1
|
Jara-Medina NR, Cueva DF, Cedeño-Pinargote AC, Gualle A, Aguilera-Pesantes D, Méndez MÁ, Orejuela-Escobar L, Cisneros-Heredia DF, Cortez-Zambrano R, Miranda-Moyano N, Tejera E, Machado A. Eco-alternative treatments for Vibrio parahaemolyticus and V. cholerae biofilms from shrimp industry through Eucalyptus (Eucalyptus globulus) and Guava (Psidium guajava) extracts: A road for an Ecuadorian sustainable economy. PLoS One 2024; 19:e0304126. [PMID: 39137207 PMCID: PMC11321589 DOI: 10.1371/journal.pone.0304126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024] Open
Abstract
Understanding how environmental variables influence biofilm formation becomes relevant for managing Vibrio biofilm-related infections in shrimp production. Therefore, we evaluated the impact of temperature, time, and initial inoculum in the biofilm development of these two Vibrio species using a multifactorial experimental design. Planktonic growth inhibition and inhibition/eradication of Vibrio biofilms, more exactly V. parahaemolyticus (VP87 and VP275) and V. cholerae (VC112) isolated from shrimp farms were evaluated by Eucalyptus and Guava aqueous leaf extracts and compared to tetracycline and ceftriaxone. Preliminary results showed that the best growth conditions of biofilm development for V. parahaemolyticus were 24 h and 24°C (p <0.001), while V. cholerae biofilms were 72 h and 30°C (p <0.001). Multivariate linear regression ANOVA was applied using colony-forming unit (CFU) counting assays as a reference, and R-squared values were applied as goodness-of-fit measurements for biofilm analysis. Then, both plant extracts were analyzed with HPLC using double online detection by diode array detector (DAD) and mass spectrometry (MS) for the evaluation of their chemical composition, where the main identified compounds for Eucalyptus extract were cypellogin A, cypellogin B, and cypellocarpin C, while guavinoside A, B, and C compounds were the main compounds for Guava extract. For planktonic growth inhibition, Eucalyptus extract showed its maximum effect at 200 μg/mL with an inhibition of 75% (p < 0.0001) against all Vibrio strains, while Guava extract exhibited its maximum inhibition at 1600 μg/mL with an inhibition of 70% (p < 0.0001). Both biofilm inhibition and eradication assays were performed by the two conditions (24 h at 24°C and 72 h at 30°C) on Vibrio strains according to desirability analysis. Regarding 24 h at 24°C, differences were observed in the CFU counting between antibiotics and plant extracts, where both plant extracts demonstrated a higher reduction of viable cells when compared with both antibiotics at 8x, 16x, and 32x MIC values (Eucalyptus extract: 1600, 3200, and 6400 μg/mL; while Guava extract: 12800, 25600, and 52000 μg/mL). Concerning 72 h at 30°C, results showed a less notorious biomass inhibition by Guava leaf extract and tetracycline. However, Eucalyptus extract significantly reduced the total number of viable cells within Vibrio biofilms from 2x to 32x MIC values (400-6400 μg/mL) when compared to the same MIC values of ceftriaxone (5-80 μg/mL), which was not able to reduce viable cells. Eucalyptus extract demonstrated similar results at both growth conditions, showing an average inhibition of approximately 80% at 400 μg/mL concentration for all Vibrio isolates (p < 0.0001). Moreover, eradication biofilm assays demonstrated significant eradication against all Vibrio strains at both growth conditions, but biofilm eradication values were substantially lower. Both extract plants demonstrated a higher reduction of viable cells when compared with both antibiotics at 8x, 16x, and 32x MIC values at both growth sets, where Eucalyptus extract at 800 μg/mL reduced 70% of biomass and 90% of viable cells for all Vibrio strains (p < 0.0001). Overall results suggested a viable alternative against vibriosis in the shrimp industry in Ecuador.
