cell. This study demonstrates the potential of T. molitor larvae as a reliable and cost-effective model for analyzing the virulence of Staphylococcus and, for the first time, an optimal environment for the plasmid transfer between S. aureus carrying antimicrobial resistance genes.
Collapse
Affiliation(s)
- Ana Luisa Andrade-Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Geovana Lacerda-Rodrigues
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Monalessa Fábia Pereira
- Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Carangola, MG, Brazil
| | - Ana Cristina Bahia
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ednildo de Alcântara Machado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciencia e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ciro César Rossi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcia Giambiagi-deMarval
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Borghi M, Pereira MF, Schuenck RP. The Presence of Virulent and Multidrug-Resistant Clones of Carbapenem-Resistant Klebsiella pneumoniae in Southeastern Brazil. Curr Microbiol 2023; 80:286. [PMID: 37453006 DOI: 10.1007/s00284-023-03403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) represents an urgent threat to global public health due to the limited therapeutic options available to control this pathogen. This study aims to analyze the molecular epidemiology, antimicrobial resistance and virulence profile of CRKP isolated from patients at hospitals in Southeastern Brazil. KPC and other beta-lactamase genes were detected in all strains, which were also multidrug-resistant (MDR). In addition, 11 strains showed resistance to last-resort antimicrobials, such as colistin and tigecycline. MLST analysis revealed eight different sequence types (ST11, ST37, ST147, ST340, ST384, ST394, ST437, and ST628), being two (ST628 and ST394) reported for the first time in Brazil. Strains belonging to the clonal complex 258 (CC258) "high-risk clones" were prevalent in this study. The Galleria mellonella model showed the emergence of virulent CRKP strains in the healthcare environment and, suggests that colistin-resistant strains were associated with higher virulence. This study shows the presence of virulent CRKP-MDR strains in hospitals across Southeastern Brazil, and draws attention to the presence of highly virulent emerging CRKP-MDR ST628 strains, showing that virulent and resistant clones can emerge quickly, requiring constant monitoring.
Collapse
Affiliation(s)
- Mirla Borghi
- Department of Pathology, Molecular Biology and Bacterial Virulence Laboratory, Health Sciences Center, Federal University of Espírito Santo, Av. Marechal Campos, s/no, Maruípe, Vitória, ES, 29043-900, Brazil
| | - Monalessa Fábia Pereira
- Department of Pathology, Molecular Biology and Bacterial Virulence Laboratory, Health Sciences Center, Federal University of Espírito Santo, Av. Marechal Campos, s/no, Maruípe, Vitória, ES, 29043-900, Brazil
- Department of Biological Sciences, State University of Minas Gerais, Carangola, MG, Brazil
| | - Ricardo Pinto Schuenck
- Department of Pathology, Molecular Biology and Bacterial Virulence Laboratory, Health Sciences Center, Federal University of Espírito Santo, Av. Marechal Campos, s/no, Maruípe, Vitória, ES, 29043-900, Brazil.
| |
Collapse
|
11
|
Pérez-Ortega J, van Harten RM, Haagsman HP, Tommassen J. Physiological consequences of inactivation of lgmB and lpxL1, two genes involved in lipid A synthesis in Bordetella bronchiseptica. Res Microbiol 2023; 174:104049. [PMID: 36871896 DOI: 10.1016/j.resmic.2023.104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
To develop a Bordetella bronchiseptica vaccine with reduced endotoxicity, we previously inactivated lpxL1, the gene encoding the enzyme that incorporates a secondary 2-hydroxy-laurate in lipid A. The mutant showed a myriad of phenotypes. Structural analysis showed the expected loss of the acyl chain but also of glucosamine (GlcN) substituents, which decorate the phosphates in lipid A. To determine which structural change causes the various phenotypes, we inactivated here lgmB, which encodes the GlcN transferase, and lpxL1 in an isogenic background and compared the phenotypes. Like the lpxL1 mutation, the lgmB mutation resulted in reduced potency to activate human TLR4 and to infect macrophages and in increased susceptibility to polymyxin B. These phenotypes are therefore related to the loss of GlcN decorations. The lpxL1 mutation had a stronger effect on hTLR4 activation and additionally resulted in reduced murine TLR4 activation, surface hydrophobicity, and biofilm formation, and in a fortified outer membrane as evidenced by increased resistance to several antimicrobials. These phenotypes, therefore, appear to be related to the loss of the acyl chain. Moreover, we determined the virulence of the mutants in the Galleria mellonella infection model and observed reduced virulence of the lpxL1 mutant but not of the lgmB mutant.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| | - Roel M van Harten
- Section of Molecular Host Defense, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, the Netherlands.
