1
|
Jiang ZL, Liu Y, Zhang CH, Chu T, Yang YL, Zhu YW, Wang Y, Liu YF, Zhang YX, Feng ZF, Ji XY, Wu DD. Emerging roles of hydrogen sulfide in colorectal cancer. Chem Biol Interact 2024; 403:111226. [PMID: 39237072 DOI: 10.1016/j.cbi.2024.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, plays a key role in several critical physiological and pathological processes in vivo, including vasodilation, anti-infection, anti-tumor, anti-inflammation, and angiogenesis. In colorectal cancer (CRC), aberrant overexpression of H2S-producing enzymes has been observed. Due to the important role of H2S in the proliferation, growth, and death of cancer cells, H2S can serve as a potential target for cancer therapy. In this review, we thoroughly analyzed the underlying mechanism of action of H2S in CRC from the following aspects: the synthesis and catabolism of H2S in CRC cells and its effect on cell signal transduction pathways; the inhibition effects of exogenous H2S donors with different concentrations on the growth of CRC cells and the underlying mechanism of H2S in garlic and other natural products. Furthermore, we elucidate the expression characteristics of H2S in CRC and construct a comprehensive H2S-related signaling pathway network, which has important basic and practical significance for promoting the clinical research of H2S-related drugs.
Collapse
Affiliation(s)
- Zhi-Liang Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yi Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Lun Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Medicine, Huaxian County People's Hospital, Anyang, Henan, 456400, China; Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
2
|
Yin LL, Qi PQ, Hu YF, Fu XJ, He RS, Wang MM, Deng YJ, Xiong SY, Yu QW, Hu JP, Zhou L, Zhou ZB, Xiong Y, Deng H. Dysbiosis promotes recurrence of adenomatous polyps in the distal colorectum. World J Gastrointest Oncol 2024; 16:3600-3623. [PMID: 39171160 PMCID: PMC11334022 DOI: 10.4251/wjgo.v16.i8.3600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Colorectal polyps, which are characterized by a high recurrence rate, represent preneoplastic conditions of the intestine. Due to unclear mechanisms of pathogenesis, first-line therapies for non-hereditary recurrent colorectal polyps are limited to endoscopic resection. Although recent studies suggest a mechanistic link between intestinal dysbiosis and polyps, the exact compositions and roles of bacteria in the mucosa around the lesions, rather than feces, remain unsettled. AIM To clarify the composition and diversity of bacteria in the mucosa surrounding or 10 cm distal to recurrent intestinal polyps. METHODS Mucosal samples were collected from four patients consistently with adenomatous polyps (Ade), seven consistently with non-Ade (Pol), ten with current Pol but previous Ade, and six healthy individuals, and bacterial patterns were evaluated by 16S rDNA sequencing. Linear discriminant analysis and Student's t-tests were used to identify the genus-level bacteria differences between groups with different colorectal polyp phenotypes. Pearson's correlation coefficients were used to evaluate the correlation between intestinal bacteria at the genus level and clinical indicators. RESULTS The results confirmed a decreased level of probiotics and an enrichment of pathogenic bacteria in patients with all types of polyps compared to healthy individuals. These changes were not restricted to the mucosa within 0.5 cm adjacent to the polyps, but also existed in histologically normal tissue 10 cm distal from the lesions. Significant differences in bacterial diversity were observed in the mucosa from individuals with normal conditions, Pol, and Ade. Increased abundance of Gram-negative bacteria, including Klebsiella, Plesiomonas, and Cronobacter, was observed in Pol group and Ade group, suggesting that resistance to antibiotics may be one risk factor for bacterium-related harmful environment. Meanwhile, age and gender were linked to bacteria changes, indicating the potential involvement of sex hormones. CONCLUSION These preliminary results support intestinal dysbiosis as an important risk factor for recurrent polyps, especially adenoma. Targeting specific pathogenic bacteria may attenuate the recurrence of polyps.
