1
|
Anderson CJ, Boeckaerts L, Chin P, Cardas JB, Xie W, Gonçalves A, Blancke G, Benson S, Rogatti S, Simpson MS, Davey A, Choi SM, Desmet S, Bushman SD, Goeminne G, Vandenabeele P, Desai MS, Vereecke L, Ravichandran KS. Metabolite-based inter-kingdom communication controls intestinal tissue recovery following chemotherapeutic injury. Cell Host Microbe 2024; 32:1469-1487.e9. [PMID: 39197455 DOI: 10.1016/j.chom.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Cytotoxic chemotherapies have devastating side effects, particularly within the gastrointestinal tract. Gastrointestinal toxicity includes the death and damage of the epithelium and an imbalance in the intestinal microbiota, otherwise known as dysbiosis. Whether dysbiosis is a direct contributor to tissue toxicity is a key area of focus. Here, from both mammalian and bacterial perspectives, we uncover an intestinal epithelial cell death-Enterobacteriaceae signaling axis that fuels dysbiosis. Specifically, our data demonstrate that chemotherapy-induced epithelial cell apoptosis and the purine-containing metabolites released from dying cells drive the inter-kingdom transcriptional re-wiring of the Enterobacteriaceae, including fundamental shifts in bacterial respiration and promotion of purine utilization-dependent expansion, which in turn delays the recovery of the intestinal tract. Inhibition of epithelial cell death or restriction of the Enterobacteriaceae to homeostatic levels reverses dysbiosis and improves intestinal recovery. These findings suggest that supportive therapies that maintain homeostatic levels of Enterobacteriaceae may be useful in resolving intestinal disease.
Collapse
Affiliation(s)
- Christopher J Anderson
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Laura Boeckaerts
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Priscilla Chin
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Javier Burgoa Cardas
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wei Xie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB BioImaging Core, Ghent, Belgium
| | - Gillian Blancke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Benson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sebastian Rogatti
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Mariska S Simpson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anna Davey
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Summer D Bushman
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | | | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Lars Vereecke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Iacovacci J, Serafini MS, Avuzzi B, Badenchini F, Cicchetti A, Devecchi A, Dispinzieri M, Doldi V, Giandini T, Gioscio E, Mancinelli E, Noris Chiorda B, Orlandi E, Palorini F, Possenti L, Reis Ferreira M, Villa S, Zaffaroni N, De Cecco L, Valdagni R, Rancati T. Intestinal microbiota composition is predictive of radiotherapy-induced acute gastrointestinal toxicity in prostate cancer patients. EBioMedicine 2024; 106:105246. [PMID: 39029427 PMCID: PMC11314862 DOI: 10.1016/j.ebiom.2024.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The search for factors beyond the radiotherapy dose that could identify patients more at risk of developing radio-induced toxicity is essential to establish personalised treatment protocols for improving the quality-of-life of survivors. To investigate the role of the intestinal microbiota in the development of radiotherapy-induced gastrointestinal toxicity, the MicroLearner observational cohort study characterised the intestinal microbiota of 136 (discovery) and 79 (validation) consecutive prostate cancer patients at baseline radiotherapy. METHODS Gastrointestinal toxicity was assessed weekly during RT using CTCAE. An average grade >1.3 over time points was used to identify patients suffering from persistent acute toxicity (endpoint). The microbiota of patients was quantified from the baseline faecal samples using 16S rRNA gene sequencing technology and the Ion Reporter metagenomic pipeline. Statistical techniques and computational and machine learning tools were used to extract, functionally characterise, and predict core features of the bacterial communities of patients who developed acute gastrointestinal toxicity. FINDINGS Analysis of the core bacterial composition in the discovery cohort revealed a cluster of patients significantly enriched for toxicity, displaying a toxicity rate of 60%. Based on selected high-risk microbiota compositional features, we developed a clinical decision tree that could effectively predict the risk of toxicity based on the relative abundance of genera Faecalibacterium, Bacteroides, Parabacteroides, Alistipes, Prevotella and Phascolarctobacterium both in internal and external validation cohorts. INTERPRETATION We provide evidence showing that intestinal bacteria profiling from baseline faecal samples can be effectively used in the clinic to improve the pre-radiotherapy assessment of gastrointestinal toxicity risk in prostate cancer patients. FUNDING Italian Ministry of Health (Promotion of Institutional Research INT-year 2016, 5 × 1000, Ricerca Corrente funds). Fondazione Regionale per la Ricerca Biomedica (ID 2721017). AIRC (IG 21479).
Collapse
Affiliation(s)
- Jacopo Iacovacci
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Mara Serena Serafini
- Unit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Barbara Avuzzi
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Fabio Badenchini
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alessandro Cicchetti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Andrea Devecchi
- Unit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Michela Dispinzieri
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Doldi
- Unit of Molecular Pharmacology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Tommaso Giandini
- Unit of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Eliana Gioscio
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elisa Mancinelli
- Unit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Barbara Noris Chiorda
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadron Therapy (CNAO), Pavia, Italy
| | - Federica Palorini
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Luca Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Miguel Reis Ferreira
- King's College London, London, UK; Guys and St Thomas NHS Foundation Trust, London, UK
| | - Sergio Villa
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Nadia Zaffaroni
- Unit of Molecular Pharmacology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Unit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Riccardo Valdagni
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy; Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
3
|
Zhou Y, Li K, Adelson DL. An unmet need for pharmacology: Treatments for radiation-induced gastrointestinal mucositis. Biomed Pharmacother 2024; 175:116767. [PMID: 38781863 DOI: 10.1016/j.biopha.2024.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Gastrointestinal mucositis (GIM) continues to be a significant issue in the management of abdominal cancer radiation treatments and chemotherapy, causing significant patient discomfort and therapy interruption or even cessation. This review will first focus on radiotherapy induced GIM, providing an understanding of its clinical landscape. Subsequently, the aetiology of GIM will be reviewed, highlighting diverse contributing factors. The cellular and tissue damage and associated molecular responses in GIM will be summarised in the context of the underlying complex biological processes. Finally, available drugs and pharmaceutical therapies will be evaluated, underscoring their insufficiency, and highlighting the need for further research and innovation. This review will emphasize the urgent need for improved pharmacologic therapeutics for GIM, which is a key research priority in oncology.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Zhendong Australia China Centre for Molecular Chinese Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Kun Li
- Beijing Zhendong Guangming Pharmaceutical Research Institute, Beijing 100120, China.
| | - David L Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Zhendong Australia China Centre for Molecular Chinese Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
4
|
Nguyen SM, Tran HTT, Long J, Shrubsole MJ, Cai H, Yang Y, Cai Q, Tran TV, Zheng W, Shu XO. Gut microbiome in association with chemotherapy-induced toxicities among patients with breast cancer. Cancer 2024; 130:2014-2030. [PMID: 38319284 DOI: 10.1002/cncr.35229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Little research has focused on the relationship between gut microbiome and chemotherapy-induced toxicity. METHODS This prospective study involves 301 patients with breast cancer who had prechemotherapy stool samples collected. Gut microbiome was sequenced by shotgun metagenomics; associations with chemotherapy-induced toxicities during first-line treatment by gut microbial diversity, composition, and metabolic pathways with severe (i.e., grade ≥3) hematological and gastrointestinal toxicities were evaluated via multivariable logistic regression. RESULTS High prechemotherapy α-diversity was associated with a significantly reduced risk of both severe hematological toxicity (odds ratio [OR] = 0.94; 95% CI, 0.89-0.99; p = .048) and neutropenia (OR = 0.94; 95% CI, 0.89-0.99; p = .016). A high abundance of phylum Synergistota, class Synergistia, and order Synergistales were significantly associated with a reduced risk of severe neutropenia; conversely, enrichment of phylum Firmicutes C, class Negativicutes, phylum Firmicutes I, and class Bacilli A, order Paenibacillales were significantly associated with an increased risk of severe neutropenia (p range: 0.012-2.32 × 10-3; false discovery rate <0.1). Significant positive associations were also observed between severe nausea/vomiting and high Chao1 indexes, β-diversity (p < .05), 20 species belonging to the family Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae (p value range: 6.14 × 10-3 to 1.33 × 10-5; false discovery rate <0.1), and three metabolic pathways involved in reductive tricarboxylic acid cycle I and cycle II, and an incomplete reductive tricarboxylic acid cycle (p < .01). Conversely, a high abundance of species Odoribacter laneus and the pathway related to the L-proline biosynthesis II were inversely associated with severe nausea/vomiting. CONCLUSIONS Our study suggests that gut microbiota may be a potential preventive target to reduce chemotherapy-induced toxicity.
Collapse
Affiliation(s)
- Sang M Nguyen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Huong T T Tran
- Vietnam National Cancer Institute, National Cancer Hospital, Hanoi, Vietnam
- Hanoi Medical University, Hanoi, Vietnam
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yaohua Yang
- Department of Public Health Sciences, School of Medicine, Center for Public Health Genomics, UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thuan V Tran
- Hanoi Medical University, Hanoi, Vietnam
- Ministry of Health, Hanoi, Vietnam
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Valaire R, Garden F, Razmovski‐Naumovski V. Are measures and related symptoms of cachexia recorded as outcomes in gastrointestinal cancer chemotherapy clinical trials? J Cachexia Sarcopenia Muscle 2024; 15:1146-1156. [PMID: 38533530 PMCID: PMC11154796 DOI: 10.1002/jcsm.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Cachexia is prevalent in gastrointestinal cancers and worsens patient outcomes and chemotherapy compliance. We examined to what extent registered gastrointestinal cancer chemotherapy clinical trials record measures and related symptoms of cachexia as outcomes, and whether these were associated with trial characteristics. METHODS Four public trial registries (2012-2022) were accessed for Phase II and/or III randomized controlled pancreatic, gastric, and colorectal cancer chemotherapy trial protocols. Trial outcome measures of overall survival and toxicity/side effects, and those related to cachexia [physical activity, weight/body mass index (BMI), dietary limitations, caloric intake, lean muscle mass] and symptoms (appetite loss, diarrhoea, pain, fatigue/insomnia, constipation, nausea, vomiting, and oral mucositis) were extracted, along with the number and types of performance status and patient-reported outcomes (PROs) tools. Data were summarized descriptively. Chi-square tests examined associations between outcomes and trial characteristics (cancer type, trial location, funding source, PROs tools, and commencement year). Statistical significance was set at P < 0.05. RESULTS We included 540 trial protocols (pancreatic (35.2%), colorectal (33.3%) and gastric (31.5%)), with most trials from Europe (44.1%). Trial lead investigator was from academia (28.3%), industry (27.6%) and government (26.3%). Allied health professional involvement (26.9%) occurred at eligibility. Adjuvant therapy in trials was mainly treatment-related (68.1%). Additional medication included anti-nausea (2.2%) and analgesia (0.9%). Trial protocols mostly recorded overall survival (90.4%) and toxicity (78.9%), and the symptoms appetite loss (26.1%) and diarrhoea (19.1%), with the other symptoms recorded in <10% of the trials. Reporting of physical activity (P = 0.001), dietary limitations (P = 0.002), lean muscle mass (P = 0.027), appetite loss (P < 0.001), pain (P = 0.001), nausea (P = 0.012), and oral mucositis (P = 0.049) varied depending cancer type. Toxicity/side effects (P = 0.022), physical activity (P < 0.001), appetite loss, nausea, and vomiting (all P < 0.001), diarrhoea (P = 0.010), pain (P = 0.001), fatigue/insomnia (P = 0.001) varied depending on the trial location. Trial funding was predominantly from private/industry (34.3%) and influenced the reporting of overall survival (P = 0.049), weight/BMI (P = 0.005), caloric intake (P = 0.015), and pain (P = 0.031). Performance status and PROs tools were mentioned in 91.2% and 46.3% of the trials, respectively. Trials that incorporated PROs tools were more likely to report cachexia related outcomes, except for overall survival, lean muscle mass, and oral mucositis. The proportion of trials measuring weight/BMI increased with trial commencement year (P = 0.04). CONCLUSIONS Cachexia-related outcomes were under-recorded in gastrointestinal cancer chemotherapy trials. As trial patients experience a high symptom burden, cachexia-relevant measures and symptoms should be assessed throughout the trial, and integrated with primary endpoints to support their progress.