| | - Henk P Haagsman
- Section of Molecular Host Defense, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, the Netherlands.
| | - Jan Tommassen
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
12
|
An R, Liu C, Wang J, Jia P. Recent Advances in Degradation of Polymer Plastics by Insects Inhabiting Microorganisms. Polymers (Basel) 2023; 15:polym15051307. [PMID: 36904548 PMCID: PMC10007075 DOI: 10.3390/polym15051307] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/21/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Plastic pollution endangers all natural ecosystems and living creatures on earth. Excessive reliance on plastic products and excessive production of plastic packaging are extremely dangerous for humans because plastic waste has polluted almost the entire world, whether it is in the sea or on the land. This review introduces the examination of pollution brought by non-degradable plastics, the classification and application of degradable materials, and the current situation and strategy to address plastic pollution and plastic degradation by insects, which mainly include Galleria mellonella, Zophobas atratus, Tenebrio molitor, and other insects. The efficiency of plastic degradation by insects, biodegradation mechanism of plastic waste, and the structure and composition of degradable products are reviewed. The development direction of degradable plastics in the future and plastic degradation by insects are prospected. This review provides effective ways to solve plastic pollution.
Collapse
Affiliation(s)
- Rongrong An
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chengguo Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin North Road, Nanjing 210042, China
| | - Jun Wang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Correspondence: (J.W.); (P.J.)
| | - Puyou Jia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 16 Suojin North Road, Nanjing 210042, China
- Correspondence: (J.W.); (P.J.)
| |
Collapse
|
13
|
Natural Substrates and Culture Conditions to Produce Pigments from Potential Microbes in Submerged Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pigments from bacteria, fungi, yeast, cyanobacteria, and microalgae have been gaining more demand in the food, leather, and textile industries due to their natural origin and effective bioactive functions. Mass production of microbial pigments using inexpensive and ecofriendly agro-industrial residues is gaining more demand in the current research due to their low cost, natural origin, waste utilization, and high pigment stimulating characteristics. A wide range of natural substrates has been employed in submerged fermentation as carbon and nitrogen sources to enhance the pigment production from these microorganisms to obtain the required quantity of pigments. Submerged fermentation is proven to yield more pigment when added with agro-waste residues. Hence, in this review, aspects of potential pigmented microbes such as diversity, natural substrates that stimulate more pigment production from bacteria, fungi, yeast, and a few microalgae under submerged culture conditions, pigment identification, and ecological functions are detailed for the benefit of industrial personnel, researchers, and other entrepreneurs to explore pigmented microbes for multifaceted applications. In addition, some important aspects of microbial pigments are covered herein to disseminate the knowledge.
Collapse
|
14
|
Curtis A, Binder U, Kavanagh K. Galleria mellonella Larvae as a Model for Investigating Fungal-Host Interactions. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:893494. [PMID: 37746216 PMCID: PMC10512315 DOI: 10.3389/ffunb.2022.893494] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 09/26/2023]
Abstract
Galleria mellonella larvae have become a widely accepted and utilised infection model due to the functional homology displayed between their immune response to infection and that observed in the mammalian innate immune response. Due to these similarities, comparable results to murine studies can be obtained using G. mellonella larvae in assessing the virulence of fungal pathogens and the in vivo toxicity or efficacy of anti-fungal agents. This coupled with their low cost, rapid generation of results, and lack of ethical/legal considerations make this model very attractive for analysis of host-pathogen interactions. The larvae of G. mellonella have successfully been utilised to analyse various fungal virulence factors including toxin and enzyme production in vivo providing in depth analysis of the processes involved in the establishment and progression of fungal pathogens (e.g., Candida spps, Aspergillus spp., Madurella mycetomatis, Mucormycetes, and Cryptococcus neoformans). A variety of experimental endpoints can be employed including analysis of fungal burdens, alterations in haemocyte density or sub-populations, melanisation, and characterisation of infection progression using proteomic, histological or imaging techniques. Proteomic analysis can provide insights into both sides of the host-pathogen interaction with each respective proteome being analysed independently following infection and extraction of haemolymph from the larvae. G. mellonella can also be employed for assessing the efficacy and toxicity of antifungal strategies at concentrations comparable to those used in mammals allowing for early stage investigation of novel compounds and combinations of established therapeutic agents. These numerous applications validate the model for examination of fungal infection and development of therapeutic approaches in vivo in compliance with the need to reduce animal models in biological research.
Collapse
Affiliation(s)
- Aaron Curtis
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|