Collapse
Affiliation(s)
- Li-Li Yin
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ping-Qian Qi
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yun-Fei Hu
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Jun Fu
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Rui-Shan He
- The Second College of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Meng-Meng Wang
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yan-Juan Deng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Su-Yi Xiong
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qi-Wen Yu
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jin-Ping Hu
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Lv Zhou
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi-Bin Zhou
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ying Xiong
- Department of General Medicine, The Second College of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Huan Deng
- The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The Ministry of Education Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi Province, China
| |
Collapse
|
3
|
Lopes SR, Martins C, Santos IC, Teixeira M, Gamito É, Alves AL. Colorectal cancer screening: A review of current knowledge and progress in research. World J Gastrointest Oncol 2024; 16:1119-1133. [PMID: 38660635 PMCID: PMC11037045 DOI: 10.4251/wjgo.v16.i4.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide, being the third most commonly diagnosed malignancy and the second leading cause of cancer-related deaths globally. Despite the progress in screening, early diagnosis, and treatment, approximately 20%-25% of CRC patients still present with metastatic disease at the time of their initial diagnosis. Furthermore, the burden of disease is still expected to increase, especially in individuals younger than 50 years old, among whom early-onset CRC incidence has been increasing. Screening and early detection are pivotal to improve CRC-related outcomes. It is well established that CRC screening not only reduces incidence, but also decreases deaths from CRC. Diverse screening strategies have proven effective in decreasing both CRC incidence and mortality, though variations in efficacy have been reported across the literature. However, uncertainties persist regarding the optimal screening method, age intervals and periodicity. Moreover, adherence to CRC screening remains globally low. In recent years, emerging technologies, notably artificial intelligence, and non-invasive biomarkers, have been developed to overcome these barriers. However, controversy exists over the actual impact of some of the new discoveries on CRC-related outcomes and how to effectively integrate them into daily practice. In this review, we aim to cover the current evidence surrounding CRC screening. We will further critically assess novel approaches under investigation, in an effort to differentiate promising innovations from mere novelties.
Collapse
Affiliation(s)
- Sara Ramos Lopes
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Claudio Martins
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Inês Costa Santos
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Madalena Teixeira
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Élia Gamito
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Ana Luisa Alves
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| |
Collapse
|
4
|
East JE. Risk Classification After Colonoscopy and Polypectomy: Are We Always Fighting the Last War? Gastroenterology 2023; 165:333-335. [PMID: 37245590 DOI: 10.1053/j.gastro.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/23/2023] [Indexed: 05/30/2023]
Affiliation(s)
- James E East
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Division of Gastroenterology and Hepatology, Mayo Clinic Healthcare, London, United Kingdom.
| |
Collapse
|
5
|
Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00766-x. [PMID: 37169888 DOI: 10.1038/s41571-023-00766-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Colorectal cancer (CRC) is one of the commonest cancers globally. A unique aspect of CRC is its intimate association with the gut microbiota, which forms an essential part of the tumour microenvironment. Research over the past decade has established that dysbiosis of gut bacteria, fungi, viruses and Archaea accompanies colorectal tumorigenesis, and these changes might be causative. Data from mechanistic studies demonstrate the ability of the gut microbiota to interact with the colonic epithelia and immune cells of the host via the release of a diverse range of metabolites, proteins and macromolecules that regulate CRC development. Preclinical and some clinical evidence also underscores the role of the gut microbiota in modifying the therapeutic responses of patients with CRC to chemotherapy and immunotherapy. Herein, we summarize our current understanding of the role of gut microbiota in CRC and outline the potential translational and clinical implications for CRC diagnosis, prevention and treatment. Emphasis is placed on how the gut microbiota could now be better harnessed by developing targeted microbial therapeutics as chemopreventive agents against colorectal tumorigenesis, as adjuvants for chemotherapy and immunotherapy to boost drug efficacy and safety, and as non-invasive biomarkers for CRC screening and patient stratification. Finally, we highlight the hurdles and potential solutions to translating our knowledge of the gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Chan FKL, Wong MCS, Chan AT, East JE, Chiu HM, Makharia GK, Weller D, Ooi CJ, Limsrivilai J, Saito Y, Hang DV, Emery JD, Makmun D, Wu K, Ali RAR, Ng SC. Joint Asian Pacific Association of Gastroenterology (APAGE)-Asian Pacific Society of Digestive Endoscopy (APSDE) clinical practice guidelines on the use of non-invasive biomarkers for diagnosis of colorectal neoplasia. Gut 2023:gutjnl-2023-329429. [PMID: 37019620 DOI: 10.1136/gutjnl-2023-329429] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