Collapse
Affiliation(s)
- Ross Valaire
- Faculty of Medicine & Health, South West Sydney Clinical CampusesUniversity of New South Wales (UNSW) SydneyKensingtonNSWAustralia
| | - Frances Garden
- Faculty of Medicine & Health, South West Sydney Clinical CampusesUniversity of New South Wales (UNSW) SydneyKensingtonNSWAustralia
| | - Valentina Razmovski‐Naumovski
- Faculty of Medicine & Health, South West Sydney Clinical CampusesUniversity of New South Wales (UNSW) SydneyKensingtonNSWAustralia
- School of MedicineWestern Sydney UniversityCampbelltownNSWAustralia
- Ingham Institute of Applied Medical ResearchSydneyNSWAustralia
| |
Collapse
|
6
|
Yan X, Bai L, Lv J, Qi P, Song X, Zhang L. Effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets on the Structure and Function of the Intestinal Flora in Rabbits Undergoing Hepatic Artery Infusion Chemotherapy. BIOLOGY 2024; 13:327. [PMID: 38785809 PMCID: PMC11117994 DOI: 10.3390/biology13050327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Few studies have explored the biological mechanism by which probiotics alleviate adverse reactions to chemotherapy drugs after local hepatic chemotherapy perfusion by regulating the intestinal flora. This study investigates the effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets on the intestinal microbial structure and intestinal barrier function, as well as the potential mechanism in rabbits after local hepatic chemotherapy infusion. Eighteen New Zealand White rabbits were randomly divided into a control group, a hepatic local chemotherapy perfusion group, and a hepatic local chemotherapy perfusion + Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets group to assess the effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets on the adverse reactions. The administration of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets alleviated the intestinal flora disorder caused by local hepatic perfusion chemotherapy, promoted the growth of beneficial bacteria, and inhibited the growth of harmful bacteria. The Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets also reduced the levels of serum pro-inflammatory cytokines and liver injury factors induced by local hepatic perfusion chemotherapy. Our findings indicate that Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets can ameliorate the toxicity and side effects of chemotherapy by regulating intestinal flora, blocking pro-inflammatory cytokines, reducing liver injury factors, and repairing the intestinal barrier. Probiotics may be used as a potential alternative therapeutic strategy to prevent the adverse reactions caused by chemotherapy with local hepatic perfusion.
Collapse
Affiliation(s)
- Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (X.Y.); (L.B.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (X.Y.); (L.B.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (X.Y.); (L.B.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (X.Y.); (L.B.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (X.Y.); (L.B.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (X.Y.); (L.B.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Horseman T, Rittase WB, Slaven JE, Bradfield DT, Frank AM, Anderson JA, Hays EC, Ott AC, Thomas AE, Huppmann AR, Lee SH, Burmeister DM, Day RM. Ferroptosis, Inflammation, and Microbiome Alterations in the Intestine in the Göttingen Minipig Model of Hematopoietic-Acute Radiation Syndrome. Int J Mol Sci 2024; 25:4535. [PMID: 38674120 PMCID: PMC11050692 DOI: 10.3390/ijms25084535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hematopoietic acute radiation syndrome (H-ARS) involves injury to multiple organ systems following total body irradiation (TBI). Our laboratory demonstrated that captopril, an angiotensin-converting enzyme inhibitor, mitigates H-ARS in Göttingen minipigs, with improved survival and hematopoietic recovery, as well as the suppression of acute inflammation. However, the effects of captopril on the gastrointestinal (GI) system after TBI are not well known. We used a Göttingen minipig H-ARS model to investigate captopril's effects on the GI following TBI (60Co 1.79 or 1.80 Gy, 0.42-0.48 Gy/min), with endpoints at 6 or 35 days. The vehicle or captopril (0.96 mg/kg) was administered orally twice daily for 12 days, starting 4 h post-irradiation. Ilea were harvested for histological, protein, and RNA analyses. TBI increased congestion and mucosa erosion and hemorrhage, which were modulated by captopril. GPX-4 and SLC7A11 were downregulated post-irradiation, consistent with ferroptosis at 6 and 35 days post-irradiation in all groups. Interestingly, p21/waf1 increased at 6 days in vehicle-treated but not captopril-treated animals. An RT-qPCR analysis showed that radiation increased the gene expression of inflammatory cytokines IL1B, TNFA, CCL2, IL18, and CXCL8, and the inflammasome component NLRP3. Captopril suppressed radiation-induced IL1B and TNFA. Rectal microbiome analysis showed that 1 day of captopril treatment with radiation decreased overall diversity, with increased Proteobacteria phyla and Escherichia genera. By 6 days, captopril increased the relative abundance of Enterococcus, previously associated with improved H-ARS survival in mice. Our data suggest that captopril mitigates senescence, some inflammation, and microbiome alterations, but not ferroptosis markers in the intestine following TBI.
Collapse
Affiliation(s)
- Timothy Horseman
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.); (D.M.B.)
| | - W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Andrew M. Frank
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Joseph A. Anderson
- Comparative Pathology Division, Department of Laboratory Animal Resources, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Evelyn C. Hays
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Andrew C. Ott
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Anjali E. Thomas
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| | - Alison R. Huppmann
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC 29605, USA;
| | - Sang-Ho Lee
- Pathology Department, Research Services, Naval Medical Research Center, Silver Spring, MD 20910, USA;
| | - David M. Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.H.); (D.M.B.)
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (W.B.R.); (J.E.S.); (D.T.B.)
| |
Collapse
|
8
|
Talapko J, Talapko D, Katalinić D, Kotris I, Erić I, Belić D, Vasilj Mihaljević M, Vasilj A, Erić S, Flam J, Bekić S, Matić S, Škrlec I. Health Effects of Ionizing Radiation on the Human Body. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:653. [PMID: 38674299 PMCID: PMC11052428 DOI: 10.3390/medicina60040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms-human beings-in the course of evolution have not acquired receptors for the direct "capture" of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively-bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Domagoj Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivan Kotris
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivan Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Surgery, Osijek University Hospital Center, 31000 Osijek, Croatia
| | - Dino Belić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Mila Vasilj Mihaljević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Vukovar, 32000 Vukovar, Croatia
| | - Ana Vasilj
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
9
|
Ye Z, Liang L, Xu Y, Yang J, Li Y. Probiotics Influence Gut Microbiota and Tumor Immune Microenvironment to Enhance Anti-Tumor Efficacy of Doxorubicin. Probiotics Antimicrob Proteins 2024; 16:606-622. [PMID: 37040014 DOI: 10.1007/s12602-023-10073-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
Probiotics have been reported to influence the gut microbiota and immune system in various diseases. Now, the potential impacts of probiotics on tumor treatment still need to be investigated. In this study, three strains of probiotics, Bifidobacterium breve BBr60 (BBr60), Pediococcus pentosaceus PP06 (PP06), and Bifidobacterium longum subsp. longum BL21 (BL21) were investigated for their combination with chemotherapeutic drugs doxorubicin (DOX). Our study showed that PP06 and BL21 have good performance in gastric acid, bile salt, and intestinal fluid tolerance, antimicrobial activity to pathogenic Staphylococcus aureus, and adhesion to Caco-2 cells. Besides, the probiotics all exhibited antioxidant effect, especially BL21. In vitro cytotoxicity and in vivo animal studies revealed that probiotics used alone could not directly induce anti-tumor effects, but the combination of PP06/BL21 and DOX exhibits a higher inhibition rate than DOX alone, via recruitment and infiltration of immune cells in the tumor region. After 16S rRNA analysis of fecal samples from animal models, it was found that BL21 could increase the abundance of Akkermansia, which may also play a role in regulating the tumor microenvironment to improve immune response. In conclusion, BL21 and PP06 in this study could enhance the anti-tumor efficacy by influencing the gut microbiota and tumor immune microenvironment.
Collapse
Affiliation(s)
- Zixuan Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023, Nanjing, People's Republic of China
| | - Lizhen Liang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023, Nanjing, People's Republic of China
| | - Yuqiao Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanjing Medical University Nanjing, 210000, Nanjing, People's Republic of China
| | - Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023, Nanjing, People's Republic of China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023, Nanjing, People's Republic of China.
| |
Collapse
|
10
|
Dai JH, Tan XR, Qiao H, Liu N. Emerging clinical relevance of microbiome in cancer: promising biomarkers and therapeutic targets. Protein Cell 2024; 15:239-260. [PMID: 37946397 PMCID: PMC10984626 DOI: 10.1093/procel/pwad052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
The profound influence of microbiota in cancer initiation and progression has been under the spotlight for years, leading to numerous researches on cancer microbiome entering clinical evaluation. As promising biomarkers and therapeutic targets, the critical involvement of microbiota in cancer clinical practice has been increasingly appreciated. Here, recent progress in this field is reviewed. We describe the potential of tumor-associated microbiota as effective diagnostic and prognostic biomarkers, respectively. In addition, we highlight the relationship between microbiota and the therapeutic efficacy, toxicity, or side effects of commonly utilized treatments for cancer, including chemotherapy, radiotherapy, and immunotherapy. Given that microbial factors influence the cancer treatment outcome, we further summarize some dominating microbial interventions and discuss the hidden risks of these strategies. This review aims to provide an overview of the applications and advancements of microbes in cancer clinical relevance.
Collapse
Affiliation(s)
- Jia-Hao Dai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| |
Collapse
|
11
|
Hoang J, Gilbertson-White S, Cady N, Yadav M, Shahi S, Aguilar L, Mangalam AK, Cherwin C. Preliminary Analysis of Gut Microbiome and Gastrointestinal Symptom Burden in Breast Cancer Patients Receiving Chemotherapy Compared to Healthy Controls. Biol Res Nurs 2024; 26:219-230. [PMID: 37830211 PMCID: PMC11145515 DOI: 10.1177/10998004231205277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND Alterations in the naturally occurring bacteria of the gut, known as the gastrointestinal (GI) microbiome, may influence GI symptoms in women with breast cancer. OBJECTIVE This work aims to describe GI symptom occurrence, duration, severity, and distress and measures of the GI microbiome among women with breast cancer receiving chemotherapy compared to age- and sex-matched healthy controls. INTERVENTIONS/METHODS 22 women with breast cancer receiving chemotherapy and 17 healthy control women provided stool specimens and GI symptom data using the modified Memorial Symptom Assessment Scale (MSAS). The fecal microbiome was profiled by metagenomic sequencing of 16S Ribosomal RNA (rRNA). GI microbiome was compared between groups using alpha-diversity (Observed OTU number and Shannon index), beta-diversity (UniFrac distances), and relative abundance of select genera. RESULTS GI symptoms with high symptom reports among breast cancer patients included nausea, diarrhea, flatulence, dry mouth, taste change, and poor appetite. Indices of differential abundance (beta diversity) significantly distinguished between breast cancer patients and healthy controls. Unique bacterial features differentiating the 2 groups were Prevotella_9, Akkermansia, Lachnospira, Lachnospiraceae_NK4A136, Lachnoclostridium, and Oscillibacter. CONCLUSIONS Gut bacteria are associated with GI inflammation and mucus degradation, suggesting the potential role of the GI microbiome in GI symptom burden. Understanding the influence of GI bacteria on gut health and symptoms will help harness the enormous potential of the GI microbiome as a future diagnostic and therapeutic agent to reduce the symptom burden associated with chemotherapy.
Collapse
Affiliation(s)
- Jemmie Hoang
- College of Nursing, University of Iowa, Iowa City, IA, USA
| | | | - Nicole Cady
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Meeta Yadav
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shailesh Shahi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Leeann Aguilar
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ashutosh K. Mangalam
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
12
|
Vilhais G, Alpuim Costa D, Fontes-Sousa M, Ribeiro PC, Martinho F, Botelho de Sousa C, Santos CR, Negreiros I, Canastra A, Borralho P, Guia Pereira A, Marçal C, Germano Sousa J, Chaleira R, Rocha JC, Calhau C, Faria A. Case report: Primary CDK4/6 inhibitor and endocrine therapy in locally advanced breast cancer and its effect on gut and intratumoral microbiota. Front Oncol 2024; 14:1360737. [PMID: 38601755 PMCID: PMC11004348 DOI: 10.3389/fonc.2024.1360737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Locally advanced breast cancer poses significant challenges to the multidisciplinary team, in particular with hormone receptor (HR) positive, HER2-negative tumors that classically yield lower pathological complete responses with chemotherapy. The increasingly significant use of CDK 4/6 inhibitors (CDK4/6i) plus endocrine therapy (ET) in different breast cancer settings has led to clinical trials focusing on this strategy as a primary treatment, with promising results. The impact of the microbiota on cancer, and vice-versa, is an emerging topic in oncology. The authors report a clinical case of a postmenopausal female patient with an invasive breast carcinoma of the right breast, Luminal B-like, staged as cT4cN3M0 (IIIB). Since the lesion was considered primarily inoperable, the patient started letrozole and ribociclib. Following 6 months of systemic therapy, the clinical response was significant, and surgery with curative intent was performed. The final staging was ypT3ypN2aM0, R1, and the patient started adjuvant letrozole and radiotherapy. This case provides important insights on primary CDK4/6i plus ET in locally advanced unresectable HR+/HER2- breast cancer and its potential implications in disease management further ahead. The patient's gut microbiota was analyzed throughout the disease course and therapeutic approach, evidencing a shift in gut microbial dominance from Firmicutes to Bacteroidetes and a loss of microbial diversity following 6 months of systemic therapy. The analysis of the intratumoral microbiota from the surgical specimen revealed high microbial dissimilarity between the residual tumor and respective margins.