Collapse
Affiliation(s)
- Nicolás Renato Jara-Medina
- Laboratorio de Bacteriología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Calle Diego de Robles y Pampite, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Dario Fernando Cueva
- Laboratorio de Bacteriología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Calle Diego de Robles y Pampite, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ariana Cecibel Cedeño-Pinargote
- Laboratorio de Bacteriología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Calle Diego de Robles y Pampite, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Arleth Gualle
- Colegio de Ciencias e Ingenierías, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | | | - Miguel Ángel Méndez
- Colegio de Ciencias e Ingenierías, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Lourdes Orejuela-Escobar
- Colegio de Ciencias e Ingenierías, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Instituto de Investigaciones Biológicas y Ambientales BIÓSFERA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego F. Cisneros-Heredia
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Herbario de Botánica Económica, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Rebeca Cortez-Zambrano
- Laboratorio de Bacteriología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Calle Diego de Robles y Pampite, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Herbario de Botánica Económica, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Facultad de Medicina Veterinaria, Universidad UTE, Quito, Ecuador
| | - Nelson Miranda-Moyano
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Herbario de Botánica Económica, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - António Machado
- Laboratorio de Bacteriología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Calle Diego de Robles y Pampite, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
2
|
Ghosh AK, Panda SK, Hu H, Schoofs L, Luyten W. Compounds isolation from Syzygium cumini leaf extract against the Vibrio species in shrimp through bioassay-guided fractionation. Nat Prod Res 2024:1-11. [PMID: 38648539 DOI: 10.1080/14786419.2024.2344192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
This study was conducted to isolate and identify the bioactive compounds from the ethanolic extract of Syzygium cumini leaf against Vibrio species through a bioassay-guided fractionation. The ethanol extract was exposed to silica gel chromatography followed by reversed phase HPLC to isolate the most effective fraction against V. parahaemolyticus. Using further UHPLC-orbitrap-ion trap mass spectrometry, five compounds were isolated with broad-spectrum potency against a range of Vibrio species viz. V. parahaemolyticus, V. alginolyticus, V. harveyi, V. vulnificus and V. anguillarum. The IC50 values for the compounds ranged from 8 to 48 µg/mL against the most sensitive species V. vulnificus and 58 to >400 µg/mL against V. alginolyticus. The results of the toxicity tests demonstrated that the compounds were not harmful for shrimp. The study's findings indicate that S. cumini leaf extract may contain bioactive molecules that are able to be substituted for antibiotics to treat vibriosis in shrimp farming.
Collapse
Affiliation(s)
- Alokesh Kumar Ghosh
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, Utkal University, Bhubaneswar, India
| | - Haibo Hu
- School of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liliane Schoofs
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Leuven, Belgium
| | - Walter Luyten
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Effects of a commercial feed additive (Sanacore ® GM
) on immune-antioxidant profile and resistance of gilthead seabream ( Sparus aurata) against Vibrio alginolyticus infection. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The effects of a functional additive (Sanacore® GM; SAN
) on immune and antioxidant indices, and the resistance of gilthead seabream (Sparus aurata) against Vibrio alginolyticus infection. For this, four diets containing 0% (the control), 0.1%, 0.2%, and 0.4% SAN were offered to triplicated groups of fish (20 - 23 g) for ten weeks. Subsequently, fish were injected intraperitoneally with V. alginolyticus and monitored for further ten days. Feeding the fish on SAN-supplemented diets showed positive effects on leukocyte counts and its differential percentages. Serum lysozyme activity and total immunoglobulin values, as well as phagocytic activity and indices, were linearly and quadratically higher in SAN-fed fish; especially at the 0.4% SAN diet. Similarly, linear and quadratic increases in catalase, superoxide dismutase, and total antioxidant capacity were observed in SAN-fed fish, particularly at the 0.4% SAN diet. Conversely, serum malondialdehyde values decreased in SAN-fed fish compared with the control group, which showed its highest value. The highest expression of the IL-1β gene coupled with the lowest TNF-α and HSP70 genes expressions was found in the fish fed with the 0.4% SAN. On the other hand, fish fed on the control diet showed the lowest IL-1β gene coupled with the highest TNF-α and HSP70 genes expressions. After bacterial infection, most of the control fish died with a relative percent of survival of 5.0%; meanwhile feeding gilthead seabream on SAN-enriched diets significantly enhanced their protection against V. alginolyticus infection. Fish fed on the 0.4% SAN diet showed 100% survival. The SAN administration to gilthead seabream especially at the 0.4% level led to significant promotions in antioxidative and immune responses and augment the fish resistance to V. alginolyticus infection.
Collapse
|