1
|
He Y, Hou Y, Li H, He F, Zhou J, Zhang X, Shi J, Xu Z. Identification of a bacteria P450 enzyme from B. megaterium H-1 with vitamin D 3 C-25 hydroxylation capabilities. Enzyme Microb Technol 2025; 184:110578. [PMID: 39729738 DOI: 10.1016/j.enzmictec.2024.110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/05/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
Calcidiol (25(OH)VD3) and calcitriol (1α,25(OH)2VD3) are active vitamin D3 with high medicinal value, which can maintain calcium and phosphorus balance and treat vitamin D deficiency. Microbial synthesis is an important method to produce high-value-added compounds. It can produce active vitamin D3 through the hydroxylation reaction of P450, which can reduce the traditional chemical synthesis steps, and greatly improve the production efficiency and economic benefits. In this work, Bacillus megaterium H-1 was screened for its ability to produce 25(OH)VD3 and 1α,25(OH)2VD3 from vitamin D3. A new highly inducible vitamin D3 hydroxylase CYP109E1-H was identified from B. megaterium H-1 through searching for transcripts with cytochrome P450 structural domains, combining the transcriptome sequencing with functional expression in Bacillus subtilis WB600. Biotransformation in recombinant B. subtilis confirmed that CYP109E1-H has C-25 hydroxylase activity towards vitamin D3. CYP109E1-H is a natural mutant of CYP109E1 with greater stereoselectivity and it is a new vitamin D3 mono-hydroxylase. The cloning and characterization of the CYP109E1-H gene provide useful information on the structural basis for improving the regional and stereoselectivity of the CYP109E gene.
Collapse
Affiliation(s)
- Yulin He
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yina Hou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Fan He
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingyi Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomei Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingsong Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Long S, Mahfuz S, Piao X. Dietary 25-Hydroxycholecalciferol Supplementation from Day 85 of Gestation to Farrowing Enhances Performance, Antioxidant Capacity, and Immunoglobulins of Sows and Newborn Piglets. Animals (Basel) 2024; 14:3378. [PMID: 39682344 DOI: 10.3390/ani14233378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, the aim was to evaluate the effects of dietary 25-hydroxycholecalciferol supplementation from day 85 of gestation on performance, antioxidant capacity, and immunoglobulin level of sows and newborn piglets. On day 85 of gestation, forty Landrace × Yorkshire gestating sows (average body weight of 241 ± 6.8 kg; average parity of 3.47 ± 0.6) were allotted into two treatments (20 replicates per treatment) based on parity, body weight, and back fat thickness. From day 85 of gestation to farrowing, sows were fed a normal vitamin D3 diet as control (containing 50 μg/kg vitamin D3; CON), or a 25-hydroxycholecalciferol-supplemented diet (containing 50 μg/kg 25-hydroxycholecalciferol). Compared with CON, dietary 25-hydroxycholecalciferol supplementation increased (p < 0.05) protein and fat content in colostrum and the average birth body weight of newborn piglets. Sows fed 25-hydroxycholecalciferol showed increased (p < 0.05) apparent total tract digestibility of crude protein compared with CON. Diets supplemented with 25-hydroxycholecalciferol also increased (p < 0.05) the content of superoxide dismutase (SOD), and tended to increase (p = 0.06) the total antioxidant capacity content and reduce (p = 0.09) the malondialdehyde (MDA) level in colostrum. An increase (p < 0.05) in the content of SOD and a reduction (p < 0.05) in the content of MDA in the serum of newborn piglets was also observed in the 25-hydroxycholecalciferol treatment compared with CON. Dietary 25-hydroxycholecalciferol supplementation also enhanced (p < 0.05) the immunoglobulin G content and reduced (p < 0.05) the concentration of tumor nuclear factor-α in the serum of sows, as well as reducing (p < 0.05) the content of immunoglobulin G and immunoglobulin A in the serum of newborn piglets compared with CON. Supplementation of 25-hydroxycholecalciferol in sow diets increased (p < 0.05) the content of alkaline phosphatase in the serum and colostrum of sows, the concentration of insulin and crosslap in serum of sows, and the serum calcium content of newborn piglets compared with CON. In conclusion, dietary 25-hydroxycholecalciferol supplementation from day 85 of gestation could enhance performance, antioxidant capacity, and immunoglobulin in sows and newborn piglets.