Collapse
Affiliation(s)
- Guilherme Vilhais
- Haematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
| | - Diogo Alpuim Costa
- Haematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
- NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
- Medical Oncology Department, Hospital de Cascais, Cascais, Portugal
- Breast Unit, CUF Oncologia, Lisbon, Portugal
| | - Mário Fontes-Sousa
- Haematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
- Breast Unit, CUF Oncologia, Lisbon, Portugal
| | - Pedro Casal Ribeiro
- Bioinformatics Department, Centro de Medicina Laboratorial Germano de Sousa, Lisbon, Portugal
| | | | | | - Catarina Rodrigues Santos
- Breast Unit, CUF Oncologia, Lisbon, Portugal
- Surgery Department, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOL-FG), Lisbon, Portugal
| | | | - Ana Canastra
- Anatomic Pathology Department, CUF Oncologia, Lisbon, Portugal
| | - Paula Borralho
- Breast Unit, CUF Oncologia, Lisbon, Portugal
- Anatomic Pathology Department, CUF Oncologia, Lisbon, Portugal
- Institute of Anatomic Pathology, Faculdade de Medicina da Universidade de Lisboa (FMUL), Lisbon, Portugal
| | - Ana Guia Pereira
- Genetics Laboratory, Centro de Medicina Laboratorial Germano de Sousa, Lisbon, Portugal
| | - Cristina Marçal
- Clinical Pathology Department, Centro de Medicina Laboratorial Germano de Sousa, Lisbon, Portugal
| | - José Germano Sousa
- Clinical Pathology Department, Centro de Medicina Laboratorial Germano de Sousa, Lisbon, Portugal
| | - Renata Chaleira
- Psychology Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Júlio César Rocha
- NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), Rede de Investigação em Saúde (RISE), NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
- Unidade Universitária Lifestyle Medicine José de Mello Saúde, NOVA Medical School (NMS), Lisbon, Portugal
| | - Conceição Calhau
- NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), Rede de Investigação em Saúde (RISE), NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
- Unidade Universitária Lifestyle Medicine José de Mello Saúde, NOVA Medical School (NMS), Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Ana Faria
- NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), Rede de Investigação em Saúde (RISE), NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
| |
Collapse
|
13
|
Cazzaniga M, Cardinali M, Di Pierro F, Zonzini GB, Palazzi CM, Gregoretti A, Zerbinati N, Guasti L, Bertuccioli A. The Potential Role of Probiotics, Especially Butyrate Producers, in the Management of Gastrointestinal Mucositis Induced by Oncologic Chemo-Radiotherapy. Int J Mol Sci 2024; 25:2306. [PMID: 38396981 PMCID: PMC10889689 DOI: 10.3390/ijms25042306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Many clinical studies have now highlighted how the composition of the intestinal microbiota can regulate the effects of many oncological therapies. In particular, the modulation of microbial composition has been shown to enhance their efficacy and reduce potential side effects. Numerous adverse events induced by chemotherapy and radiotherapy appear to be strongly associated with an alteration in the intestinal microbiota caused by these treatments. This supports the hypothesis that the modulation or correction of the microbiota may decrease the toxic impact of therapies, improving patient compliance and quality of life. Among the most debilitating disorders related to oncological treatments is certainly mucositis, and recent clinical data highlight how the deficiency of short-chain fatty acids, especially butyrate, and specifically the lack of certain bacterial groups responsible for its production (butyrate producers), is strongly associated with this disorder. It is hypothesized that restoring these elements may influence the onset and severity of adverse events. Therefore, the intake of probiotics, especially butyrate producers, and specifically Clostridium butyricum (CBM588), currently the only cultivable and usable strain with a history of data proving its safety, could be a valuable ally in oncological therapies, reducing the associated discomfort and improving compliance, efficacy, and quality of life for patients.
Collapse
Affiliation(s)
- Massimiliano Cazzaniga
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy (F.D.P.)
- Microbiota International Clinical Society, 10123 Torino, Italy (A.B.)
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47921 Rimini, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy
| | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy (F.D.P.)
- Microbiota International Clinical Society, 10123 Torino, Italy (A.B.)
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy (L.G.)
| | | | | | - Aurora Gregoretti
- Microbiota International Clinical Society, 10123 Torino, Italy (A.B.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy (L.G.)
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy (L.G.)
| | - Alexander Bertuccioli
- Microbiota International Clinical Society, 10123 Torino, Italy (A.B.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy
| |
Collapse
|
14
|
Khan M, Shah S, Shah W, Khan I, Ali H, Ali I, Ullah R, Wang X, Mehmood A, Wang Y. Gut microbiome as a treatment in colorectal cancer. Int Rev Immunol 2024; 43:229-247. [PMID: 38343353 DOI: 10.1080/08830185.2024.2312294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The gut microbiome plays a role in the development and progression of colorectal cancer (CRC). AIM AND OBJECTIVE This review focuses on whether the gut microbiome is involved in the development and regulation of the host immune system. METHODS The gut microbiome can influence the production and activity of immune cells and molecules that help to maintain the integrity of the intestinal barrier and prevent inflammation. Gut microbiota modulates the anti-cancer immune response. The gut microbiota can influence the function of immune cells, like T cells, that recognize and eliminate cancer cells. Gut microbiota can affect various aspects of cancer progression and the efficacy of various anti-cancer treatments. RESULTS Gut microbiota provide promise as a potential biomarker to identify the effect of immunotherapy and as a target for modulation to improve the efficacy of immunotherapy in CRC treatment. CONCLUSION The potential synergistic effect between the gut microbiome and anti-cancer treatment modalities provides an interest in developing strategies to modulate the gut microbiome to improve the efficacy of anti-cancer treatment.
Collapse
Affiliation(s)
- Murad Khan
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy & The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wahid Shah
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Ikram Khan
- School of Basic Medical Sciences, Department of Genetics, Lanzhou University, Lanzhou, Gansu, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, P.R. China
| | - Yanli Wang
- International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy & The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
15
|
Wang K, Zhang J, Zhang Y, Xue J, Wang H, Tan X, Jiao X, Jiang H. The recovery of intestinal barrier function and changes in oral microbiota after radiation therapy injury. Front Cell Infect Microbiol 2024; 13:1288666. [PMID: 38384432 PMCID: PMC10879579 DOI: 10.3389/fcimb.2023.1288666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most common malignant tumor, and neoadjuvant chemo-radiotherapy is usually recommended for advanced stage colorectal cancer. Radiotherapy can cause damage to intestinal mucosal barrier, which may be related to perioperative complications. Intestinal microbiota is one of the constituents of the intestinal mucosal biological barrier, and literature reports that patients with CRC have changes in corresponding oral microbiota. This study aims to analyze the levels of immunoglobulin SIgA, inflammatory factors, lymphocyte subsets quantity, and proportion in surgical specimens of intestinal mucosa at different time intervals after radiotherapy, in order to seek investigation for the optimal surgical time after radiotherapy and to provide evidence for finding probiotics or immunomodulators through high-throughput sequencing of bacterial 16s rRNA in patients' saliva microbiota. Ultimately, this may provide new ideas for reducing perioperative complications caused by radiotherapy-induced intestinal damage. Methods We selected intestinal mucosal tissue and saliva samples from over 40 patients in our center who did not undergo radiotherapy and underwent surgery at different time intervals after radiotherapy. Detection of SIgA was performed using ELISA assay. Western Blotting was used to detect IL-1β, IL-6, and IL-17 in the intestinal mucosal tissue. Flow cytometry was used to detect CD4 and CD8. And the microbial community changes in saliva samples were detected through 16s rRNA sequencing. Results After radiotherapy, changes in SIgA, various cytokines, CD4CD8 lymphocyte subsets, and oral microbiota in the intestinal mucosal tissue of rectal cancer patients may occur. Over time, this change may gradually recover. Discussion In colorectal cancer, oncological aspects often receive more attention, while studies focusing on the intestinal mucosal barrier are less common. This study aims to understand the repair mechanisms of the intestinal mucosal barrier and reduce complications arising from radiotherapy-induced damage. The relationship between oral microbiota and systemic diseases has gained interest in recent years. However, the literature on the oral microbiota after radiotherapy for rectal cancer remains scarce. This study addresses this gap by analysing changes in the salivary microbiota of rectal cancer patients before and after radiotherapy, shedding light on microbiota changes. It aims to lay the groundwork for identifying suitable probiotics or immunomodulators to alleviate perioperative complications and improve the prognosis of CRC.
Collapse
Affiliation(s)
- Kun Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Zhang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yihao Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junze Xue
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - He Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojie Tan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuelong Jiao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haitao Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Baindara P. Targeting interleukin-17 in radiation-induced toxicity and cancer progression. Cytokine Growth Factor Rev 2024; 75:31-39. [PMID: 38242827 DOI: 10.1016/j.cytogfr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Recent strategies to combine chemoradiation with immunotherapy to treat locally advanced lung cancer have improved five-year survival outcomes. However, collateral toxicity to healthy lungs, esophagus, cardiac, and vascular tissue continues to limit the effectiveness of curative-intent thoracic radiation (tRT). It is necessary to gain a deeper comprehension of the fundamental mechanisms underlying inflammation-mediated radiation-induced damage to normal cells. Several cells have been linked in published studies to the release of cytokines and chemokines after radiation therapy. Several inflammatory mediators, such as IL-1, IL-6, TNF-α, and TGF-β, also cause the production of Interleukin-17 (IL-17), a cytokine that is essential for maintaining immunological homeostasis and plays a role in the toxicity caused by radiation therapy. However, currently, the role of IL-17 in RT-induced toxicity in conjunction with cancer progression remains poorly understood. This review provides an overview of the most recent data from the literature implicating IL-17 in radiation-mediated tissue injuries and the efficacy of tRT in lung cancer, as well as its potential as a therapeutic target for interventions to reduce the side effects of tRT with curative intent and to boost an anti-tumor immune response to improve treatment outcomes. IL-17 may also act as a biomarker for predicting the effectiveness of a given treatment as well as the toxicity caused by tRT.
Collapse
Affiliation(s)
- Piyush Baindara
- Radiation Oncology, School of Medicine, NextGen Precision Health, University of Missouri, Columbia 65211, United States.
| |
Collapse
|
17
|
Tian Z, Liu Y, Zhu D, Cao B, Cui M. Changes in Intestinal Flora and Serum Metabolites Pre- and Post-Antitumor Drug Therapy in Patients with Non-Small Cell Lung Cancer. J Clin Med 2024; 13:529. [PMID: 38256661 PMCID: PMC10816336 DOI: 10.3390/jcm13020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE this study aimed to identify the relationships between gut microbiota, metabolism, and non-small cell lung cancer (NSCLC) treatment outcomes, which are presently unclear. METHODS in this single-center prospective cohort study, we investigated changes in the gut microbiota and serum metabolite profile in 60 patients with NSCLC after four cycles of anticancer therapy. RESULTS The microbial landscape of the gut exhibited a surge in Proteobacteria and Verrucomicrobiota populations, alongside a decline in Firmicutes, Actinobacteriota, and Bacteroidota. Furthermore, a significant shift in the prevalence of certain bacterial genera was noted, with an increase in Escherichia/Shigella and Klebsiella, contrasted by a reduction in Bifidobacterium. Metabolomic analysis uncovered significant changes in lipid abundances, with certain metabolic pathways markedly altered post-treatment. Correlation assessments identified strong links between certain gut microbial genera and serum metabolite concentrations. Despite these findings, a subgroup analysis delineating patient responses to therapy revealed no significant shifts in the gut microbiome's composition after four cycles of treatment. CONCLUSIONS This study emphasizes the critical role of gut microbiota changes in NSCLC patients during anticancer treatment. These insights pave the way for managing treatment complications and inform future research to improve patient care by understanding and addressing these microbiota changes.
Collapse
Affiliation(s)
- Zhenyu Tian
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China; (Z.T.); (D.Z.)
| | - Yan’e Liu
- Department of Cancer Chemotherapy and Radiation, Peking University Third Hospital, Beijing 100191, China;
| | - Dan Zhu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China; (Z.T.); (D.Z.)
| | - Baoshan Cao
- Department of Cancer Chemotherapy and Radiation, Peking University Third Hospital, Beijing 100191, China;
| | - Ming Cui
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China; (Z.T.); (D.Z.)
| |
Collapse
|
18
|
Arcos D, Ng DQ, Ke Y, Toh YL, Chan A. Prediction of gastrointestinal symptoms trajectories using omega-3 and inflammatory biomarkers in early-stage breast cancer patients receiving chemotherapy. Support Care Cancer 2024; 32:76. [PMID: 38170327 PMCID: PMC10764400 DOI: 10.1007/s00520-023-08274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Gastrointestinal (GI) symptoms are common among breast cancer patients undergoing chemotherapy, negatively impacting treatment outcomes and quality of life. Evidence points to inflammatory processes as the underlying cause of chemotherapy-associated GI symptoms. Relatedly, omega-3 (n-3) has been linked to anti-inflammatory processes. The primary objective of this study was to examine the associations between baseline n-3, baseline inflammatory markers and GI symptom progression in early-stage breast cancer patients receiving chemotherapy. METHODS In this secondary analysis of a prospective cohort study, we analyzed baseline levels of inflammatory biomarkers (measured using a Luminex bead-immunoassay) and plasma levels of DHA, EPA, and FFA (measured using enzyme-linked immunosorbent assay). GI symptoms were assessed using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire in Cancer Patients (EORTC QLQ-C30) symptom scale scores at baseline (T1) and at least 6 weeks after, during chemotherapy (T2). Inferential statistics were used to analyze associations between the variables of interest. RESULTS The analysis included 31 female breast cancer patients (mean age ± SD = 50.5 ± 8.8; 89.6% receiving anthracycline-based chemotherapy). Higher levels of docosahexaenoic acid (DHA) and interleukin-8 (IL-8) predicted increases in appetite loss. Similarly, higher IL-8 predicted worsened nausea and vomiting. CONCLUSION Baseline IL-8 and DHA predicted GI symptom progression in early-stage breast cancer patients undergoing chemotherapy. Future studies are required to evaluate how therapeutic intervention targeting these biomarkers may mitigate gastrointestinal symptoms in cancer patients.