Screening for colorectal cancer (CRC) is effective in reducing CRC related mortality. Current screening methods include endoscopy based and biomarker based approaches. This guideline is a joint official statement of the Asian Pacific Association of Gastroenterology (APAGE) and the Asian Pacific Society of Digestive Endoscopy (APSDE), developed in response to the increasing use of, and accumulating supportive evidence for the role of, non-invasive biomarkers for the diagnosis of CRC and its precursor lesions. A systematic review of 678 publications and a two stage Delphi consensus process involving 16 clinicians in various disciplines was undertaken to develop 32 evidence based and expert opinion based recommendations for the use of faecal immunochemical tests, faecal based tumour biomarkers or microbial biomarkers, and blood based tumour biomarkers for the detection of CRC and adenoma. Comprehensive up-to-date guidance is provided on indications, patient selection and strengths and limitations of each screening tool. Future research to inform clinical applications are discussed alongside objective measurement of research priorities. This joint APAGE-APSDE practice guideline is intended to provide an up-to-date guide to assist clinicians worldwide in utilising non-invasive biomarkers for CRC screening; it has particular salience for clinicians in the Asia-Pacific region.
Collapse
Affiliation(s)
- Francis K L Chan
- Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Martin C S Wong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Health Education and Health Promotion, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - James E East
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Division of Gastroenterology and Hepatology, Mayo Clinic Healthcare, London, UK
| | - Han-Mo Chiu
- Department of Internal Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - David Weller
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | | | - Julajak Limsrivilai
- Internal Medicine, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Dao V Hang
- Hanoi Medical University, Hanoi, Vietnam
| | - Jon D Emery
- Department of General Practice, The University of Melbourne Faculty of Medicine Dentistry and Health Sciences, Melbourne, Victoria, Australia
| | | | - Kaichun Wu
- Xijing Hospital of Digestive Diseases, Xijing Hospital, Xian, China
| | | | - Siew C Ng
- Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
7
|
Zhu A, Liu Y, Li Z, He Y, Bai L, Wu Y, Zhang Y, Huang Y, Jiang P. Diagnosis and functional prediction of microbial markers in tumor tissues of sporadic colorectal cancer patients associated with the MLH1 protein phenotype. Front Oncol 2023; 12:1116780. [PMID: 36755857 PMCID: PMC9899897 DOI: 10.3389/fonc.2022.1116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 01/25/2023] Open
Abstract
Objective Most patients with sporadic colorectal cancer (SCRC) develop microsatellite instability because of defects in mismatch repair (MMR). Moreover, the gut microbiome plays a vital role in the pathogenesis of SCRC. In this study, we assessed the microbial composition and diversity of SCRC tumors with varying MutL protein homolog 1 (MLH1) status, and the effects of functional genes related to bacterial markers and clinical diagnostic prediction. Methods The tumor microbial diversity and composition were profiled using high-throughput sequencing of the 16S ribosomal RNA (rRNA) gene V4 region. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) software and BugBase tool were used to predict the functional roles of the microbiome. We aimed to construct a high-accuracy model to detect and evaluate the area under the receiver operating characteristic curve with candidate biomarkers. Results The study included 23 patients with negative/defective MLH1 (DM group) and 22 patients with positive/intact MLH1 (IM group). Estimation of alpha diversity indices showed that the Shannon index (p = 0.049) was significantly higher in the DM group than in the controls, while the Simpson index (p = 0.025) was significantly lower. At the genus level, we observed a significant difference in beta diversity in the DM group versus the IM group. Moreover, the abundance of Lachnoclostridium spp. and Coprococcus spp. was significantly more enriched in the DM group than in the IM group (q < 0.01 vs. q < 0.001). When predicting metagenomes, there were 18 Kyoto Encyclopedia of Genes and Genomes pathways and one BugBase function difference in both groups (all q < 0.05). On the basis of the model of diagnostic prediction, we built a simplified optimal model through stepwise selection, consisting of the top two bacterial candidate markers (area under the curve = 0.93). Conclusion In conclusion, the genera Lachnoclostridium and Coprococcus as key species may be crucial biomarkers for non-invasive diagnostic prediction of DM in patients with SCRC in the future.