Collapse
Affiliation(s)
- Shenfei Long
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101205, China
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shad Mahfuz
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangshu Piao
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101205, China
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Chen W, Lynch JNC, Bustamante C, Zhang Y, Wong LL. Selective Oxidation of Vitamin D 3 Enhanced by Long-Range Effects of a Substrate Channel Mutation in Cytochrome P450 BM3 (CYP102A1). Chemistry 2024; 30:e202401487. [PMID: 38963680 DOI: 10.1002/chem.202401487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Vitamin D deficiency affects nearly half the population, with many requiring or opting for supplements with vitamin D3 (VD3), the precursor of vitamin D (1α,25-dihydroxyVD3). 25-HydroxyVD3, the circulating form of vitamin D, is a more effective supplement than VD3 but its synthesis is complex. We report here the engineering of cytochrome P450BM3 (CYP102A1) for the selective oxidation of VD3 to 25-hydroxyVD3. Long-range effects of the substrate-channel mutation Glu435Ile promoted binding of the VD3 side chain close to the heme, enhancing VD3 oxidation activity that reached 6.62 g of 25-hydroxyVD3 isolated from a 1-litre scale reaction (69.1 % yield; space-time-yield 331 mg/L/h).
Collapse
Affiliation(s)
- Wenyu Chen
- Department of Chemistry, University of Oxford Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- Oxford Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Jiangsu, 215123, P.R. China
| | - Jamie N C Lynch
- Department of Chemistry, University of Oxford Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Claudia Bustamante
- Department of Chemistry, University of Oxford Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Yuan Zhang
- Department of Chemistry, University of Oxford Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- Oxford Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Jiangsu, 215123, P.R. China
| | - Luet L Wong
- Department of Chemistry, University of Oxford Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- Oxford Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Jiangsu, 215123, P.R. China
| |
Collapse
|
4
|
Wang Z, Zeng Y, Jia H, Yang N, Liu M, Jiang M, Zheng Y. Bioconversion of vitamin D 3 to bioactive calcifediol and calcitriol as high-value compounds. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:109. [PMID: 36229827 PMCID: PMC9563128 DOI: 10.1186/s13068-022-02209-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
Biological catalysis is an important approach for the production of high-value-added compounds, especially for products with complex structures. Limited by the complex steps of chemical synthesis and low yields, the bioconversion of vitamin D3 (VD3) to calcifediol and calcitriol, which are natural steroid products with high added value and significantly higher biological activity compared to VD3, is probably the most promising strategy for calcifediol and calcitriol production, and can be used as an alternative method for chemical synthesis. The conversion efficiency of VD3 to calcifediol and calcitriol has continued to rise in the past few decades with the help of several different VD3 hydroxylases, mostly cytochrome P450s (CYPs), and newly isolated strains. The production of calcifediol and calcitriol can be systematically increased in different ways. Specific CYPs and steroid C25 dehydrogenase (S25DH), as VD3 hydroxylases, are capable of converting VD3 to calcifediol and calcitriol. Some isolated actinomycetes have also been exploited for fermentative production of calcifediol and calcitriol, although the VD3 hydroxylases of these strains have not been elucidated. With the rapid development of synthetic biology and enzyme engineering, quite a lot of advances in bioproduction of calcifediol and calcitriol has been achieved in recent years. Therefore, here we review the successful strategies of promoting VD3 hydroxylation and provide some perspective on how to further improve the bioconversion of VD3 to calcifediol and calcitriol.