Collapse
Affiliation(s)
- Daniela Arcos
- School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, USA
| | - Ding Quan Ng
- School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, USA
| | - Yu Ke
- Division of Supportive and Palliative Care, National Cancer Centre Singapore, Singapore, Singapore
| | - Yi Long Toh
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Alexandre Chan
- School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, USA.
| |
Collapse
|
19
|
Hes C, Desilets A, Tonneau M, El Ouarzadi O, De Figueiredo Sousa M, Bahig H, Filion É, Nguyen-Tan PF, Christopoulos A, Benlaïfaoui M, Derosa L, Alves Costa Silva C, Ponce M, Malo J, Belkad W, Charpentier D, Aubin F, Hamilou Z, Jamal R, Messaoudene M, Soulières D, Routy B. Gut microbiome predicts gastrointestinal toxicity outcomes from chemoradiation therapy in patients with head and neck squamous cell carcinoma. Oral Oncol 2024; 148:106623. [PMID: 38006691 DOI: 10.1016/j.oraloncology.2023.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVES Chemoradiation (CRT) in patients with locally advanced head and neck squamous cell cancer (HNSCC) is associated with significant toxicities, including mucositis. The gut microbiome represents an emerging hallmark of cancer and a potentially important biomarker for CRT-related adverse events. This prospective study investigated the association between the gut microbiome composition and CRT-related toxicities in patients with HNSCC, including mucositis. MATERIALS AND METHODS Stool samples from patients diagnosed with locally advanced HNSCC were prospectively collected prior to CRT initiation and analyzed using shotgun metagenomic sequencing to evaluate gut microbiome composition at baseline. Concurrently, clinicopathologic data, survival outcomes and the incidence and grading of CRT-emergent adverse events were documented in all patients. RESULTS A total of 52 patients were included, of whom 47 had baseline stool samples available for metagenomic analysis. Median age was 62, 83 % patients were men and 54 % had stage III-IV disease. All patients developed CRT-induced mucositis, including 42 % with severe events (i.e. CTCAE v5.0 grade ≥ 3) and 25 % who required enteral feeding. With a median follow-up of 26.5 months, patients with severe mucositis had shorter overall survival (HR = 3.3, 95 %CI 1.0-10.6; p = 0.02) and numerically shorter progression-free survival (HR = 2.8, 95 %CI, 0.8-9.6; p = 0.09). The gut microbiome beta-diversity of patients with severe mucositis differed from patients with grades 1-2 mucositis (p = 0.04), with enrichment in Mediterraneibacter (Ruminococcus gnavus) and Clostridiaceae family members, including Hungatella hathewayi. Grade 1-2 mucositis was associated with enrichment in Eubacterium rectale, Alistipes putredinis and Ruminococcaceae family members. Similar bacterial profiles were observed in patients who required enteral feeding. CONCLUSION Patients who developed severe mucositis had decreased survival and enrichment in specific bacteria associated with mucosal inflammation. Interestingly, these same bacteria have been linked to immune checkpoint inhibitor resistance.
Collapse
Affiliation(s)
- Cecilia Hes
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC H4A 3J1, Canada
| | - Antoine Desilets
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada; Department of Medicine, Hematology-Oncology Division, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC H2X 0C1, Canada
| | - Marion Tonneau
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada; Centre Oscar Lambert, Department of Radiotherapy, 3 Rue Frédéric Combemale, 59000 Lille, France
| | - Omar El Ouarzadi
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Marina De Figueiredo Sousa
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Houda Bahig
- Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC H2X 0C1, Canada
| | - Édith Filion
- Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC H2X 0C1, Canada
| | - Phuc Felix Nguyen-Tan
- Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC H2X 0C1, Canada
| | - Apostolos Christopoulos
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Myriam Benlaïfaoui
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Lisa Derosa
- ClinicObiome, Institut Gustave Roussy Cancer Campus, 114 Rue Edouard-Vaillant, 94805 Villejuif Cedex, France
| | - Carolina Alves Costa Silva
- ClinicObiome, Institut Gustave Roussy Cancer Campus, 114 Rue Edouard-Vaillant, 94805 Villejuif Cedex, France
| | - Mayra Ponce
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Julie Malo
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Wiam Belkad
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Danielle Charpentier
- Department of Medicine, Hematology-Oncology Division, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC H2X 0C1, Canada
| | - Francine Aubin
- Department of Medicine, Hematology-Oncology Division, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC H2X 0C1, Canada
| | - Zineb Hamilou
- Department of Medicine, Hematology-Oncology Division, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC H2X 0C1, Canada
| | - Rahima Jamal
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada; Department of Medicine, Hematology-Oncology Division, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC H2X 0C1, Canada
| | - Meriem Messaoudene
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Denis Soulières
- Department of Medicine, Hematology-Oncology Division, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC H2X 0C1, Canada.
| | - Bertrand Routy
- Centre hospitalier de l'Université de Montréal Research Center (CRCHUM), Pavillon R, 900 Rue Saint-Denis, Montreal, QC H2X 0A9, Canada; Department of Medicine, Hematology-Oncology Division, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC H2X 0C1, Canada.
| |
Collapse
|
20
|
de Castilhos J, Tillmanns K, Blessing J, Laraño A, Borisov V, Stein-Thoeringer CK. Microbiome and pancreatic cancer: time to think about chemotherapy. Gut Microbes 2024; 16:2374596. [PMID: 39024520 PMCID: PMC11259062 DOI: 10.1080/19490976.2024.2374596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by late diagnosis, rapid progression, and a high mortality rate. Its complex biology, characterized by a dense, stromal tumor environment with an immunosuppressive milieu, contributes to resistance against standard treatments like chemotherapy and radiation. This comprehensive review explores the dynamic role of the microbiome in modulating chemotherapy efficacy and outcomes in PDAC. It delves into the microbiome's impact on drug metabolism and resistance, and the interaction between microbial elements, drugs, and human biology. We also highlight the significance of specific bacterial species and microbial enzymes in influencing drug action and the immune response in the tumor microenvironment. Cutting-edge methodologies, including artificial intelligence, low-biomass microbiome analysis and patient-derived organoid models, are discussed, offering insights into the nuanced interactions between microbes and cancer cells. The potential of microbiome-based interventions as adjuncts to conventional PDAC treatments are discussed, paving the way for personalized therapy approaches. This review synthesizes recent research to provide an in-depth understanding of how the microbiome affects chemotherapy efficacy. It focuses on elucidating key mechanisms and identifying existing knowledge gaps. Addressing these gaps is crucial for enhancing personalized medicine and refining cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Katharina Tillmanns
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Jana Blessing
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Arnelyn Laraño
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Vadim Borisov
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Christoph K. Stein-Thoeringer
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
21
|
Arjmand B, Alavi-Moghadam S, Faraji Z, Aghajanpoor-Pasha M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezazadeh-Mafi A, Rezaei-Tavirani M, Irompour A. The Potential Role of Intestinal Stem Cells and Microbiota for the Treatment of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:115-128. [PMID: 38811486 DOI: 10.1007/5584_2024_803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Colorectal cancer is a global health concern with high incidence and mortality rates. Conventional treatments like surgery, chemotherapy, and radiation therapy have limitations in improving patient survival rates. Recent research highlights the role of gut microbiota and intestinal stem cells in maintaining intestinal health and their potential therapeutic applications in colorectal cancer treatment. The interaction between gut microbiota and stem cells influences epithelial self-renewal and overall intestinal homeostasis. Novel therapeutic approaches, including immunotherapy, targeted therapy, regenerative medicine using stem cells, and modulation of gut microbiota, are being explored to improve treatment outcomes. Accordingly, this chapter provides an overview of the potential therapeutic applications of gut microbiota and intestinal stem cells in treating colorectal cancer.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Faraji
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh-Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | | | - Arsalan Irompour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
He J, Han S, Wang Y, Kang Q, Wang X, Su Y, Li Y, Liu Y, Cai H, Xiu M. Irinotecan cause the side effects on development and adult physiology, and induces intestinal damage via innate immune response and oxidative damage in Drosophila. Biomed Pharmacother 2023; 169:115906. [PMID: 37984304 DOI: 10.1016/j.biopha.2023.115906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Chemotherapy leads to significant side effects in patients, especially in the gut, resulting in various clinical manifestations and enhanced economic pressure. Until now, many of the underlying mechanisms remain poorly understood. Here, we used Drosophila melanogaster (fruit fly) as in vivo model to delineate the side effects and underlying mechanisms of Irinotecan (CPT-11). The results showed that administration of CPT-11 delayed larval development, induced imbalance of male to female ratio in offspring, shortened lifespan, impaired locomotor ability, changed metabolic capacity, induced ovarian atrophy, and increased excretion. Further, CPT-11 supplementation dramatically caused intestinal damages, including decreased intestinal length, increased crop size, disrupted gastrointestinal acid-based homeostasis, induced epithelial cell death, and damaged the ultrastructure and mitochondria structure of epithelial cells. The cross-comparative analysis between transcriptome and bioinformation results showed that CPT-11 induced intestinal damage mainly via regulating the Toll-like receptor signaling, NF-kappa B signaling, MAPK signaling, FoxO signaling, and PI3K-AKT signaling pathways. In addition, CPT-11 led to the intestinal damage by increasing ROS accumulation. These observations raise the prospects of using Drosophila as a model for the rapid and systemic evaluation of chemotherapy-induced side effects and high-throughput screening of the protective drugs.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuzhen Han
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Qian Kang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaoqian Wang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yun Su
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yaling Li
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Hui Cai
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Minghui Xiu
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
23
|
Li A, Bowen JM, Ball IA, Wilson S, Yong A, Yeung DT, Lee CH, Bryant RV, Costello SP, Ryan FJ, Wardill HR. Autologous Faecal Microbiota Transplantation to Improve Outcomes of Haematopoietic Stem Cell Transplantation: Results of a Single-Centre Feasibility Study. Biomedicines 2023; 11:3274. [PMID: 38137495 PMCID: PMC10741751 DOI: 10.3390/biomedicines11123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Haematopoietic stem cell transplantation (HSCT) is a curative approach for blood cancers, yet its efficacy is undermined by a range of acute and chronic complications. In light of mounting evidence to suggest that these complications are linked to a dysbiotic gut microbiome, we aimed to evaluate the feasibility of faecal microbiota transplantation (FMT) delivered during the acute phase after HSCT. Of note, this trial opted for FMT prepared using the individual's own stool (autologous FMT) to mitigate the risks of disease transmission from a donor stool. Adults (>18 years) with multiple myeloma were recruited from a single centre. The stool was collected prior to starting first line therapy. Patients who progressed to HSCT were offered FMT via 3 × retention enemas before day +5 (HSCT = day 0). The feasibility was determined by the recruitment rate, number and volume of enemas administered, and the retention time. Longitudinally collected stool samples were also collected to explore the influence of auto-FMT using 16S rRNA gene sequencing. n = 4 (2F:2M) participants received auto-FMT in 12 months. Participants received an average of 2.25 (1-3) enemas 43.67 (25-50) mL total, retained for an average of 60.78 (10-145) min. No adverse events (AEs) attributed to the FMT were identified. Although the minimum requirements were met for the volume and retention of auto-FMT, the recruitment was significantly impacted by the logistical challenges of the pretherapy stool collection. This ultimately undermined the feasibility of this trial and suggests that third party (donor) FMT should be prioritised.
Collapse
Affiliation(s)
- Anna Li
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5000, Australia; (A.L.); (J.M.B.)
- Supportive Oncology Research Group, Precision Cancer Medicine, The South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Joanne M. Bowen
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5000, Australia; (A.L.); (J.M.B.)
| | - Imogen A. Ball
- Department of Gastroenterology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia; (I.A.B.); (R.V.B.); (S.P.C.)
| | - Sophie Wilson
- Department of Haematology, The Royal Adelaide Hospital, SA Health, Adelaide, SA 5000, Australia; (S.W.); (A.Y.); (D.T.Y.); (C.H.L.)
| | - Angelina Yong
- Department of Haematology, The Royal Adelaide Hospital, SA Health, Adelaide, SA 5000, Australia; (S.W.); (A.Y.); (D.T.Y.); (C.H.L.)
| | - David T. Yeung
- Department of Haematology, The Royal Adelaide Hospital, SA Health, Adelaide, SA 5000, Australia; (S.W.); (A.Y.); (D.T.Y.); (C.H.L.)
| | - Cindy H. Lee
- Department of Haematology, The Royal Adelaide Hospital, SA Health, Adelaide, SA 5000, Australia; (S.W.); (A.Y.); (D.T.Y.); (C.H.L.)
| | - Robert V. Bryant
- Department of Gastroenterology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia; (I.A.B.); (R.V.B.); (S.P.C.)
| | - Samuel P. Costello
- Department of Gastroenterology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia; (I.A.B.); (R.V.B.); (S.P.C.)
| | - Feargal J. Ryan
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
- Lynn Systems Immunology Group, Computational and Systems Biology Program, Precision Cancer Medicine, The South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Hannah R. Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5000, Australia; (A.L.); (J.M.B.)