Collapse
Affiliation(s)
- Anchao Zhu
- Department of Pathology, Harbin First Hospital, Harbin, China
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yingying Liu
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, China
| | - Zongmin Li
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Ying He
- Department of Gastroenterology, Harbin First Hospital, Harbin, China
| | - Lijing Bai
- Department of Laboratory Diagnosis, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Youtian Wu
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Yuying Zhang
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Ying Huang
- Department of Pathology, Harbin First Hospital, Harbin, China
| | - Ping Jiang
- Department of Pathology, Harbin First Hospital, Harbin, China
| |
Collapse
|
8
|
Wong MCS, Huang J, Wong YY, Ko S, Chan VCW, Ng SC, Chan FKL. The Use of a Non-Invasive Biomarker for Colorectal Cancer Screening: A Comparative Cost-Effectiveness Modeling Study. Cancers (Basel) 2023; 15:cancers15030633. [PMID: 36765591 PMCID: PMC9913459 DOI: 10.3390/cancers15030633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
This study aimed to examine the cost-effectiveness of fecal biomarker M3 panel compared to fecal immunochemical test (FIT) and colonoscopy in an Asian population. In a hypothetical population of 100,000 persons aged 50 years who received FIT yearly, M3 biomarker yearly, or colonoscopy every 10 years until the age of 75 years. Participants with positive FOBT or a result of "high risk" identified using the M3 biomarker are offered colonoscopy. We assumed surveillance colonoscopy is repeated every 3 years, and examined the treatment cost. A comparison of various outcome measures was conducted using Markov modelling. The incremental cost-effectiveness ratio (ICER) of FIT, M3 biomarker, and colonoscopy was USD108,176, USD133,485 and USD159,596, respectively. Comparing with FIT, the use of M3 biomarker could lead to significantly smaller total loss of cancer-related life-years (2783 vs. 5279); a higher number of CRC cases prevented (1622 vs. 146), a higher proportion of CRC cases prevented (50.2% vs. 4.5%), more life-years saved (2852 vs. 339), and cheaper total costs per life-year saved (USD212,553 vs. 773,894). The total costs per life-year saved is more affordable than that achieved by colonoscopy as a primary screening tool (USD212,553 vs. USD236,909). The findings show that M3 biomarkers may be more cost-effective than colonoscopy.
Collapse
Affiliation(s)
- Martin C. S. Wong
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Junjie Huang
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Health Education and Health Promotion, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuet-Yan Wong
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Samantha Ko
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Victor C. W. Chan
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- The Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (S.C.N.); (F.K.L.C.); Tel.: +852-3505-1339 (F.K.L.C.); Fax: +852-2647-1557 (F.K.L.C.)
| | - Francis K. L. Chan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- The Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (S.C.N.); (F.K.L.C.); Tel.: +852-3505-1339 (F.K.L.C.); Fax: +852-2647-1557 (F.K.L.C.)