Collapse
Affiliation(s)
- Zheyi Wang
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
| | - Yan Zeng
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Hongmin Jia
- China Animal Husbandry Industry Co. Ltd, Beijing, 100095 China
| | - Niping Yang
- grid.256885.40000 0004 1791 4722School of Life Sciences, Hebei University, No. 180 Wusi Dong Road, Baoding, 071002 China
| | - Mengshuang Liu
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
| | - Mingyue Jiang
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
| | - Yanning Zheng
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
5
|
Sandoval JL, Ventura DE, Fiallos OB, Anderson BL, Sparks JC, Starkey JD, Starkey CW. Efficacy and safety of a novel source of dietary 25-hydroxycholecalciferol in growing pigs. J Anim Sci 2022; 100:skac260. [PMID: 35961010 PMCID: PMC9512100 DOI: 10.1093/jas/skac260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 11/14/2022] Open
Abstract
A randomized complete block design experiment was conducted to determine the safety and efficacy of supplementation of increasing concentrations of a novel, bacterial fermentation-derived vitamin D source on growth performance and tissue deposition of 25-hydroxycholecalciferol (25OHD3) in growing swine. Dietary treatments were as follows: commercial control with vitamin D3 (CON) at NRC recommended concentrations and three diets composed of CON + increasing inclusions (25, 50, and 250 µg/kg equivalent) of 25OHD3 from a novel source (CON + 25; CON + 50; and CON + 250, respectively). Pigs (n = 144) were assigned to 24 pens which were allotted to one of the four dietary treatments and fed for 42 d. Blood samples were collected for 25OHD3 concentration determination and individual body weights (BW) were measured on experimental day 0, 39, and 63. On day 42, tissues from 48 pigs (12 pigs per dietary treatment) were analyzed for 25OHD3 concentration. No differences were observed in growth performance. Day 39 serum 25OHD3 concentrations were greatest in CON + 250-fed pigs and linearly decreased as dietary 25OHD3 inclusion decreased (P < 0.0001). On day 42, tissue 25OHD3 concentrations increased linearly as 25OHD3 increased in the diet (P < 0.0001). On day 63, 21 d after dietary 25OHD3 withdrawal, serum 25OHD3 concentrations of all 25OHD3-fed pigs decreased to that of or within 2.76 ± 0.89 ng/mL of CON-fed pigs which demonstrates that feeding 250 µg/kg 25OHD3 is well tolerated by growing pigs and will clear the body within 21 d.
Collapse
Affiliation(s)
- Jorge L Sandoval
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Diego E Ventura
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Orlando B Fiallos
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | | | - J Chris Sparks
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Jessica D Starkey
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - Charles W Starkey
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
6
|
Lütke-Dörhoff M, Schulz J, Westendarp H, Visscher C, Wilkens MR. Dietary supplementation of 25-hydroxycholecalciferol as an alternative to cholecalciferol in swine diets: A review. J Anim Physiol Anim Nutr (Berl) 2022; 106:1288-1305. [PMID: 36045590 DOI: 10.1111/jpn.13768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022]
Abstract
25-hydroxycholecalciferol (25-OHD3 ) formed via hepatic hydroxylation from vitamin D, cholecalciferol, represents the precursor of the biologically active vitamin D hormone, 1,25-dihydroxyvitamin D. Due to a higher absorption rate and the omission of one hydroxylation, dietary supplementation of 25-OHD3 instead of vitamin D3 is considered to be more efficient as plasma concentrations of 25-OHD3 are increased more pronounced. The present review summarises studies investigating potential beneficial effects on mineral homeostasis, bone metabolism, health status and performance in sows, piglets and fattening pigs. Results are inconsistent. While most studies could not demonstrate any or only a slight impact of partial or total replacement of vitamin D3 by 25-OHD3 , some experiments indicated that 25-OHD3 might alter physiological processes when animals are challenged, for example, by a restricted mineral supply.
Collapse
Affiliation(s)
- Michael Lütke-Dörhoff
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.,Department of Animal Nutrition, Faculty of Agricultural Sciences and Landscape Architecture, Hochschule Osnabrück, Osnabrück, Germany
| | - Jochen Schulz
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Heiner Westendarp
- Department of Animal Nutrition, Faculty of Agricultural Sciences and Landscape Architecture, Hochschule Osnabrück, Osnabrück, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Mirja R Wilkens
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Faccin JEG, Tokach MD, Goodband RD, DeRouchey JM, Woodworth JC, Gebhardt JT. Gilt development to improve offspring performance and survivability. J Anim Sci 2022; 100:6609152. [PMID: 35708589 DOI: 10.1093/jas/skac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 11/14/2022] Open
Abstract
Methods for developing incoming replacement gilts can indirectly and directly influence survivability of their offspring. Indirectly, having proper gilt development reduces culling rates and mortality, which increases longevity and creates a more mature sow herd. Older sows are more likely to have greater immunity than gilts and therefore can pass this along to their pigs in both quantity and quality of colostrum and milk, thus improving piglet survivability. Directly, proper gilt development will maximize mammary gland development which increases colostrum and milk production leading to large, healthy pig. As for the developing gilt at birth, increasing colostrum intake, reducing nursing pressure, providing adequate space allowance, and good growth rate can increase the likelihood that gilts successfully enter and remain in the herd. Light birth weight gilts (<1 kg) or gilts from litters with low birth weight should be removed early in the selection process. Gilts should be weaned at 24 d of age or older and then can be grown in a variety of ways as long as lifetime growth rate is over 600 g/d. Current genetic lines with exceptional growth rate run the risk of being bred too heavy, reducing longevity. On the other hand, restricting feed intake at specific times could be detrimental to mammary development. In these situations, reducing diet amino acid concentration and allowing ad libitum feed is a possible strategy. Gilts should be bred between 135 and 160 kg and at second estrus or later while in a positive metabolic state to increase lifetime productivity and longevity in the herd. Once bred, gilts should be fed to maintain or build body reserves without becoming over-conditioned at farrowing. Proper body condition at farrowing impacts the percentage of pigs born alive as well as colostrum and milk production, and consequently, offspring performance and survivability. Combined with the benefit in pig immunity conferred by an older sow parity structure, gilt development has lasting impacts on offspring performance and survivability.