- Supportive Oncology Research Group, Precision Cancer Medicine, The South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
24
|
Ji L, Cui P, Zhou S, Qiu L, Huang H, Wang C, Wang J. Advances of Amifostine in Radiation Protection: Administration and Delivery. Mol Pharm 2023; 20:5383-5395. [PMID: 37747899 DOI: 10.1021/acs.molpharmaceut.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Amifostine (AMF, also known as WR-2721) is the only approved broad-spectrum small-molecule radiation protection agent that can combat hematopoietic damage caused by ionizing radiation and is used as an antitumor adjuvant and cell protector in cancer chemotherapy and radiotherapy. Amifostine is usually injected intravenously before chemotherapy or radiotherapy and has been used in the treatment of head and neck cancer. However, the inconvenient intravenous administration and its toxic side effects such as hypotension have severely limited its further application in clinic. In order to reduce the toxic and side effects, scientists are trying to develop a variety of drug administration methods and are devoted to developing a wide application of amifostine in radiation protection. This paper reviews the research progress of amifostine for radiation protection in recent years, discusses its mechanism of action, clinical application, and other aspects, with focus on summarizing the most widely studied amifostine injection administration and drug delivery systems, and explored the correlation between various administrations and drug efficacies.
Collapse
Affiliation(s)
- Lihua Ji
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Hai Huang
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
25
|
López-Gómez L, Alcorta A, Abalo R. Probiotics and Probiotic-like Agents against Chemotherapy-Induced Intestinal Mucositis: A Narrative Review. J Pers Med 2023; 13:1487. [PMID: 37888098 PMCID: PMC10607965 DOI: 10.3390/jpm13101487] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer chemotherapy has allowed many patients to survive, but not without risks derived from its adverse effects. Drugs, such as 5-fluorouracil, irinotecan, oxaliplatin, methotrexate, and others, as well as different drug combinations trigger intestinal mucositis that may cause or contribute to anorexia, pain, diarrhea, weight loss, systemic infections, and even death. Dysbiosis is a hallmark of chemotherapy-induced intestinal mucositis and diarrhea, and, therefore, strategies aimed at modulating intestinal microbiota may be useful to counteract and prevent those dreadful effects. This narrative review offers an overview of the studies performed to test the efficacy of probiotics and probiotic-like agents against chemotherapy-induced intestinal mucositis and its consequences. Microbiota modulation through the oral administration of different probiotics (mainly strains of Lactobacillus and Bifidobacterium), probiotic mixtures, synbiotics, postbiotics, and paraprobiotics has been tested in different animal models and in some clinical trials. Regulation of dysbiosis, modulation of epithelial barrier permeability, anti-inflammatory effects, modulation of host immune response, reduction of oxidative stress, or prevention of apoptosis are the main mechanisms involved in their beneficial effects. However, the findings are limited by the great heterogeneity of the preclinical studies and the relative lack of studies in immunocompromised animals, as well as the scarce availability of results from clinical trials. Despite this, the results accumulated so far are promising. Hopefully, with the aid of these agents, intestinal mucositis will be less impactful to the cancer patient in the near future.
Collapse
Affiliation(s)
- Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Alexandra Alcorta
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
26
|
He Y, Zheng J, Ye B, Dai Y, Nie K. Chemotherapy-induced gastrointestinal toxicity: Pathogenesis and current management. Biochem Pharmacol 2023; 216:115787. [PMID: 37666434 DOI: 10.1016/j.bcp.2023.115787] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Chemotherapy is the most common treatment for malignant tumors. However, chemotherapy-induced gastrointestinal toxicity (CIGT) has been a major concern for cancer patients, which reduces their quality of life and leads to treatment intolerance and even cessation. Nevertheless, prevention and treatment for CIGT are challenging, due to the prevalence and complexity of the condition. Chemotherapeutic drugs directly damage gastrointestinal mucosa to induce CIGT, including nausea, vomiting, anorexia, gastrointestinal mucositis, and diarrhea, etc. The pathogenesis of CIGT involves multiple factors, such as gut microbiota disorders, inflammatory responses and abnormal neurotransmitter levels, that synergistically contribute to its occurrence and development. In particular, the dysbiosis of gut microbiota is usually linked to abnormal immune responses that increases inflammatory cytokines' expression, which is a common characteristic of many types of CIGT. Chemotherapy-induced intestinal neurotoxicity is also a vital concern in CIGT. Currently, modern medicine is the dominant treatment of CIGT, however, traditional Chinese medicine (TCM) has attracted interest as a complementary and alternative therapy that can greatly alleviate CIGT. Accordingly, this review aimed to comprehensively summarize the pathogenesis and current management of CIGT using PubMed and Google Scholar databases, and proposed that future research for CIGT should focus on the gut microbiota, intestinal neurotoxicity, and promising TCM therapies, which may help to develop more effective interventions and optimize managements of CIGT.
Collapse
Affiliation(s)
- Yunjing He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingrui Zheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binbin Ye
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongzhao Dai
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ke Nie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Eor JY, Lee CS, Moon SH, Cheon JY, Pathiraja D, Park B, Shin MJ, Kim JY, Kim S, Noh Y, Kim Y, Choi IG, Kim SH. Effect of Probiotic-Fortified Infant Formula on Infant Gut Health and Microbiota Modulation. Food Sci Anim Resour 2023; 43:659-673. [PMID: 37484007 PMCID: PMC10359846 DOI: 10.5851/kosfa.2023.e26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
Compared to infant formula, breast milk is the best source of nutrition for infants; it not only improves the neonatal intestinal function, but also regulates the immune system and gut microbiota composition. However, probiotic-fortified infant formula may further enhance the infant gut environment by overcoming the limitations of traditional infant formula. We investigated the probiotic formula administration for one month by comparing 118 Korean infants into the following three groups: infants in each group fed with breast milk (50), probiotic formula (35), or placebo formula-fed group (33). Probiotic formula improved stool consistency and defecation frequency compared to placebo formula-fed group. The probiotic formula helped maintaining the level of secretory immunoglobulin A (sIgA), which had remarkably decreased over time in placebo formula-fed infants (compared to weeks 0 and 4). Moreover, probiotic formula decreased the acidity of stool and considerably increased the butyrate concentration. Furthermore, the fecal microbiota of each group was evaluated at weeks 0 and 4. The microbial composition was distinct between each groups, and the abundance of health-promoting bacteria increased in the probiotic formula compared to the placebo formula-fed group. In summary, supplementation of probiotic infant formula can help optimize the infant gut environment, microbial composition, and metabolic activity of the microbiota, mimicking those of breast milk.
Collapse
Affiliation(s)
- Ju Young Eor
- College of Life Sciences and
Biotechnology, Korea University, Seoul 02841, Korea
| | - Chul Sang Lee
- College of Life Sciences and
Biotechnology, Korea University, Seoul 02841, Korea
- Institute of Life Sciences and Natural
Resources, Korea University, Seoul 02841, Korea
| | - Sung Ho Moon
- College of Life Sciences and
Biotechnology, Korea University, Seoul 02841, Korea
| | - Ju Young Cheon
- College of Life Sciences and
Biotechnology, Korea University, Seoul 02841, Korea
| | - Duleepa Pathiraja
- College of Life Sciences and
Biotechnology, Korea University, Seoul 02841, Korea
| | - Byeonghyeok Park
- College of Life Sciences and
Biotechnology, Korea University, Seoul 02841, Korea
| | - Min Jae Shin
- College of Life Sciences and
Biotechnology, Korea University, Seoul 02841, Korea
| | - Jae-Young Kim
- College of Life Sciences and
Biotechnology, Korea University, Seoul 02841, Korea
- Institute of Life Sciences and Natural
Resources, Korea University, Seoul 02841, Korea
| | | | | | | | - In-Geol Choi
- College of Life Sciences and
Biotechnology, Korea University, Seoul 02841, Korea
- Institute of Life Sciences and Natural
Resources, Korea University, Seoul 02841, Korea
| | - Sae Hun Kim
- College of Life Sciences and
Biotechnology, Korea University, Seoul 02841, Korea
- Institute of Life Sciences and Natural
Resources, Korea University, Seoul 02841, Korea
| |
Collapse
|
28
|
Wu SY, Ou CC, Lee ML, Hsin IL, Kang YT, Jan MS, Ko JL. Polysaccharide of Ganoderma lucidum Ameliorates Cachectic Myopathy Induced by the Combination Cisplatin plus Docetaxel in Mice. Microbiol Spectr 2023; 11:e0313022. [PMID: 37212664 PMCID: PMC10269453 DOI: 10.1128/spectrum.03130-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/05/2023] [Indexed: 05/23/2023] Open
Abstract
Cachexia is a lethal muscle-wasting syndrome associated with cancer and chemotherapy use. Mounting evidence suggests a correlation between cachexia and intestinal microbiota, but there is presently no effective treatment for cachexia. Whether the Ganoderma lucidum polysaccharide Liz-H exerts protective effects on cachexia and gut microbiota dysbiosis induced by the combination cisplatin plus docetaxel (cisplatin + docetaxel) was investigated. C57BL/6J mice were intraperitoneally injected with cisplatin + docetaxel, with or without oral administration of Liz-H. Body weight, food consumption, complete blood count, blood biochemistry, and muscle atrophy were measured. Next-generation sequencing was also performed to investigate changes to gut microbial ecology. Liz-H administration alleviated the cisplatin + docetaxel-induced weight loss, muscle atrophy, and neutropenia. Furthermore, upregulation of muscle protein degradation-related genes (MuRF-1 and Atrogin-1) and decline of myogenic factors (MyoD and myogenin) after treatment of cisplatin and docetaxel were prevented by Liz-H. Cisplatin and docetaxel treatment resulted in reducing comparative abundances of Ruminococcaceae and Bacteroides, but Liz-H treatment restored these to normal levels. This study indicates that Liz-H is a good chemoprotective reagent for cisplatin + docetaxel-induced cachexia. IMPORTANCE Cachexia is a multifactorial syndrome driven by metabolic dysregulation, anorexia, systemic inflammation, and insulin resistance. Approximately 80% of patients with advanced cancer have cachexia, and cachexia is the cause of death in 30% of cancer patients. Nutritional supplementation has not been shown to reverse cachexia progression. Thus, developing strategies to prevent and/or reverse cachexia is urgent. Polysaccharide is a major biologically active compound in the fungus Ganoderma lucidum. This study is the first to report that G. lucidum polysaccharides could alleviate chemotherapy-induced cachexia via reducing expression of genes that are known to drive muscle wasting, such as MuRF-1 and Atrogin-1. These results suggest that Liz-H is an effective treatment for cisplatin + docetaxel-induced cachexia.
Collapse
Affiliation(s)
- Sung-Yu Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chu-Chyn Ou
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Meng-Lin Lee
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Kang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Shiou Jan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
29
|
Li P, Xiao X, Gong J, Zhang X, Cai K, Liang R, Wang D, Chen Y, Chen H, Xie Z, Liao Q. Pogostemon cablin (Blanco) Benth granule revealed a positive effect on improving intestinal barrier function and fecal microbiota in mice with irinotecan-induced intestinal mucositis. Arch Microbiol 2023; 205:179. [PMID: 37029820 DOI: 10.1007/s00203-023-03526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Pogostemon cablin (Blanco) Benth (PCB), a medicinal and edible homologous Chinese herb, has a protective effect on the structure and function of intestine. In this study, we aimed to investigate the effect of PCB granule (PCBG) on the improvement of irinotecan-induced intestinal mucositis and the regulation of intestinal microorganisms in mice. Our results demonstrated that PCBG supplementation significantly improved diarrhea symptoms caused by irinotecan, as evidenced by inhibiting weight loss, reversing intestinal atrophy, protecting against splenomegaly and balancing oxidative stress. Furthermore, compared with the model group, PCBG restored the intestinal morphology and improved intestinal barrier dysfunction by promoting the expression of tight junction proteins and mucin. Moreover, high-throughput sequencing analysis revealed that PCBG improved the flora disorder caused by irinotecan and regulated microbial community structure, such as decreasing the relative abundance of Bacteroides as well as increasing the relative abundance of Lactobacillus. Meanwhile, the disordered microbial functions in intestinal mucositis mice were recovered more closely to the controls by PCBG. Finally, we found that a robust correlation between the specific microbiota and intestinal mucositis-related index. In summary, these findings revealed the beneficial effects of PCBG on the intestinal barrier and gut microbiota of irinotecan-induced intestinal mucositis, which may be one of the potential strategies to reduce the clinical side effects of irinotecan.
Collapse
Affiliation(s)
- Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Dawei Wang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hongying Chen
- Guangzhou Baiyunshan Mingxing Pharmaceutical Co., Ltd, Guangzhou, 510250, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518106, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Trindade LM, Torres L, Matos ID, Miranda VC, de Jesus LCL, Cavalcante G, de Souza Oliveira JJ, Cassali GD, Mancha-Agresti P, de Carvalho Azevedo VA, Maioli TU, Cardoso VN, Martins FDS, de Vasconcelos Generoso S. Paraprobiotic Lacticaseibacillus rhamnosus Protects Intestinal Damage in an Experimental Murine Model of Mucositis. Probiotics Antimicrob Proteins 2023; 15:338-350. [PMID: 34524605 DOI: 10.1007/s12602-021-09842-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
Intestinal mucositis (IM) is a common side effect resulting from cancer treatment. However, the management so far has not been very effective. In the last years, the role of the gut microbiota in the development and severity of mucositis has been studied. Therefore, the use of probiotics and paraprobiotics could have a potential therapeutic effect on IM. The aim of our study was to investigate the impact of the administration of Lacticaseibacillus rhamnosus (L. rhamnosus) CGMCC1.3724 and the paraprobiotic on IM in mice. For 13 days, male Balb/c mice were divided into six groups: control (CTL) and mucositis (MUC)/0.1 mL of saline; CTL LrV and MUC LrV/0.1 mL of 108 CFU of viable Lr; CTL LrI and MUC LrI/0.1 mL of 108 CFU of inactivated Lr. On the 10th day, mice from the MUC, MUC LrV, and MUC LrI groups received an intraperitoneal injection (300 mg/kg) of 5-fluorouracil to induce mucositis. The results showed that the administration of the chemotherapeutic agent increased the weight loss and intestinal permeability of the animals in the MUC and MUC LrV groups. However, administration of paraprobiotic reduced weight loss and maintained PI at physiological levels. The paraprobiotic also preserved the villi and intestinal crypts, reduced the inflammatory infiltrate, and increased the mucus secretion, Muc2 gene expression, and Treg cells frequency.