| |
Collapse
|
9
|
Zhang J, He Y, Xia L, Yi J, Wang Z, Zhao Y, Song X, Li J, Liu H, Liang X, Nie S, Liu L. Expansion of Colorectal Cancer Biomarkers Based on Gut Bacteria and Viruses. Cancers (Basel) 2022; 14:cancers14194662. [PMID: 36230584 PMCID: PMC9563090 DOI: 10.3390/cancers14194662] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The current study identified microbial (including bacterial and viral) diagnostic models that could discriminate colorectal tumor patients from healthy controls, expanding the potential biomarkers for colorectal tumors. A combination of five colorectal cancer-associated gut bacteria was identified in this study for the discrimination of colorectal cancer patients from healthy controls, with verifiable performance in multiple cohorts. The gene pathways regulated by aberrant gut bacteria were also identified, providing possible directions for studying bacterial carcinogenesis mechanisms. Furthermore, this study revealed the potential interactions of gut bacteria with viruses and within bacteria in adenoma-carcinoma sequences, which may extend our understanding of dysbiosis in colorectal carcinogenesis. Abstract The alterations in gut bacteria are closely related to colorectal cancer. However, studies on adenoma are still scarce. Besides, the associations of gut viruses with colorectal tumor, and the interactions of bacteria with viruses in colorectal tumors are still under exploration. Therefore, a metagenomic sequencing of stool samples from patients with colorectal adenoma (CRA), colorectal cancer (CRC), and healthy controls was performed to identify changes in gut microbiome in patients with colorectal tumors. Five CRC-enriched bacteria (Peptostreptococcus stomatis, Clostridium symbiosum, Hungatella hathewayi, Parvimonas micra, and Gemella morbillorum) were identified as a diagnostic model to identify CRC patients, and the efficacy of the diagnostic model was verifiable in 1523 metagenomic samples from ten cohorts of eight different countries. We identified the positive association of Bacteroides fragilis with PD-L1 expression and PD-1 checkpoint pathway, providing a possible direction for studying bacterial carcinogenesis mechanisms. Furthermore, the increased interactions within the microbiome in patients may play roles in the development of CRC. In conclusion, this study identified novel microbiota combinations with discrimination for colorectal tumor, and revealed the potential interactions of gut bacteria with viruses in the adenoma-carcinoma sequence, which implies that the microbiome, but not only bacteria, should be paid more attention in further studies.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yangting He
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Xia
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Yi
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingying Zhao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuemei Song
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Li
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Xinjun Liang
- Department of Medical Oncology, Tongji Medical College, Hubei Cancer Hospital, Huazhong University of Science and Technology, Wuhan 430079, China
- Colorectal Cancer Clinical Research Center of Hubei Province, Wuhan 430079, China
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan 430079, China
| | - Shaofa Nie
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: ; Tel.: +86-27-86393763; Fax: +86-27-83692701
| |
Collapse
|
10
|
Shang J, Cui W, Guo R, Zhang Y, Wang P, Yu W, Zheng X, Wang T, Dong Y, Zhao J, Ding S, Xiao J, Ren Z, Zhao Z. The harmful intestinal microbial community accumulates during DKD exacerbation and microbiome-metabolome combined validation in a mouse model. Front Endocrinol (Lausanne) 2022; 13:964389. [PMID: 36601003 PMCID: PMC9806430 DOI: 10.3389/fendo.2022.964389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Diabetic kidney disease (DKD) is one of the most prevalent complications of diabetes mellitus (DM) and is associated with gut microbial dysbiosis. We aim to build a diagnostic model to aid clinical practice and uncover a crucial harmful microbial community that contributes to DKD pathogenesis and exacerbation. DESIGN A total of 528 fecal samples from 180 DKD patients and 348 non-DKD populations (138 DM and 210 healthy volunteers) from the First Affiliated Hospital of Zhengzhou University were recruited and randomly divided into a discovery phase and a validation phase. The gut microbial composition was compared using 16S rRNA sequencing. Then, the 180 DKD patients were stratified into four groups based on clinical stages and underwent gut microbiota analysis. We established DKD mouse models and a healthy fecal microbiota transplantation (FMT) model to validate the effects of gut microbiota on DKD and select the potential harmful microbial community. Untargeted metabolome-microbiome combined analysis of mouse models helps decipher the pathogenetic mechanism from a metabolic perspective. RESULTS The diversity of the gut microbiome was significantly decreased in DKD patients when compared with that of the non-DKD population and was increased in the patients with more advanced DKD stages. The DKD severity in mice was relieved after healthy gut microbiota reconstruction. The common harmful microbial community was accumulated in the subjects with more severe DKD phenotypes (i.e., DKD and DKD5 patients and DKD mice). The harmful microbial community was positively associated with the serum injurious metabolites (e.g., cholic acid and hippuric acid). CONCLUSION The fecal microbial community was altered markedly in DKD. Combining the fecal analysis of both human and animal models selected the accumulated harmful pathogens. Partially recovering healthy gut microbiota can relieve DKD phenotypes via influencing pathogens' effect on DKD mice's metabolism.
Collapse
Affiliation(s)
- Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Ruixue Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Yiding Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Peipei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Wei Yu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Xuejun Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Ting Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Yijun Dong
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Jing Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Zhengzhou University, Zhengzhou, China
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|