Collapse
Affiliation(s)
- Jamil E G Faccin
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| |
Collapse
|
8
|
Yang G, Zhong H, Xia X, Qi Z, Wang C, Li S. Potential application of proteolysis targeting chimera (PROTAC) modification technology in natural products for their targeted protein degradation. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Abstract
Vitamin D (VD) has been reported to play multiple and significant roles in improving pig health via modulating calcium and phosphorus homeostasis, skeletal muscle development and the immune system. Apart from food, photochemical action of 7-dehydrocholesterol in the skin is the main source of this molecule for pigs. The VD from dietary intake or photosynthesized via skin can be absorbed into the liver for hydroxylation, and further hydroxylated into the hormone form of VD (1,25-dihydroxyvitamin D3 or 1,25(OH)2D3) in the kidney. As a sterol hormone, 1,25(OH)2D3 is able to bind with the VD receptor (VDR), and this ligand-receptor complex (VDR/retinoic X receptor) translocates from the cytoplasm into the nucleus to regulate gene expression, thus modulating metabolism. In this review, we summarized the recent studies regarding the non-skeletal health benefits of VD for pigs, and focused on the recent advances in the cellular and molecular mechanisms of VD that affects the immune system and reproductive health. This review provides a reference for future research and application of VD in pigs.
Collapse
|
10
|
Skeletal health, redox balance and gastrointestinal functionality in dairy cows: connecting bugs and bones. J DAIRY RES 2020; 87:410-415. [PMID: 33292880 DOI: 10.1017/s0022029920001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This research reflection examines the physiological links between redox balance, skeletal health and gastrointestinal functionality in dairy cows. With the increase in demand of animal products caused by the growth in human population, the dairy industry needs to develop and implement innovative strategies which are profitable, sustainable and cow friendly. Redox balance, skeletal heath and gastrointestinal functionality are three key physiological systems that are often seen as independent entities. In this research reflection we intend to stress that the antioxidant system, bone health and the microbiome are intimately intertwined. Antioxidants are crucial for the maintenance of redox homeostasis and optimal immune function. Optimal gastrointestinal functionality is important to maintain animal performance, health and welfare. In particular, the intestinal microbiome is increasingly seen as a driver of health and disease. Vitamin D metabolism is pivotal not only for optimal skeletal health, but in light of all the extra-skeletal effect of vitamin D, it is the foundation for optimal productive life. It makes sense to ask the question 'how are redox balance and the microbiome involved in the modulation of bone health and immune function?' In other words, are bugs and bones connected in dairy cows! The existing data available in the literature suggests that this might be the case. The characterization of the interactions between redox balance, skeletal health and the microbiome, will allow the development of a multisystem biological approach to refine nutritional interventions to improve dairy cattle health, welfare and productive longevity.