Collapse
Affiliation(s)
- Luísa Martins Trindade
- Programa de Pós-Graduação Em Ciência de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lícia Torres
- Programa de Pós-Graduação Em Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabel David Matos
- Programa de Pós-Graduação Em Nutrição E Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Correia Miranda
- Programa de Pós-Graduação Em Microbiologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Programa de Pós-Graduação Em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gregório Cavalcante
- Programa de Pós-Graduação Em Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Geovanni Dantas Cassali
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Programa de Pós-Graduação Em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Programa de Pós-Graduação Em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Programa de Pós-Graduação Em Nutrição E Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviano Dos Santos Martins
- Programa de Pós-Graduação Em Microbiologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Simone de Vasconcelos Generoso
- Programa de Pós-Graduação Em Nutrição E Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
31
|
Cao Y, Liu B, Li W, Geng F, Gao X, Yue L, Liu H, Liu C, Su Z, Lü J, Pan X. Protopanaxadiol manipulates gut microbiota to promote bone marrow hematopoiesis and enhance immunity in cyclophosphamide-induced immunosuppression mice. MedComm (Beijing) 2023; 4:e222. [PMID: 36845073 PMCID: PMC9950037 DOI: 10.1002/mco2.222] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Protopanaxadiol (PPD) has potential immunomodulatory effects, but the underlying mechanism remains unclear. Here, we explored the potential roles of gut microbiota in the immunity regulation mechanisms of PPD using a cyclophosphamide (CTX)-induced immunosuppression mouse model. Our results showed that a medium dose of PPD (PPD-M, 50 mg/kg) effectively ameliorated the immunosuppression induced by CTX treatment by promoting bone marrow hematopoiesis, increasing the number of splenic T lymphocytes and regulating the secretion of serum immunoglobulins and cytokines. Meanwhile, PPD-M protected against CTX-induced gut microbiota dysbiosis by increasing the relative abundance of Lactobacillus, Oscillospirales, Turicibacter, Coldextribacter, Lachnospiraceae, Dubosiella, and Alloprevotella and reducing the relative abundance of Escherichia-Shigella. Importantly, PPD-M lost the ability to promote bone marrow hematopoiesis and enhance immunity when the gut microbiota was depleted by broad-spectrum antibiotics. Moreover, PPD-M promoted the production of microbiota-derived immune-enhancing metabolites including cucurbitacin C, l-gulonolactone, ceramide, DG, prostaglandin E2 ethanolamide, palmitoyl glucuronide, 9R,10S-epoxy-stearic acid, and 9'-carboxy-gamma-chromanol. KEGG topology analysis showed that the PPD-M treatment significantly enriched the sphingolipid metabolic pathway with ceramide as a main metabolite. Our findings reveal that PPD enhances immunity by manipulating gut microbiota and has the potential to be used as an immunomodulator in cancer chemotherapy.
Collapse
Affiliation(s)
- Yuru Cao
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Ben Liu
- Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Wenzhen Li
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Feng Geng
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Xue Gao
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Lijun Yue
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Huiping Liu
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Congying Liu
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Zhenguo Su
- Yantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Junhong Lü
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Xiaohong Pan
- School of PharmacyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
32
|
Yang Q, Qin B, Hou W, Qin H, Yin F. Pathogenesis and therapy of radiation enteritis with gut microbiota. Front Pharmacol 2023; 14:1116558. [PMID: 37063268 PMCID: PMC10102376 DOI: 10.3389/fphar.2023.1116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Radiotherapy is widely used in clinic due to its good effect for cancer treatment. But radiotherapy of malignant tumors in the abdomen and pelvis is easy to cause radiation enteritis complications. Gastrointestinal tract contains numerous microbes, most of which are mutualistic relationship with the host. Abdominal radiation results in gut microbiota dysbiosis. Microbial therapy can directly target gut microbiota to reverse microbiota dysbiosis, hence relieving intestinal inflammation. In this review, we mainly summarized pathogenesis and novel therapy of the radiation-induced intestinal injury with gut microbiota dysbiosis and envision the opportunities and challenges of radiation enteritis therapy.
Collapse
Affiliation(s)
- Qilin Yang
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- School of Clinical Medicine of Nanjing Medical University, Nanjing, China
| | - Bingzhi Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Fang Yin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| |
Collapse
|
33
|
Mahdavi R, Faramarzi E, Nikniaz Z, FarshiRadvar F. Role of Probiotics and Synbiotics in Preventing Chemoradiotherapy-Associated Toxicity in Colorectal Cancer Patients: A Systematic Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:110-117. [PMID: 36895464 PMCID: PMC9989248 DOI: 10.30476/ijms.2022.92793.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 03/11/2023]
Abstract
Background Previous studies found that the use of probiotics may have a protective effect on chemotherapy-associated toxicity in cancer patients. A systematic review was conducted to evaluate the effect of probiotics and synbiotics on chemoradiotherapy-associated toxicity in colorectal cancer (CRC) patients. Methods A systematic review of randomized controlled trials (RCTs) was performed to assess the effect of probiotics and synbiotics in CRC patients undergoing chemotherapy. All RCTs in English, up to January 2021, were included through a literature search in Scopus, Google Scholar, PubMed (PMC Central, MEDLINE), ClinicalTrials.gov, and ProQuest databases. The impact of probiotics and synbiotics on the side effects associated with chemotherapy, radiotherapy, and chemoradiotherapy in CRC patients was evaluated. The quality of the RTCs was independently assessed by two reviewers. EndNote X8 software was used to manage the search results. Results Of the 904 identified articles, three studies finally met the inclusion criteria and were systematically reviewed. Two studies reported that patients who received probiotics had less abdominal discomfort and required less bowel toxicity-related hospital care. Although probiotic supplementation lowered radiation-associated diarrhea, it had no significant effect when anti-diarrheal drugs were used. Another study reported that synbiotic supplementation improved quality of life and marginally reduced diarrhea and serum levels of high-sensitivity C-reactive protein (hs-CRP) and matrix metalloproteinase (MMP-2 and MMP-9). Conclusion Probiotics and synbiotics do not have a significant effect on reducing chemotherapy-associated toxicity and diarrhea in CRC patients. These findings should be substantiated by further RCTs with rigorous placebo-controlled studies.
Collapse
Affiliation(s)
- Reza Mahdavi
- Department of Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Faramarzi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
34
|
Coelho-Rocha ND, de Jesus LCL, Barroso FAL, da Silva TF, Ferreira E, Gonçalves JE, Dos Santos Martins F, de Oliveira Carvalho RD, Barh D, Azevedo VADC. Evaluation of Probiotic Properties of Novel Brazilian Lactiplantibacillus plantarum Strains. Probiotics Antimicrob Proteins 2023; 15:160-174. [PMID: 36028786 DOI: 10.1007/s12602-022-09978-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 01/20/2023]
Abstract
Beneficial effects of Lactiplantibacillus plantarum strains have been widely reported. Knowing that the effects of probiotic bacteria are strain-dependent, this study aimed to characterize the probiotic properties and investigate the gastrointestinal protective effects of nine novel L. plantarum strains isolated from Bahia, Brazil. The probiotic functionality was first evaluated in vitro by characterizing bile salt and acidic tolerance, antibacterial activity, and adhesion to Caco-2 cells. Antibiotic resistance profile, mucin degradation, and hemolytic activity assays were also performed to evaluate safety features. In vivo analyses were conducted to investigate the anti-inflammatory effects of the strains on a mouse model of 5-Fluorouracil-induced mucositis. Our results suggest that the used L. plantarum strains have good tolerance to bile salts and low pH and can inhibit commonly gastrointestinal pathogens. Lp2 and Lpl1 strains also exhibited high adhesion rates to Caco-2 cells (13.64 and 9.05%, respectively). Phenotypical resistance to aminoglycosides, vancomycin, and tetracycline was observed for most strains. No strain showed hemolytic or mucolytic activity. Seven strains had a protective effect against histopathological and inflammatory damage induced by 5-FU. Gene expression analysis of inflammatory markers showed that five strains upregulated interleukin 10 (Il10), while four downregulated both interleukin 6 (Il6) and interleukin 1b (Il1b). Additionally, all strains reduced eosinophilic and neutrophilic infiltration; however, they could not prevent weight loss or reduced liquid/ food intake. Altogether, our study suggests these Brazilian L. plantarum strains present good probiotic characteristics and safety levels for future applications and can be therapeutically adjuvant alternatives to prevent/treat intestinal mucositis.
Collapse
Affiliation(s)
- Nina Dias Coelho-Rocha
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Enio Ferreira
- Department of General Pathology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - José Eduardo Gonçalves
- Department of Pharmaceutic Products, Pharmacy Faculty, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Flaviano Dos Santos Martins
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), West Bengal, Nonakuri, Purba Medinipur, 721172, India
| | - Vasco Ariston de Carvalho Azevedo
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
35
|
Huang B, Gui M, Ni Z, He Y, Zhao J, Peng J, Lin J. Chemotherapeutic Drugs Induce Different Gut Microbiota Disorder Pattern and NOD/RIP2/NF-κB Signaling Pathway Activation That Lead to Different Degrees of Intestinal Injury. Microbiol Spectr 2022; 10:e0167722. [PMID: 36222691 PMCID: PMC9769542 DOI: 10.1128/spectrum.01677-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023] Open
Abstract
5-Fluorouracil (5-FU), irinotecan (CPT-11), oxaliplatin (L-OHP), and calcium folinate (CF) are widely used chemotherapeutic drugs to treat colorectal cancer. However, chemotherapeutic use is often accompanied by intestinal inflammation and gut microbiota disorder. Changes in gut microbiota may destroy the intestinal barrier, which contributes to the severity of intestinal injury. However, intestinal injury and gut microbiota disorder have yet to be compared among 5-FU, CPT-11, L-OHP, and CF in detail, thereby limiting the development of targeted detoxification therapy after chemotherapy. In this study, a model of chemotherapy-induced intestinal injury in tumor-bearing mice was established by intraperitoneally injecting chemotherapeutic drugs at a clinically equivalent dose. 16S rRNA gene sequencing was used to detect gut microbiota. We found that 5-FU, CPT-11, and l-OHP caused intestinal injury, inflammatory cytokine (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-1β [IL-1β], and IL-6) secretion, and gut microbiota disorder. We established a complex but clear network between the pattern of changes in gut microbiota and degree of intestinal damage induced by different chemotherapeutic drugs. L-OHP caused the most severe damage in the intestine and disorder of the gut microbiota and showed a considerable overlap of the pattern of changes in microbiota with 5-FU and CPT-11. Analysis by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt v.1.0) showed that the microbiota disorder pattern induced by 5-FU, CPT-11, and L-OHP was related to the NOD-like signaling pathway. Therefore, we detected the protein expression of the NOD/RIP2/NF-κB signaling pathway and found that L-OHP most activated this pathway. Redundancy analysis/canonical correlation analysis (RDA/CCA) revealed that Bifidobacterium, Akkermansia, Allobaculum, Catenibacterium, Mucispirillum, Turicibacter, Helicobacter, Proteus, Escherichia Shigella, Alloprevotealla, Vagococcus, Streptococcus, and "Candidatus Saccharimonas" were highly correlated with the NOD/RIP2/NF-κB signaling pathway and influenced by chemotherapeutic drugs. IMPORTANCE Chemotherapy-induced intestinal injury limits the clinical use of drugs. Intestinal injury involves multiple signaling pathways and gut microbiota disruption. Our results suggested that the degree of intestinal injury caused by different drugs of the first-line colorectal chemotherapy regimen is related to the pattern of changes in microbiota. The activation of the NOD/RIP2/NF-κB signaling pathway was also related to the pattern of changes in microbiota. l-OHP caused the most severe damage to the intestine and showed a considerable overlap of the pattern of changes in microbiota with 5-FU and CPT-11. Thirteen bacterial genera were related to different levels of intestinal injury and correlated with the NOD/RIP2/NF-κB pathway. Here, we established a network of different chemotherapeutic drugs, gut microbiota, and the NOD/RIP2/NF-κB signaling pathway. This study likely provided a new basis for further elucidating the mechanism and clinical treatment of intestinal injury caused by chemotherapy.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Mengxuan Gui
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Zhuona Ni
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Yanbin He
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jinyan Zhao
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jun Peng
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jiumao Lin
- Academy of Integrative Medicine of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
36
|
Zhou Q, Shen B, Huang R, Liu H, Zhang W, Song M, Liu K, Lin X, Chen S, Liu Y, Wang Y, Zhi F. Bacteroides fragilis strain ZY-312 promotes intestinal barrier integrity via upregulating the STAT3 pathway in a radiation-induced intestinal injury mouse model. Front Nutr 2022; 9:1063699. [PMID: 36590229 PMCID: PMC9798896 DOI: 10.3389/fnut.2022.1063699] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Radiation-induced intestinal injury is characterized by intestinal barrier impairment. However, the therapeutic effects of probiotics for intestinal epithelial barrier repair in a mouse model of radiation-induced intestinal injury remain unclear. Previously, we isolated a strain of Bacteroides fragilis from the feces of a healthy infant and named it as B. fragilis strain ZY-312 (B. fragilis). In this study, we showed that B. fragilis can ameliorate radiation-induced intestinal injury in mice, manifested by decreased weight loss, intestinal length shortening, and intestinal epithelial cell (IEC) shedding. Moreover, we found that B. fragilis promoted IEC proliferation, stem cell regeneration, mucus secretion, and tight junction integrity by upregulating the STAT3 signaling pathway, through an experimental verification in Stat3 △IEC mice (STAT3 defects in intestinal epithelial cells). Thus, the underlying protective mechanism of B. fragilis in radiation-induced intestinal injury is related to IEC proliferation, stem cell regeneration, goblet cell secretion, and tight junction repair via activation of the STAT3 signaling pathway. In addition, the therapeutic effects of B. fragilis were studied to provide new insights into its application as a functional and clinical drug for radiation-induced intestinal injury after radiotherapy.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Binhai Shen
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo Huang
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbin Liu
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wendi Zhang
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengyao Song
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Liu
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinlong Lin
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuze Chen
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangyang Liu
- Guangzhou Zhiyi Biotechnology Co., Ltd., Guangzhou, China
| | - Ye Wang
- Guangzhou Zhiyi Biotechnology Co., Ltd., Guangzhou, China
| | - Fachao Zhi
- Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Fachao Zhi, ; orcid.org/0000-0001-8674-4737
| |
Collapse
|
37
|
Devoy C, Flores Bueso Y, Tangney M. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology. Front Oncol 2022; 12:1020121. [PMID: 36505861 PMCID: PMC9730816 DOI: 10.3389/fonc.2022.1020121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial inhabitants of the body have the potential to play a role in various stages of cancer initiation, progression, and treatment. These bacteria may be distal to the primary tumour, such as gut microbiota, or local to the tissue, before or after tumour growth. Breast cancer is well studied in this context. Amongst breast cancer types, Triple Negative Breast Cancer (TNBC) is more aggressive, has fewer treatment options than receptor-positive breast cancers, has an overall worse prognosis and higher rates of reoccurrence. Thus, an in-depth understanding of the bacterial influence on TNBC progression and treatment is of high value. In this regard, the Gut Microbiota (GM) can be involved in various stages of tumour progression. It may suppress or promote carcinogenesis through the release of carcinogenic metabolites, sustenance of proinflammatory environments and/or the promotion of epigenetic changes in our genome. It can also mediate metastasis and reoccurrence through interactions with the immune system and has been recently shown to influence chemo-, radio-, and immune-therapies. Furthermore, bacteria have also been found to reside in normal and malignant breast tissue. Several studies have now described the breast and breast tumour microbiome, with the tumour microbiota of TNBC having the least taxonomic diversity among all breast cancer types. Here, specific conditions of the tumour microenvironment (TME) - low O2, leaky vasculature and immune suppression - are supportive of tumour selective bacterial growth. This innate bacterial ability could enable their use as delivery agents for various therapeutics or as diagnostics. This review aims to examine the current knowledge on bacterial relevance to TNBC and potential uses while examining some of the remaining unanswered questions regarding mechanisms underpinning observed effects.