Collapse
|
11
|
Grez-Capdeville M, Gross N, Baker JC, Shutter JA, Haas AR, Wilson ME, Crenshaw TD. Alleged predisposing dietary factors fail to increase the incidence of osteochondrosis-like lesions in growing pigs at 14 and 24 wk of age. J Anim Sci 2020; 98:skaa103. [PMID: 32249288 PMCID: PMC7185024 DOI: 10.1093/jas/skaa103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/03/2020] [Indexed: 01/21/2023] Open
Abstract
Early lesions of osteochondrosis (OC) are exhibited by regions of cartilage retention along the growth plate and articular cartilage. Progression of OC lesions may impair locomotion and necessitate euthanasia in adherence to animal welfare guides. Little is known about the role of nutrition in the initiation and early stages of OC. However, dietary components are commonly implicated as predisposing factors. In this study, diets were altered as an attempt to induce early stage OC lesions under controlled conditions. At 8 wk of age, 96 crossbred gilts (body weight [BW] = 17.4 ± 0.18 kg) were randomly assigned to one of four corn-soybean meal-based diets (four pens per diet, six pigs per pen) to assess diet effects on the number and volume of OC lesions in the distal femur. Diets included a non-pelleted control diet (Ctl); Ctl plus 20% glucose (Glc); the Ctl with increased concentrations of lysine, Ca, and P (+CaP); and the +CaP diet in a pelleted form (PEL). Femurs were collected from pigs euthanized at either 14-wk (Wk 14) or 24-wk (Wk 14) of age for assessments of OC lesions. Based on a mixed model analysis with pen as the experimental unit, dietary treatments did not affect final BW (129.3 ± 3.8 kg) or average daily gain (ADG) (1.00 ± 0.03 kg/d) over the trial. As expected, pigs fed PEL and Glc diets were more efficient (P < 0.05) in feed conversion compared with Ctl and +CaP. Using femurs as the experimental unit at Wk 14 (collected from two of the six pigs per pen), bone mineral content, determined by dual-energy x-ray absorptiometry scans, was greater (P < 0.05) in pigs fed +CaP and PEL than Ctl or Glc diets; however, only +CaP group differed (P < 0.05) at Wk 24 (collected from four pigs per pen). Computed tomography (CT) scans of femurs were reconstructed as three-dimensional images to allow detection of the number, volume, and surface area of lesions in distal growth plates. At Wk 14, pigs fed Ctl had fewer number of lesions (P < 0.05); however, no differences were detected among dietary treatments in lesion volume or lesion surface area. Pigs had fewer lesions at Wk 24 than Wk 14; however, differences were not detected among dietary treatments. At Wk 24, pigs fed Ctl diets had the greatest lesion volume among dietary treatments (P < 0.05). In conclusion, none of the pigs exhibited symptoms of lameness regardless of dietary treatment or OC lesion traits. Diet modifications due to pelleting or inclusion of rapidly digestible ingredients, such as glucose, did not increase prevalence or size of OC lesions. Image analysis of CT scans was a reliable method to quantify the number, size, and location of OC lesions.
Collapse
Affiliation(s)
| | - Nicole Gross
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI
| | - Joni C Baker
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI
| | - Jennifer A Shutter
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI
| | - Amanda R Haas
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI
| | | | - Thomas D Crenshaw
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
12
|
High Levels of Circulating Type II Collagen Degradation Marker (CTx-II) Are Associated with Specific VDR Polymorphisms in Patients with Adult Vertebral Osteochondrosis. Int J Mol Sci 2017; 18:ijms18102073. [PMID: 28961166 PMCID: PMC5666755 DOI: 10.3390/ijms18102073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 01/31/2023] Open
Abstract
Both vitamin D and collagen have roles in osteocartilaginous homeostasis. We evaluated the association between the circulating 25-hydroxyvitamin D (25(OH)D) type I and II collagen degradation products (CTx-I, and CTx-II), and four vitamin D receptor gene (VDR) polymorphisms, in Italian males affected by low back pain (LBP) due to herniation/discopathy and/or vertebral osteochondrosis. FokI, BsmI, ApaI, and TaqI VDR-polymorphisms were detected through PCR-restriction fragment length polymorphism (RFLP), and circulating 25(OH)D, CTx-I and CTx-II were measured by immunoassays in 79 patients (of which 26 had osteochondrosis) and 79 age-, sex- and body mass index (BMI)-matched healthy controls. Among all 158 subjects, carriers of FF and Ff genotypes showed lower 25(OH)D than ff, which suggested a higher depletion of vitamin D in F allele carriers. Higher CTx-I concentrations were observed in TT versus Tt among controls, and Tt versus tt among LBP cases, which suggested a higher bone-cartilaginous catabolism in subjects bearing the T allele. Higher CTx-II concentrations were observed in patients with osteochondrosis bearing FF, bb, TT, or Aa genotypes in comparison with hernia/discopathy patients and healthy controls. Vertebral osteochondrosis shows peculiar genotypic and biochemical features related to vitamin D and the osteocartilaginous metabolism. Vitamin D has roles in the pathophysiology of osteochondrosis.