Collapse
Affiliation(s)
- Ciaran Devoy
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yensi Flores Bueso
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mark Tangney
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Pharmacy, College of Medicine and Health, University College Cork, Cork, Ireland,*Correspondence: Mark Tangney,
| |
Collapse
|
38
|
Zhao X, Ji K, Zhang M, Huang H, Wang F, Liu Y, Liu Q. NMN alleviates radiation-induced intestinal fibrosis by modulating gut microbiota. Int J Radiat Biol 2022; 99:823-834. [PMID: 36343364 DOI: 10.1080/09553002.2023.2145029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM Radiation-induced intestinal fibrosis, a common complication of long-term survivors after receiving abdominal and pelvic radiotherapy, has no effective clinical drugs at present. Nicotinamide mononucleotide (NMN) has been reported to alleviate a variety of age-related diseases and has potential of regulating gut microbiota. The current study focuses on the role of gut microbiota in chronic radiation induced intestinal fibrosis, and investigates whether NMN plays a protective role in radiation-induced intestinal fibrosis as well as the impact of NMN on radiation-induced dysbiosis of gut microbiota. MATERIALS AND METHODS C57BL/6J mice received 15 Gy abdominal irradiation and NMN (300 mg/kg/day) supplement in drinking water. Feces were collected at 4- and 8-months post-irradiation and performed 16S rRNA sequencing to detect the gut microbiota. Colon tissues were isolated at 12 months after irradiation with or without NMN supplementation for histological analysis. RESULTS We found that irradiation caused intestinal fibrosis, and altered the β diversity and composition of gut microbiota, while the gut microbiota was observed to be affected by time post-irradiation and age of mice. Long-term NMN supplementation alleviated intestinal fibrosis, and reshaped the composition and function of gut microbiota dysregulated by ionizing radiation (IR). In addition, Akkermansia muciniphila, a promising probiotic, and metabolism-related pathways, such as Biosynthesis of other secondary metabolites and Amino acid metabolism, were more abundant after NMN treatment in irradiated mice. CONCLUSION IR has a long-term effect on the gut microbiota and NMN supplementation can alleviate radiation induced intestinal fibrosis by reshaping the composition of gut microbiota and regulating the metabolic function of the microorganism.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Hao Huang
- Effepharm (Shanghai) Co. Ltd., No.1 Mid Wangdong Rd, Songjiang District, Shanghai, 201601, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
39
|
Schiepatti A, Sanders DS, Baiardi P, Caio G, Ciacci C, Kaukinen K, Lebwohl B, Leffler D, Malamut G, Murray JA, Rostami K, Rubio-Tapia A, Volta U, Biagi F. Nomenclature and diagnosis of seronegative coeliac disease and chronic non-coeliac enteropathies in adults: the Paris consensus. Gut 2022; 71:2218-2225. [PMID: 35676085 PMCID: PMC9554081 DOI: 10.1136/gutjnl-2021-326645] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/02/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Differential diagnosis of villous atrophy (VA) without coeliac antibodies in adults includes seronegative coeliac disease (CD) and chronic enteropathies unrelated to gluten, ie. non-coeliac enteropathies (NCEs). There is currently no international consensus on the nomenclature and diagnostic criteria for these enteropathies. In this work, a Delphi process was conducted to address this diagnostic and clinical uncertainty. DESIGN An international task force of 13 gastroenterologists from six countries was recruited at the 16th International Coeliac Disease Symposium, Paris, 2019. Between September 2019 and July 2021, a Delphi process was conducted through mail surveys to reach a consensus on which conditions to consider in the differential diagnosis of VA with negative coeliac serology and the clinical diagnostic approaches required for these conditions. A 70% agreement threshold was adopted. RESULTS Chronic enteropathies characterised by VA and negative coeliac serology can be attributed to two main clinical scenarios: forms of CD presenting with negative serology, which also include seronegative CD and CD associated with IgA deficiency, and NCEs, with the latter recognising different underlying aetiologies. A consensus was reached on the diagnostic criteria for NCEs assisting clinicians in differentiating NCEs from seronegative CD. Although in adults seronegative CD is the most common aetiology in patients with VA and negative serology, discriminating between seronegative CD and NCEs is key to avoid unnecessary lifelong gluten-free diet, treat disease-specific morbidity and contrast poor long-term outcomes. CONCLUSION This paper describes the Paris consensus on the definitions and diagnostic criteria for seronegative CD and chronic NCEs in adults.
Collapse
Affiliation(s)
- Annalisa Schiepatti
- Dipartimento di Medicina Interna e Terapia Medica, University of Pavia, Pavia, Italy .,Istituti Clinici Scientifici Maugeri, IRCCS, Gastroenterology Unit of Pavia Institute, Pavia, Italy
| | - David S Sanders
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, UK
| | - Paola Baiardi
- Direzione Scientifica Centrale, Fondazione S. Maugeri, IRCCS, Pavia, Italy
| | - Giacomo Caio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy,Celiac Center and Mucosal Immunology and Biology Research Center Massachusetts General Hospital- Harvard Medical School, Boston, Massachusetts, USA
| | - Carolina Ciacci
- AOU San Giovanni di Dio e Ruggi d’Aragona, University of Salerno, Baronissi, Italy
| | - Katri Kaukinen
- Faculty of Medicine and Health Technology, Tampere University and Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Benjamin Lebwohl
- Celiac Disease Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York City, New York, USA,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Daniel Leffler
- The Celiac Center at BIDMC, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Georgia Malamut
- Université de Paris, Department of Gastroenterology, AP-HP, Hôpital Cochin, Paris, France
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kamran Rostami
- Departments of Gastroenterology, Mid Central DHB, Palmerston Hospital, Palmerston North, Palmerston North, New Zealand
| | - Alberto Rubio-Tapia
- Division of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Umberto Volta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Federico Biagi
- Dipartimento di Medicina Interna e Terapia Medica, University of Pavia, Pavia, Italy,Istituti Clinici Scientifici Maugeri, IRCCS, Gastroenterology Unit of Pavia Institute, Pavia, Italy
| |
Collapse
|
40
|
Tong JY, Jiang W, Yu XQ, Wang R, Lu GH, Gao DW, Lv ZW, Li D. Effect of low-dose radiation on thyroid function and the gut microbiota. World J Gastroenterol 2022; 28:5557-5572. [PMID: 36304083 PMCID: PMC9594015 DOI: 10.3748/wjg.v28.i38.5557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 09/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The thyroid-gut axis has a great influence on the maintenance of human health; however, we know very little about the effects of low-dose ionizing radiation (LDR) on thyroid hormone levels and gut microbiota composition.
AIM To investigate the potential effects of low-dose X-ray radiation to male C57BL/6J mice.
METHODS Peripheral blood was collected for enzyme-linked immunosorbent assay (ELISA), and stool samples were taken for 16S ribosomal RNA (rRNA) gene sequencing after irradiation.
RESULTS We found that LDR caused changes in thyroid stimulating hormone (TSH) levels in the irradiated mice, suggesting a dose-dependent response in thyroid function to ionizing radiation. No changes in the diversity and richness of the gut microbiota were observed in the LDR-exposed group in comparison to the controls. The abundance of Moraxellaceae and Enterobacteriaceae decreased in the LDR-exposed groups compared with the controls, and the Lachnospiraceae abundance increased in a dose-dependent manner in the radiated groups. And the abundances of uncultured_bacterium_g_Acinetobacter, uncultured_bacterium_ o_Mollicutes_RF39, uncultured_bacterium_g_Citrobacter, and uncultured_ bacterium_g_Lactococcus decreased in the radiated groups at the genus level, which showed a correlation with radiation exposure and diagnostic efficacy. Analysis of functional metabolic pathways revealed that biological metabolism was predicted to have an effect on functional activities, such as nucleotide metabolism, carbohydrate metabolism, and glycan biosynthesis and metabolism. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway annotation also suggested that changes in the gut microbiota were related to processing functions, including translation, replication and repair.
CONCLUSION LDR can change thyroid function and the gut microbiota, and changes in the abundances of bacteria are correlated with the radiation dose.
Collapse
Affiliation(s)
- Jun-Yu Tong
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wen Jiang
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xia-Qing Yu
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ru Wang
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Gang-Hua Lu
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ding-Wei Gao
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhong-Wei Lv
- Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dan Li
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 200072, Guangdong Province, China
| |
Collapse
|
41
|
Fan J, Lin B, Fan M, Niu T, Gao F, Tan B, Du X. Research progress on the mechanism of radiation enteritis. Front Oncol 2022; 12:888962. [PMID: 36132154 PMCID: PMC9483210 DOI: 10.3389/fonc.2022.888962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Radiation enteritis (Re) is one of the most common complications of radiation therapy for abdominal tumors. The efficacy of cancer treatment by radiation is often limited by the side effects of Re. Re can be acute or chronic. Treatment of acute Re is essentially symptomatic. However, chronic Re usually requires surgical procedures. The underlying mechanisms of Re are complex and have not yet been elucidated. The purpose of this review is to provide an overview of the pathogenesis of Re. We reviewed the role of intestinal epithelial cells, intestinal stem cells (ISCs), vascular endothelial cells (ECs), intestinal microflora, and other mediators of Re, noting that a better understanding of the pathogenesis of Re may lead to better treatment modalities.