Collapse
|
13
|
Nutritional strategies in ruminants: A lifetime approach. Res Vet Sci 2017; 116:28-39. [PMID: 28943061 DOI: 10.1016/j.rvsc.2017.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 09/09/2017] [Indexed: 01/08/2023]
Abstract
This review examines the role of nutritional strategies to improve lifetime performance in ruminants. Strategies to increase ruminants' productive longevity by means of nutritional interventions provide the opportunity not only to increase their lifetime performances and their welfare, but also to decrease their environmental impact. This paper will also address how such nutritional interventions can increase herd efficiency and farm profitability. The key competencies reviewed in this article are redox balance, skeletal development and health, nutrient utilization and sustainability, which includes rearing ruminants without antibiotics and methane mitigation. While the relationships between these areas are extremely complex, a multidisciplinary approach is needed to develop nutritional strategies that would allow ruminants to become more resilient to the environmental and physiological challenges that they will have to endure during their productive career. As the demand of ruminant products from the rapidly growing human world population is ever-increasing, the aim of this review is to present animal and veterinary scientists as well as nutritionists a multidisciplinary approach towards a sustainable ruminant production, while improving their nutrient utilization, health and welfare, and mitigation of their carbon footprint at the same time.
Collapse
|
14
|
von Rosenberg SJ, Weber GM, Erhardt A, Höller U, Wehr UA, Rambeck WA. Tolerance evaluation of overdosed dietary levels of 25-hydroxyvitamin D3
in growing piglets. J Anim Physiol Anim Nutr (Berl) 2015; 100:371-80. [DOI: 10.1111/jpn.12355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/03/2015] [Indexed: 01/16/2023]
Affiliation(s)
- S. J. von Rosenberg
- Institute for Animal Nutrition; Ludwig-Maximilians-University Munich; Oberschleissheim Germany
| | - G. M. Weber
- DSM Nutritional Products Limited; Nutrition Innovation Center; Kaiseraugst Switzerland
| | - A. Erhardt
- Institute for Animal Nutrition; Ludwig-Maximilians-University Munich; Oberschleissheim Germany
| | - U. Höller
- DSM Nutritional Products Limited; Nutrition Innovation Center; Kaiseraugst Switzerland
| | - U. A. Wehr
- Institute for Animal Nutrition; Ludwig-Maximilians-University Munich; Oberschleissheim Germany
| | - W. A. Rambeck
- Institute for Animal Nutrition; Ludwig-Maximilians-University Munich; Oberschleissheim Germany
| |
Collapse
|
15
|
van Barneveld RJ. Nutritional management of group-housed gestating sows – key challenges in the transition from stall-housing systems. ANIMAL PRODUCTION SCIENCE 2013. [DOI: 10.1071/an13277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transition from gestation stalls to group-housing systems is a source of trepidation for many pork producers, given the capital cost of conversion and the challenges associated with managing sows in groups. Despite this, market imperatives in Australia have led to rapid transition in many enterprises. The cost of conversion of a 4100-sow unit from stalls to groups using low-cost retrofitting of existing breeder space (AU$150.00/sow) at relatively high densities (1.8 m2/sow) in small static groups (15–20 sows) based on floor or trough feeding with or without head bales and shoulder partitions equates to an additional cost of $3.00/piglet weaned if the level of productivity is maintained. If the number of piglets born per litter is increased by 1.04 piglets per litter, overall earnings of the herd are equal to levels achieved before the transition. This capital cost appears manageable if appropriate nutritional regimens are implemented to address individual nutritional needs of sows housed in groups and to manage aggression. Management of sow body condition during the reproductive cycle focussed on standardised gilt introduction to the breeding herd and optimisation of sow and gilt feed intake in lactation is pivotal, as it reduces the need for remedial feeding of individual sows post-weaning and during gestation. Nutritional management can also be used to reduce aggression between sows by removing impediments to feed access and by induction of satiety. Commercial implementation of these strategies confirms their relevance and demonstrates that sows can be cost-effectively managed in group-housing systems.
Collapse
|