Collapse
Affiliation(s)
- Jinjia Fan
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Binwei Lin
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Mi Fan
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Tintin Niu
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Feng Gao
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Xiaobo Du
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
- *Correspondence: Xiaobo Du,
| |
Collapse
|
42
|
Zhu W, Wang JZ, Liu Z, Wei JF. The bacteria inside human cancer cells: Mainly as cancer promoters. Front Oncol 2022; 12:897330. [PMID: 36033476 PMCID: PMC9411745 DOI: 10.3389/fonc.2022.897330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
The roles of the microbiome in human beings have become clearer with the development of next-generation sequencing techniques. Several pieces of evidence showed strong correlations between the microbiome and human health and disease, such as metabolic disorders, infectious diseases, digestive system diseases, and cancers. Among these diverse microbiomes, the role of bacteria in human cancers, especially in cancer cells, has received extensive attention. Latest studies found that bacteria widely existed in cancers, mainly in cancer cells and immune cells. In this review, we summarize the latest advances in understanding the role of bacteria in human cancer cells. We also discuss how bacteria are transported into cancer cells and their physiological significance in cancer progression. Finally, we present the prospect of bacterial therapy in cancer treatment.
Collapse
Affiliation(s)
- Wei Zhu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing-Zi Wang
- Department of Urology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhixian Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Zhang Q, Zhou S, Lim PE, Wei B, Xue C, Xue Y, Tang Q. Kappaphycus Alvarezii Compound Powder Prevents Chemotherapy-Induced Intestinal Mucositis in BALB/c Mice. Nutr Cancer 2022; 74:3735-3746. [PMID: 35758096 DOI: 10.1080/01635581.2022.2089699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study aimed to formulate Kappaphycus alvarezii compound powder containing Kappaphycus alvarezii powder (KP), cooked sorghum powder (SP), and longan powder (LP); which was evaluated for its therapeutic effects against chemotherapy-induced intestinal mucosal injury (CIMI). Based on rheological properties, sensory evaluation, and antioxidant activity and using single factor and response surface methodology, the optimal formula to develop the compound powder was determined to be 35% KP, 30% SP, 5% LP, and 30% xylitol. Thereafter, the efficacy of the compound powder was tested by feeding BALB/c mice with diets supplemented with the Kappaphycus alvarezii compound powder (3% and 5%) for 14 consecutive days. The chemotherapeutic drug 5-fluorouracil was intraperitoneally injected (50 mg/kg) in the mice to induce CIMI for the last three consecutive days. Compared to the CIMI mice, those fed 5% Kappaphycus alvarezii compound powder (HC) showed significantly improved the intestinal injury, increased mucin-2 secretion, and reduced TNF-α, IL-1β, IL-6, LT, and COX-2 levels. Furthermore, HC intake significantly reduced the Firmicutes-to-Bacteroidetes ratio, promoted the growth of beneficial bacteria, such as Alloprevotella, and inhibited the growth of harmful bacteria, such as Clostridium. In conclusion, HC has a protective effect against CIMI and provides a novel dietary strategy for patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Qing Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Sainan Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Phaik Eem Lim
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Biqian Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Pilot National Laboratory for Marine Science and Technology, Laboratory for Marine Drugs and Bioproducts, Qingdao, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
44
|
Ji L, Hao S, Wang J, Zou J, Wang Y. Roles of Toll-Like Receptors in Radiotherapy- and Chemotherapy-Induced Oral Mucositis: A Concise Review. Front Cell Infect Microbiol 2022; 12:831387. [PMID: 35719331 PMCID: PMC9201217 DOI: 10.3389/fcimb.2022.831387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy and/or chemotherapy-induced oral mucositis (RIOM/CIOM) is a common complication in cancer patients, leading to negative clinical manifestations, reduced quality of life, and impacting compliance with anticancer treatment. The composition and metabolic function of the oral microbiome, as well as the innate immune response of the oral mucosa are severely altered during chemotherapy or radiotherapy, promoting the expression of inflammatory mediators by direct and indirect mechanisms. Commensal oral bacteria-mediated innate immune signaling via Toll-like receptors (TLRs) ambiguously shapes radiotherapy- and/or chemotherapy-induced oral damage. To date, there has been no comprehensive overview of the role of TLRs in RIOM/CIOM. This review aims to provide a narrative of the involvement of TLRs, including TLR2, TLR4, TLR5, and TLR9, in RIOM/CIOM, mainly by mediating the interaction between the host and microorganisms. As such, we suggest that these TLR signaling pathways are a novel mechanism of RIOM/CIOM with considerable potential for use in therapeutic interventions. More studies are needed in the future to investigate the role of different TLRs in RIOM/CIOM to provide a reference for the precise control of RIOM/CIOM.
Collapse
Affiliation(s)
- Ling Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siyuan Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiantao Wang
- State Key Laboratory of Biotherapy and Department of Lung Cancer Center and Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Yan Wang,
| |
Collapse
|
45
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
46
|
Liu Z, Parida S, Wu S, Sears CL, Sharma D, Barman I. Label-Free Vibrational and Quantitative Phase Microscopy Reveals Remarkable Pathogen-Induced Morphomolecular Divergence in Tumor-Derived Cells. ACS Sens 2022; 7:1495-1505. [PMID: 35583030 DOI: 10.1021/acssensors.2c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Delineating the molecular and morphological changes that cancer cells undergo in response to extracellular stimuli is crucial for identifying factors that promote tumor progression. Label-free optical imaging offers a potentially promising route for retrieving such single-cell information by generating detailed visualization of the morphology and determining alterations in biomolecular composition. The potential of such nonperturbative morphomolecular microscopy for analyzing microbiota-cancer cell interactions has been surprisingly underappreciated, despite the growing evidence of the critical role of dysbiosis in malignant transformations. Here, using a model system of breast cancer cells, we show that label-free Raman microspectroscopy and quantitative phase microscopy can detect biomolecular and morphological changes in single cells exposed to Bacteroides fragilis toxin (BFT), a toxin secreted by enterotoxigenicB. fragilis. Remarkably, using machine learning to elucidate subtle, but consistent, cellular differences, we found that the morphomolecular differences between BFT-exposed and control breast cancer cells became more accentuated after in vivo passage, corroborating our findings that a short-term BFT exposure imparts a long-term effect on cancer cells and promotes a more invasive phenotype. Complementing more classical labeling techniques, our label-free platform offers a global detection approach with measurements representative of the overall cellular phenotype, paving the way for further investigations into the multifaceted interactions between the cancer cell and the microbiota.
Collapse
Affiliation(s)
- Zhenhui Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sheetal Parida
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Shaoguang Wu
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Cynthia L. Sears
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
47
|
Zhang D, Xiang M, Jiang Y, Wu F, Chen H, Sun M, Zhang L, Du X, Chen L. The Protective Effect of Polysaccharide SAFP from Sarcodon aspratus on Water Immersion and Restraint Stress-Induced Gastric Ulcer and Modulatory Effects on Gut Microbiota Dysbiosis. Foods 2022; 11:1567. [PMID: 35681318 PMCID: PMC9180856 DOI: 10.3390/foods11111567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Sarcodon aspratus is a popular edible fungus for its tasty flavour and can be used as a dietary supplement for its functional substances. This study was conducted to evaluate the potential health benefits of Sarcodon aspratus polysaccharides (SAFP) on water immersion and restraint stress (WIRS)-induced gastric ulcer in rats. The results indicated that SAFP could decrease myeloperoxidase (MPO) activity and plasma corticosterone levels, as well as enhance Prostaglandin E2 (PGE2) and Nitrate/nitrite (NOx) concentration in rats. Furthermore, SAFP significantly attenuated the stress damage, inflammation, pathological changes and gastric mucosal lesion in rats. Moreover, high-throughput pyrosequencing of 16S rRNA suggested that SAFP modulated the dysbiosis of gut microbiota by enhancing the relative abundance of probiotics, decreasing WIRS-triggered bacteria proliferation. In summary, these results provided the evidence that SAFP exerted a beneficial effect on a WIRS-induced gastric ulcer via blocking the TLR4 signaling pathway and activating the Nrf2 signaling pathway. Notably, SAFP could modulate the WIRS-induced dysbiosis of gut microbiota. Thus, SAFP might be explored as a natural gastric mucosal protective agent in the prevention of gastric ulcers and other related diseases in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Dongjing Zhang
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Ming Xiang
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
| | - Yun Jiang
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
| | - Fen Wu
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
| | - Huaqun Chen
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
| | - Min Sun
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
| | - Lingzhi Zhang
- Anhui Cordyceps Source Biotechnology Co., Ltd., Huainan 232000, China;
| | - Xianfeng Du
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lei Chen
- Anhui Key Laboratory of Eco-Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China; (D.Z.); (M.X.); (Y.J.); (F.W.); (H.C.); (M.S.)
| |
Collapse
|
48
|
The interplay between anticancer challenges and the microbial communities from the gut. Eur J Clin Microbiol Infect Dis 2022; 41:691-711. [PMID: 35353280 DOI: 10.1007/s10096-022-04435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/15/2022] [Indexed: 11/03/2022]
Abstract
Cancer being an increasing burden on human health, the use of anticancer drugs has risen over the last decades. The physiological effects of these drugs are not only perceived by the host's cells but also by the microbial cells it harbors as commensals, notably the gut microbiota. Since the early '50 s, the cytotoxicity of anticancer chemotherapy was evaluated on bacteria revealing some antimicrobial activities that result in an established perturbation of the gut microbiota. This perturbation can affect the host's health through dysbiosis, which can lead to multiple complications, but has also been shown to have a direct effect on the treatment efficiency.We, therefore, conducted a review of literature focusing on this triangular relationship involving the microbial communities from the gut, the host's disease, and the anticancer treatment. We focused specifically on the antimicrobial effects of anticancer chemotherapy, their impact on mutagenesis in bacteria, and the perspectives of using bacteria-based tools to help in the diagnostic and treatment of cancer.
Collapse
|
49
|
Deng L, Zhou X, Lan Z, Tang K, Zhu X, Mo X, Zhao Z, Zhao Z, Wu M. Simotang Alleviates the Gastrointestinal Side Effects of Chemotherapy by Altering Gut Microbiota. J Microbiol Biotechnol 2022; 32:405-418. [PMID: 35283422 PMCID: PMC9628794 DOI: 10.4014/jmb.2110.10018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Simotang oral liquid (SMT) is a traditional Chinese medicine (TCM) consisting of four natural plants and is used to alleviate gastrointestinal side effects after chemotherapy and functional dyspepsia (FD). However, the mechanism by which SMT helps cure these gastrointestinal diseases is still unknown. Here, we discovered that SMT could alleviate gastrointestinal side effects after chemotherapy by altering gut microbiota. C57BL/6J mice were treated with cisplatin (DDP) and SMT, and biological samples were collected. Pathological changes in the small intestine were observed, and the intestinal injury score was assessed. The expression levels of the inflammatory factors IL-1β and IL-6 and the adhesive factors Occludin and ZO-1 in mouse blood or small intestine tissue were also detected. Moreover, the gut microbiota was analyzed by high-throughput sequencing of 16S rRNA amplicons. SMT was found to effectively reduce gastrointestinal mucositis after DDP injection, which lowered inflammation and tightened the intestinal epithelial cells. Gut microbiota analysis showed that the abundance of the anti-inflammatory microbiota was downregulated and that the inflammatory microbiota was upregulated in DDP-treated mice. SMT upregulated anti-inflammatory and anticancer microbiota abundance, while the inflammatory microbiota was downregulated. An antibiotic cocktail (ABX) was also used to delete mice gut microbiota to test the importance of gut microbiota, and we found that SMT could not alleviate gastrointestinal mucositis after DDP injection, showing that gut microbiota might be an important mediator of SMT treatment. Our study provides evidence that SMT might moderate gastrointestinal mucositis after chemotherapy by altering gut microbiota.
Collapse
Affiliation(s)
- Lijing Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Xingyi Zhou
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Zhifang Lan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Kairui Tang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Xiaoxu Zhu
- Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Xiaowei Mo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Zongyao Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zhiqiang Zhao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China,Corresponding authors Zhiqiang Zhao Phone: +86-20-8775-5766 E-mail:
| | - Mansi Wu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P.R. China,
Mansi Wu Phone: +86-20-8522-1543 E-mail:
| |
Collapse
|
50
|
Liu L, Shah K. The Potential of the Gut Microbiome to Reshape the Cancer Therapy Paradigm: A Review. JAMA Oncol 2022; 8:1059-1067. [PMID: 35482355 DOI: 10.1001/jamaoncol.2022.0494] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance The gut microbiome, home to the vast kingdom of diverse commensal bacteria and other microorganisms residing within the gut, was once thought to only have roles primarily centered on digestive functions. However, recent advances in sequencing technology have elucidated intricate roles of the gut microbiome in cancer development and efficacy of therapeutic response that need to be comprehensively addressed from a clinically translational angle. Observations This review aims to highlight the current understanding of the association of the gut microbiome with the therapeutic response to immunotherapy, chemotherapy, radiotherapy, cancer surgery, and more, while also contextualizing possible synergistic strategies with the microbiome for tackling some of the most challenging tumors. It also provides insights on contemporary methods that target the microbiota and the current progression of findings being translated from bench to bedside. Conclusions and Relevance Ultimately, the importance of gut bacteria in cancer therapy cannot be overstated in its potential for ushering in a new era of cancer treatments. With the understanding that the microbiome may play critical roles in the tumor microenvironment, holistic approaches that integrate microbiome-modulating treatments with biological, immune, cell-based, and surgical cancer therapies should be explored.
Collapse
Affiliation(s)
- Longsha Liu
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| |
Collapse
|